JP2846707B2 - Hydrogen storage alloy electrode for alkaline storage batteries - Google Patents

Hydrogen storage alloy electrode for alkaline storage batteries

Info

Publication number
JP2846707B2
JP2846707B2 JP2146443A JP14644390A JP2846707B2 JP 2846707 B2 JP2846707 B2 JP 2846707B2 JP 2146443 A JP2146443 A JP 2146443A JP 14644390 A JP14644390 A JP 14644390A JP 2846707 B2 JP2846707 B2 JP 2846707B2
Authority
JP
Japan
Prior art keywords
cani
hydrogen storage
storage alloy
type
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2146443A
Other languages
Japanese (ja)
Other versions
JPH0441637A (en
Inventor
修弘 古川
晃治 西尾
房吾 水瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2146443A priority Critical patent/JP2846707B2/en
Publication of JPH0441637A publication Critical patent/JPH0441637A/en
Application granted granted Critical
Publication of JP2846707B2 publication Critical patent/JP2846707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、負極に水素吸蔵電極を用いる金属−水素ア
ルカリ蓄電池に使用されるアルカリ蓄電池用水素吸蔵合
金電極に関するものである。
The present invention relates to a hydrogen storage alloy electrode for an alkaline storage battery used in a metal-hydrogen alkaline storage battery using a hydrogen storage electrode as a negative electrode.

(ロ)従来の技術 従来から用いられている蓄電池としては、ニッケル−
カドミウム蓄電池のようなアルカリ蓄電池、或るいは鉛
蓄電池などがある。
(B) Conventional technology Conventional storage batteries include nickel-based batteries.
There is an alkaline storage battery such as a cadmium storage battery, or a lead storage battery.

近年、これらの電池よりも軽量、且つ高容量で、高エ
ネルギー密度になる可能性のある、水素吸蔵電極を負極
に用いた金属−水素アルカリ蓄電池が注目されている。
この種金属−水素アルカリ蓄電池に用いられる水素吸蔵
合金の組成としては、例えば特公昭59−49671号公報に
示されたLaNi5や、その改良の三元素系のLaNi4Co、LaNi
4Cu、及びLaNi4.8Fe0.2等の合金が知られている。そし
て、これら水素吸蔵合金粉末と、導電剤粉末との混合物
を、耐アルカリ電解液性の粒子状結着剤によって電極支
持体に固着させて、水素吸蔵合金電極とする方法(特公
昭57−30273号公報)等によって負極が製造されてい
る。また上記水素吸蔵合金の他にも、Laの代わりにMm
(ミッシュメタル)を用いた各種希土類系水素吸蔵合金
や、Ti−Ni系、Zr−Ni系水素吸蔵合金も開発されてい
る。
In recent years, a metal-hydrogen alkaline storage battery using a hydrogen storage electrode as a negative electrode, which has a lighter weight, a higher capacity, and a higher energy density than these batteries, has attracted attention.
Examples of the composition of the hydrogen storage alloy used in this kind of metal-hydrogen alkaline storage battery include LaNi 5 shown in Japanese Patent Publication No. 59-49671 and improved three-element LaNi 4 Co and LaNi 5.
4 Cu, and LaNi 4.8 Fe 0.2 such alloys are known. Then, a mixture of the hydrogen storage alloy powder and the conductive agent powder is fixed to an electrode support with an alkaline electrolyte-resistant particulate binder to form a hydrogen storage alloy electrode (Japanese Patent Publication No. 57-30273). A negative electrode is manufactured by Japanese Patent Application Laid-Open No. H10-216, etc. In addition to the above-mentioned hydrogen storage alloy, instead of La, Mm
Various rare earth-based hydrogen storage alloys using (Misch metal), Ti-Ni-based and Zr-Ni-based hydrogen storage alloys have also been developed.

尚、上記金属−水素アルカリ蓄電池において、正極と
してはニッケル−カドミウム蓄電池に用いられていた焼
結式ニッケル極等が用いられる。
In the metal-hydrogen alkaline storage battery, a sintered nickel electrode used for a nickel-cadmium storage battery is used as a positive electrode.

