JP3157237B2 - Metal-hydrogen alkaline storage battery - Google Patents

Metal-hydrogen alkaline storage battery

Info

Publication number
JP3157237B2
JP3157237B2 JP34307691A JP34307691A JP3157237B2 JP 3157237 B2 JP3157237 B2 JP 3157237B2 JP 34307691 A JP34307691 A JP 34307691A JP 34307691 A JP34307691 A JP 34307691A JP 3157237 B2 JP3157237 B2 JP 3157237B2
Authority
JP
Japan
Prior art keywords
battery
hydrogen
metal
batteries
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34307691A
Other languages
Japanese (ja)
Other versions
JPH05174867A (en
Inventor
束 伊藤
健次 井上
孝樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34307691A priority Critical patent/JP3157237B2/en
Publication of JPH05174867A publication Critical patent/JPH05174867A/en
Application granted granted Critical
Publication of JP3157237B2 publication Critical patent/JP3157237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を主体と
する負極と、金属酸化物から成る正極と、アルカリ電解
液とを有する金属−水素アルカリ蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-hydrogen alkaline storage battery having a negative electrode mainly composed of a hydrogen storage alloy, a positive electrode composed of a metal oxide, and an alkaline electrolyte.

【0002】[0002]

【従来の技術】従来から用いられている蓄電池として
は、ニッケル−カドミウム蓄電池のようなアルカリ蓄電
池や、鉛蓄電池などがある。しかし、近年、これらの電
池よりも軽量且つ高容量で高エネルギー密度となる可能
性のある水素吸蔵合金を負極に備えた金属−水素アルカ
リ蓄電池が注目されている。
2. Description of the Related Art Conventional storage batteries include alkaline storage batteries such as nickel-cadmium storage batteries and lead storage batteries. However, in recent years, attention has been paid to a metal-hydrogen alkaline storage battery provided with a negative electrode of a hydrogen storage alloy which is lighter, has a higher capacity, and may have a higher energy density than these batteries.

【0003】ところで、この種の金属−水素アルカリ蓄
電池に用いられる水素吸蔵合金としては、例えば、特開
昭59−49671号公報に示すように、LaNi5
その改良である三元素系のLaNi4 Co、LaNi4
CuおよびLaNi4 .8Fe 0.2 等の合金が知られてい
る。そして、特公昭57−30273号公報に示すよう
に、上記水素吸蔵合金粉末と導電剤粉末との混合物を耐
アルカリ電解液性の粒子状結着剤によって電極支持体に
固着させて水素吸蔵合金電極とする方法等により負極が
作製される。また、製造コストを安くするため、Laの
代わりにMm(ミッシュメタル)を用いた各種希土