(ハ)発明が解決しようとする課題 しかしながら、上記のように構成された電極を用いて
組み立てられた金属−水素アルカリ蓄電池は、初期容量
が低く、更にサイクル寿命が短いという欠点があった。
(C) Problems to be Solved by the Invention However, the metal-hydrogen alkaline storage battery assembled using the electrodes configured as described above has a drawback that the initial capacity is low and the cycle life is short.

また、この種蓄電池で、安定した容量を得るために
は、化成処理として数サイクルの充放電が必要という問
題点もあった。
In addition, in order to obtain a stable capacity in this type of storage battery, there is also a problem that several cycles of charging and discharging are required as a chemical conversion treatment.

更に、従来の金属−水素アルカリ蓄電池の負極として
は、耐食性、重量、及び体積当りの容量、固体内水素拡
散速度等の観点から希土類系水素吸蔵合金、AB型、AB2
型水素吸蔵合金を主成分としたものが主流であった。し
かし、この種の水素吸蔵合金を負極主成分とした電池で
は、初期の容量が小さく、化成処理を行わないと安定し
た容量が得られないという問題点があった。
Further, as a negative electrode of a conventional metal-hydrogen alkaline storage battery, rare earth hydrogen storage alloys, AB type, AB 2 are used in view of corrosion resistance, weight, capacity per volume, hydrogen diffusion rate in solid, and the like.
The mainstream was a type containing a hydrogen storage alloy. However, a battery using this type of hydrogen storage alloy as a main component of the negative electrode has a problem that the initial capacity is small and a stable capacity cannot be obtained unless a chemical conversion treatment is performed.

更にまた、Ca系水素吸蔵合金は、初期活性が大きく、
最初の充放電サイクルから大きな容量が得られる。しか
し、アルカリ電解液中での耐食性に問題があるために、
一般的に金属−水素アルカリ蓄電池に用いるには問題が
あった。
Furthermore, the Ca-based hydrogen storage alloy has a large initial activity,
A large capacity is obtained from the first charge / discharge cycle. However, due to the problem of corrosion resistance in alkaline electrolyte,
Generally, there is a problem in using it for a metal-hydrogen alkaline storage battery.

これは、前記水素吸蔵合金が、電池内においてアルカ
リ溶液中に常に浸漬されている為、添加されている元素
の水酸化物や酸化物が生成したり、充電時に正極から発
生する酸素ガスに接することにより酸化される等、合金
劣化が起こり易い傾向にあり、このことが電池のサイク
ル特性劣化の原因と考えられる。
This is because the hydrogen storage alloy is always immersed in the alkaline solution in the battery, so that a hydroxide or oxide of the added element is generated or comes into contact with oxygen gas generated from the positive electrode during charging. Therefore, the alloy tends to deteriorate, such as being oxidized, which is considered to be the cause of the deterioration of the cycle characteristics of the battery.

本発明が解決しようとするための課題は、上記のよう
な従来技術の問題点に鑑みて、初期容量が大きく、且つ
サイクル寿命の長い電池を提供することである。
The problem to be solved by the present invention is to provide a battery having a large initial capacity and a long cycle life in view of the above-mentioned problems of the related art.

(ニ)課題を解決するための手段 本発明のアルカリ蓄電池用水素吸蔵合金電極は、A′
B′型(A′はCaからなり、B′はCr、Mn、Fe、Co、
Ni、Cuのうちの少なくとも1種からなる)六方晶構造を
有するCa系水素吸蔵合金が、希土類系、AB型、或いはAB
2型(A、Bは相異なる元素)の水素吸蔵合金の重量に
対して2〜40重量%添加された材料を用いたことを特徴
とする。
(D) Means for Solving the Problems The hydrogen storage alloy electrode for an alkaline storage battery according to the present invention comprises A ′
B 'type 5 (A' is composed of Ca, B 'is Cr, Mn, Fe, Co,
A Ca-based hydrogen storage alloy having a hexagonal structure (consisting of at least one of Ni and Cu) is a rare-earth, AB-type, or AB-type
It is characterized by using a material added in an amount of 2 to 40% by weight based on the weight of the hydrogen storage alloy of the type 2 (A and B are different elements).

ここで、前記希土類の水素吸蔵合金は、AB5型六方晶
構造を有し、AはLa、Ce、Nd、Pr、Sm、Gdのうちから選
ばれた少なくとも1種、或いはこれらの混合物からな
り、BはCr、Mn、Fe、Co、Ni、Cuのうちから選ばれた少
なくとも1種からなることを特徴とする。
Here, the hydrogen storage alloy of the rare earth has the AB 5 type hexagonal structure, A is made La, Ce, Nd, Pr, Sm, at least one selected from among Gd, or mixtures thereof , B are at least one selected from Cr, Mn, Fe, Co, Ni, and Cu.

また、前記AB型、或いはAB2型の水素吸蔵合金は、立
方晶、或いは六方晶構造を有し、AはTi、Zr、Vのうち
から選ばれた少なくとも1種からなり、BはCr、Mn、F
e、Co、Ni、Cuのうちから選ばれた少なくとも1種から
なることを特徴とする。
Also, the AB-type or AB 2 type hydrogen storage alloy, cubic, or has a hexagonal crystal structure, A is composed of at least one selected Ti, Zr, from among V, B is Cr, Mn, F
It is characterized by being made of at least one selected from e, Co, Ni, and Cu.

(ホ)作用 上記の構成によって、初期活性の大きなCa系水素吸蔵
合金は初期の電池容量を大きくすると同時に、希土類
系、AB型、AB2型水素吸蔵合金の活性化を促進する。
(E) the configuration operation of the above, large Ca-based hydrogen storage alloy of the initial activity at the same time increasing the initial battery capacity, to promote rare earth, AB-type, the activation of the AB 2 type hydrogen storage alloy.

Ca系水素吸蔵合金は数サイクルで容量が減少するが、
その間に主成分である水素吸蔵合金が活性化され電池の
容量は保たれる。
The capacity of Ca-based hydrogen storage alloy decreases in several cycles,
In the meantime, the hydrogen storage alloy as the main component is activated, and the capacity of the battery is maintained.

また、Ca系水素吸蔵合金は希土類系、AB型、AB2型水
素吸蔵合金に比べて腐食され易いため、アルカリ電解液
中で優先的に腐食され、主成分である水素吸蔵合金の腐
食を抑制する。
In addition, Ca-based hydrogen storage alloys are more susceptible to corrosion than rare-earth, AB-type, and AB-type 2 hydrogen storage alloys, so they are preferentially corroded in alkaline electrolytes and suppress corrosion of the main component, hydrogen storage alloy. I do.

更に、希土類系、AB型、AB2型水素吸蔵合金の粒子近
傍に存在するCaの酸化物、或るいは水酸化物がこれら粒
子の表面を覆い、正極から発生する酸素による酸化を抑
える。
Furthermore, rare earth, AB type, oxides of Ca existing in the grain near the AB 2 type hydrogen storage alloy, one Rui hydroxide covering the surface of the particles, reduce the oxidation by oxygen generated from the positive electrode.

(ヘ)実施例 [実施例1] 平均粒径50μmからなるLaNi5に対して、平均粒径50
μmからなるCaNi5を2、5、10、20、30、或るいは40
重量%、夫々添加し均一に混合して混合物を得た。
(F) Example [Example 1] For LaNi 5 having an average particle size of 50 μm, the average particle size was 50 μm.
2, 5 , 10, 20, 30, or 40
% By weight, and each was uniformly mixed to obtain a mixture.

次に前記混合物に結着剤としてPTFE(フッ素樹脂)粉
末5重量%を添加し、均一に混合して前記PTFEを繊維化
し、これに水を加えて負極活物質ペーストを得た。この
ペーストを、ニッケル鍍金を施したパンチングメタルか
ら成る集電体の両面に圧着し、室温で乾燥させて負極を
作製した。
Next, 5 wt% of PTFE (fluororesin) powder was added as a binder to the mixture, and the mixture was uniformly mixed to fibrillate the PTFE, and water was added thereto to obtain a negative electrode active material paste. This paste was pressed onto both surfaces of a current collector made of a punched metal plated with nickel and dried at room temperature to produce a negative electrode.

このようにして作製した6種類の負極と、公知の容量
1000mAhの焼結式ニッケル正極とを、耐アルカリ性のセ
パレータと共に捲回して、渦巻電極体を得、この電極体
を電池外装缶内に挿入した後、電解液を注液して外装缶
の封口を行い、本発明により円筒密閉型ニッケル−水素
アルカリ蓄電池A1〜A6を組立てた。
Six types of negative electrodes prepared in this way and a known capacity
A 1000 mAh sintered nickel positive electrode was wound together with an alkali-resistant separator to obtain a spiral electrode body, and after inserting this electrode body into a battery outer can, an electrolytic solution was injected to seal the outer can. Then, cylindrical sealed nickel-hydrogen alkaline storage batteries A1 to A6 were assembled according to the present invention.

また、比較例として、上記のようにCaNi5を添加せず
にLaNi5にPTFEを5重量%混合し、前述の本発明電池と
同様にして作製した負極を備えた比較電池A7を組立て
た。
As a comparative example, a comparative battery A7 including a negative electrode manufactured in the same manner as the above-described battery of the present invention was prepared by mixing 5 wt% of PTFE with LaNi 5 without adding CaNi 5 as described above.

以上の工程によって得られた本発明電池A1〜A6、及び
比較電池A7を用い、1Aの電流で電池電圧が1.0Vになるま
で放電を行い、初期容量と、放電容量が半減するまでの
サイクル寿命とを調べた。この結果を夫々第1図、及び
第2図に示す。
Using the batteries A1 to A6 of the present invention obtained by the above steps and the comparative battery A7, discharging was performed at a current of 1 A until the battery voltage became 1.0 V, the initial capacity, and the cycle life until the discharge capacity was reduced by half. And investigated. The results are shown in FIGS. 1 and 2, respectively.

これらの図から明らかなように、CaNi5の添加量が増
加するほど初期容量は大きくなり、即ち20重量%で略10
00mAhとなり、正極の容量は先に説明したように1000mAh
であるからこの値で一定の最大値となる。従って初期容
量だけに限って言えば、CaNi5の添加量は20重量%以上
が望ましい。
As can be seen from these figures, the initial capacity increases as the amount of CaNi 5 increases, ie, about 10% at 20% by weight.
00mAh, and the capacity of the positive electrode is 1000mAh as described above.
Therefore, this value becomes a certain maximum value. Therefore, as far as the initial capacity alone is concerned, the addition amount of CaNi 5 is desirably 20% by weight or more.

一方、サイクル寿命の方は、CaNi5を10〜20重量%添
加したものが、無添加のものの略2倍程度のサイクル寿
命を有することが分かる。これはアルカリ電解液中でCa
Ni5が優先的に腐食され、この結果LaNi5の腐食が抑制さ
れるとともに、CaNi5の腐食によって生成したCaの酸化
物、或るいは水酸化物がLaNi5の酸化を抑えるためであ
ると考えられる。また、CaNi5の添加量が略25重量%を
過ぎると逆にサイクル寿命が低下することも第2図から
分かる。これは、サイクルの後半では、CaNi5からは殆
ど容量が出ず、LaNi5のみの容量となり、CaNi5の添加量
が増加するに従い、このLaNi5の量が減少するためであ
る。尚、本発明電池A1〜A6はどれを取っても比較電池A7
よりも優れた初期容量と、サイクル寿命をもっている。
従って、これらの結果よりCaNi5の添加量は少なくとも
2〜40重量%が望ましいと言える。
On the other hand, as for the cycle life, it can be seen that the case where CaNi 5 is added in an amount of 10 to 20% by weight has a cycle life which is about twice that of the case where CaNi 5 is not added. This is Ca in alkaline electrolyte
Ni 5 is preferentially corroded, and as a result, the corrosion of LaNi 5 is suppressed, and the oxides or hydroxides of Ca generated by the corrosion of CaNi 5 are to suppress the oxidation of LaNi 5. Conceivable. FIG. 2 also shows that when the amount of CaNi 5 added exceeds about 25% by weight, the cycle life decreases. This is because, in the latter half of the cycle, almost no capacity is produced from CaNi 5 , only LaNi 5 becomes the capacity, and the amount of LaNi 5 decreases as the amount of CaNi 5 added increases. In addition, the batteries A1 to A6 of the present invention were all compared with the comparative battery A7.
It has better initial capacity and cycle life.
Therefore, the addition amount of the CaNi 5 From these results it can be said that at least 2 to 40% by weight is desirable.

[実施例2] 実施例1ではLaNi5に対してCaNi5を所定量添加した
が、今度は平均粒径が50μmのTiNiに対して、CaNi5
2,5,10,20,30,40重量%添加し、実施例1と同様の工程
で本発明電池B1〜B6を組立てた。
[Example 2] While the CaNi 5 against LaNi 5 in Example 1 was added a predetermined amount, relative to the TiNi an average particle size in turn is 50 [mu] m, the CaNi 5
2,5,10,20,30,40% by weight were added, and batteries B1 to B6 of the present invention were assembled in the same steps as in Example 1.

そして上記で得られた本発明電池B1〜B6と、CaNi5
添加せずにTiNiにPTFE5重量%を混合して比較電池A7と
同様に作製した比較電池B7とを用いて、1Aの電流で電池
電圧が1.0Vになるまで放電を行い、初期容量、及び放電
容量が半減するまでのサイクル寿命を調べた。この結果
を第3図、及び第4図に示す。
And the present battery B1~B6 obtained above, by using the comparative battery B7 was prepared in the same manner as Comparative Battery A7 was mixed with PTFE5% by weight TiNi without addition of CaNi 5, at 1A current Discharge was performed until the battery voltage reached 1.0 V, and the initial capacity and the cycle life until the discharge capacity was reduced to half were examined. The results are shown in FIG. 3 and FIG.

これらの図から明らかなように、CaNi5の添加量が増
加するほど初期値は大きくなり、即ち20重量%で略1000
mAhとなり、正極の容量は先に説明したように1000mAhで
あるからこの値で一定の最大値となる。従って初期容量
だけに限って言えば、CaNi5の添加量は20重量%以上が
望ましい。
As is clear from these figures, the initial value increases as the amount of CaNi 5 added increases, that is, about 20 wt%
mAh, and since the capacity of the positive electrode is 1000 mAh as described above, this value becomes a constant maximum value. Therefore, as far as the initial capacity alone is concerned, the addition amount of CaNi 5 is desirably 20% by weight or more.

一方、サイクル寿命の方は、CaNi5を10〜20重量%添
加したものが、無添加のものの略2倍程度のサイクル寿
命を有することが分かる。これはアルカリ電解液中でCa
Ni5が優先的に腐食され、この結果TiNiの腐食が抑制さ
れるとともに、CaNi5の腐食によって生成したCaの酸化
物、或るいは水酸化物がTiNiの酸化を抑えるためである
と考えられる。また、CaNi5の添加量が25重量%を過ぎ
ると逆にサイクル寿命が低下することも第4図から分か
る。これは、サイクルの後半では、CaNi5からは殆ど容
量が出ず、TiNiのみの容量となり、CaNi5の添加量が増
加するに従い、このTiNiの量が減少するためである。
On the other hand, as for the cycle life, it can be seen that the case where CaNi 5 is added in an amount of 10 to 20% by weight has a cycle life which is about twice that of the case where CaNi 5 is not added. This is Ca in alkaline electrolyte
It is considered that Ni 5 is preferentially corroded, thereby suppressing the corrosion of TiNi, and the oxides or hydroxides of Ca generated by the corrosion of CaNi 5 suppress the oxidation of TiNi. . FIG. 4 also shows that when the amount of CaNi 5 exceeds 25% by weight, the cycle life decreases. This is because in the latter half of the cycle, almost no capacity is produced from CaNi 5 , the capacity becomes only TiNi, and the amount of TiNi decreases as the added amount of CaNi 5 increases.

尚、本発明電池B1〜B6はどれを取っても比較電池B7よ
りも優れた初期容量と、サイクル寿命をもっている。従
って、これらの結果よりTiNiに対してもCaNi5の添加量
は少なくとも2〜40重量%が望ましいと言える。
The batteries B1 to B6 of the present invention have an initial capacity and cycle life which are superior to those of the comparative battery B7 in any case. Therefore, the addition amount of the CaNi 5 against TiNi From these results it can be said that at least 2 to 40% by weight is desirable.

[実施例3] 実施例1ではLaNi5に対して、実施例2ではTiNiに対
して夫々CaNi5を所定量添加したが、今度は平均粒径が5
0μmのZrNi2に対して、CaNi5を2,5,10,20,30,40重量%
添加し、実施例1と同様の工程で本発明電池C1〜C6を組
立てた。
Example 3 In Example 1, a predetermined amount of CaNi 5 was added to LaNi 5 , and in Example 2, a predetermined amount of CaNi 5 was added to TiNi.
2,5,10,20,30,40% by weight of CaNi 5 to 0μm ZrNi 2
Then, the batteries C1 to C6 of the present invention were assembled in the same steps as in Example 1.

そして上記で得られた本発明電池C1〜C6と、CaNi5
添加せずにZrNi2にPTFE5重量%を混合して比較電池A7、
B7と同様に作製した比較電池C7とを用いて、1Aの電流で
電池電圧が1.0Vになるまで放電を行い、初期容量、及び
放電容量が半減するまでのサイクル寿命を調べた。この
結果を第5図、及び第6図に示す。
And the present battery C1~C6 obtained above, compared by mixing PTFE5 wt% to ZrNi 2 without addition of CaNi 5 cell A7,
Using the comparative battery C7 produced in the same manner as the battery B7, the battery was discharged at a current of 1 A until the battery voltage became 1.0 V, and the initial capacity and the cycle life until the discharge capacity was reduced to half were examined. The results are shown in FIG. 5 and FIG.

これらの図から明らかなように、CaNi5の添加量が増
加するほど初期容量は大きくなり、即ち20重量%で略10
00mAhとなり、正極の容量は先に説明したように1000mAh
であるからこの値で一定の最大値となる。従って初期容
量だけに限って言えば、CaNi5の添加量は20重量%以上
が望ましい。
As can be seen from these figures, the initial capacity increases as the amount of CaNi 5 increases, ie, about 10% at 20% by weight.
00mAh, and the capacity of the positive electrode is 1000mAh as described above.
Therefore, this value becomes a certain maximum value. Therefore, as far as the initial capacity alone is concerned, the addition amount of CaNi 5 is desirably 20% by weight or more.

一方、サイクル寿命の方は、CaNi5を10〜20重量%添
加したものが、無添加のものの略2倍程度のサイクル寿
命を有することが分かる。これはアルカリ電解液中でCa
Ni5が優先的に腐食され、この結果ZrNi2の腐食が抑制さ
れるとともに、CaNi5の腐食によって生成したCaの酸化
物、或るいは水酸化物がZrNi2の酸化を抑えるためであ
ると考えられる。また、CaNi5の添加量が略25重量%を
過ぎると逆にサイクル寿命が低下することも第6図から
分かる。これは、サイクルの後半では、CaNi5からは殆
ど容量が出ず、ZrNi2のみの容量となり、CaNi5の添加量
が増加するに従い、このZrNi2の量が減少するためであ
る。
On the other hand, as for the cycle life, it can be seen that the case where CaNi 5 is added in an amount of 10 to 20% by weight has a cycle life which is about twice that of the case where CaNi 5 is not added. This is Ca in alkaline electrolyte
Ni 5 is preferentially corroded, and as a result, the corrosion of ZrNi 2 is suppressed, and the oxide or hydroxide of Ca generated by the corrosion of CaNi 5 is to suppress the oxidation of ZrNi 2. Conceivable. FIG. 6 also shows that when the amount of CaNi 5 exceeds about 25% by weight, the cycle life decreases. This is the second half of the cycle, without leaving almost capacity from CaNi 5, becomes the capacity of only ZrNi 2, in accordance with the addition amount of the CaNi 5 is increased, because the amount of ZrNi 2 is reduced.

尚、本発明電池C1〜C6はどれを取っても比較電池C7よ
りも優れた初期容量と、サイクル寿命をもっている。従
って、これらの結果よりZrNi2に対してもCaNi5の添加量
は少なくとも2〜40重量%が望ましいと言える。
Incidentally, the batteries C1 to C6 of the present invention have an initial capacity and cycle life superior to those of the comparative battery C7 in any case. Therefore, it can be said from these results that the addition amount of CaNi 5 is preferably at least 2 to 40% by weight with respect to ZrNi 2 .

以上の実施例において、本発明における希土類系水素
吸蔵合金はLaNi5に限定されるものではなく、AB5型六方
晶構造であって、AがLa、Ce、Nd、Pr、Sm、Gdのうちの
少なくとも1種、或るいはこれらの混合物からなり、B
はCr、Mn、Fe、Co、Ni、Cuのうちの少なくとも1種から
なる場合にも同様の効果があり、また、AB型、或るいは
AB2型水素吸蔵合金は、夫々TiNi,ZrNi2に限定されるも
のではなく、AB型、或るいはAB2型の立方晶、或るいは
六方晶構造を有し、AはTi、Zr、Vのうちから選ばれた
少なくとも1種からなり、一方のBはCr、Mn、Fe、Co、
Ni、Cuのうちから選ばれた少なくとも1種からなる場合
にも同様の効果がある。
In the above embodiment, the rare-earth-based hydrogen storage alloy in the present invention is not limited to the LaNi 5, a AB 5 type hexagonal structure, A is La, Ce, Nd, Pr, Sm, of the Gd Or at least one of the foregoing, or a mixture thereof,
Has the same effect when it is made of at least one of Cr, Mn, Fe, Co, Ni, and Cu.
AB 2 type hydrogen storage alloy, respectively TiNi, is not limited to ZrNi 2, AB-type, one Rui cubic type 2 AB, one Rui has a hexagonal crystal structure, A is Ti, Zr, V is composed of at least one selected from V, and one of B is Cr, Mn, Fe, Co,
The same effect is obtained when at least one selected from Ni and Cu is used.

更に、Ca系水素吸蔵合金は、CaNi5に限定されるもの
ではなく、AB5型(A、Bは相異なる元素)六方晶構造
を有し、AがCaからなり、一方のBがCr、Mn、Fe、Co、
Ni、Cuのうちの少なくとも1種からなる場合にも同様の
効果がある。
Furthermore, Ca-based hydrogen storage alloy is not limited to the CaNi 5, AB 5 type (A, B is different elements) have a hexagonal crystal structure, A is a Ca, one B is Cr, Mn, Fe, Co,
The same effect is obtained when at least one of Ni and Cu is used.

(ト)発明の効果 本発明は初期容量特性に優れた材料と、サイクル寿命
に優れた材料とを組合わせることにより、各材料の優れ
た特性のみを引き出し、一方の欠点同士を補うことによ
り、初期容量特性と、サイクル寿命との両方に優れたア
ルカリ蓄電池用水素吸蔵合金電極を提供できる効果が生
まれる。
(G) Effect of the Invention The present invention combines a material having excellent initial capacity characteristics and a material having excellent cycle life to draw out only the excellent characteristics of each material and to compensate for one of the defects. The effect of being able to provide a hydrogen storage alloy electrode for an alkaline storage battery that is excellent in both initial capacity characteristics and cycle life is produced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は初期の電池容量とLaNi5に対するCaNi5の添加量
との関係を示す図、第2図はサイクル寿命とLaNi5に対
するCaNi5の添加量との関係を示す図、第3図は初期の
電池容量とTiNiに対するCaNi5の添加量との関係を示す
図、第4図はサイクル寿命とTiNiに対するCaNi5の添加
量との関係を示す図、第5図は初期の電池容量とZrNi2
に対するCaNi5の添加量との関係を示す図、第6図はサ
イクル寿命とZrNi2に対するCaNi5の添加量との関係を示
す図である。
FIG. 1 is a diagram showing the relationship between the initial battery capacity and the amount of CaNi 5 added to LaNi 5, FIG. 2 is a diagram showing the relationship between the cycle life and the amount of CaNi 5 added to LaNi 5, and FIG. FIG. 4 shows the relationship between the initial battery capacity and the amount of CaNi 5 added to TiNi, FIG. 4 shows the relationship between the cycle life and the amount of CaNi 5 added to TiNi, and FIG. 5 shows the relationship between the initial battery capacity and ZrNi. Two
Diagram showing the relationship between the amount of CaNi 5 against, FIG. 6 is a diagram showing the relationship between the mixing amount of the CaNi 5 for cycle life and ZrNi 2.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−135541(JP,A) 特公 昭59−49671(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 19/00 - 19/07 H01M 4/38──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-135541 (JP, A) JP-B-59-49671 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 19/00-19/07 H01M 4/38

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】A′B′型(A′はCaからなり、B′は
Cr、Mn、Fe、Co、Ni、Cuのうちの少なくとも1種からな
る)六方晶構造を有するCa系水素吸蔵合金が、希土類
系、AB型、或いはAB2型(A、Bは相異なる元素)の水
素吸蔵合金の重量に対して2〜40重量%添加された材料
を用いたアルカリ蓄電池用水素吸蔵合金電極。
1. A'B 'type 5 (A' is composed of Ca, B 'is
Cr, Mn, Fe, Co, Ni, composed of at least one of Cu) Ca-based hydrogen storage alloy having a hexagonal structure, rare earth, AB-type, or AB 2 type (A, B is different elements A) a hydrogen storage alloy electrode for an alkaline storage battery using a material added in an amount of 2 to 40% by weight based on the weight of the hydrogen storage alloy of the above).
【請求項2】前記希土類系の水素吸蔵合金は、AB5型六
方晶構造を有し、AはLa、Ce、Nd、Pr、Sm、Gdのうちか
ら選ばれた少なくとも1種、或いはこれらの混合物から
なり、BはCr、Mn、Fe、Co、Ni、Cuのうちから選ばれた
少なくとも1種からなることを特徴とする請求項記載
のアルカリ蓄電池用水素吸蔵合金電極。
2. A hydrogen absorbing alloy of the rare earth system has a AB 5 type hexagonal structure, A is La, Ce, Nd, Pr, Sm, at least one selected from among Gd, or of 4. The hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the electrode is made of a mixture, and B is made of at least one selected from Cr, Mn, Fe, Co, Ni, and Cu.
【請求項3】前記AB型、或いはAB2型の水素吸蔵合金
は、立方晶、或いは六方晶構造を有し、AはTi、Zr、V
のうちから選ばれた少なくとも1種からなり、BはCr、
Mn、Fe、Co、Ni、Cuのうちから選ばれた少なくとも1種
からなることを特徴とする請求項記載のアルカリ蓄電
池用水素吸蔵合金電極。
3. The AB type or AB 2 type hydrogen storage alloy has a cubic or hexagonal structure, wherein A is Ti, Zr, V
B is Cr,
The hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, comprising at least one selected from Mn, Fe, Co, Ni, and Cu.
JP2146443A 1990-06-04 1990-06-04 Hydrogen storage alloy electrode for alkaline storage batteries Expired - Fee Related JP2846707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2146443A JP2846707B2 (en) 1990-06-04 1990-06-04 Hydrogen storage alloy electrode for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2146443A JP2846707B2 (en) 1990-06-04 1990-06-04 Hydrogen storage alloy electrode for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH0441637A JPH0441637A (en) 1992-02-12
JP2846707B2 true JP2846707B2 (en) 1999-01-13

Family

ID=15407768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2146443A Expired - Fee Related JP2846707B2 (en) 1990-06-04 1990-06-04 Hydrogen storage alloy electrode for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP2846707B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862953B2 (en) * 2009-06-29 2012-01-25 株式会社ニコン Lighting device

Also Published As

Publication number Publication date
JPH0441637A (en) 1992-02-12

Similar Documents

Publication Publication Date Title
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2655810B2 (en) Manufacturing method of alkaline secondary battery and catalytic electrode body
JP2604282B2 (en) Alkaline storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP2001313069A (en) Nickel hydrogen storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2680628B2 (en) Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH08321302A (en) Hydrogen storage electrode
JP2950895B2 (en) Metal-hydrogen alkaline storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP3091514B2 (en) Metal-hydrogen alkaline storage battery
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same
JPH05266887A (en) Metal-hydrogen alkaline storage battery
JPH0630251B2 (en) Nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees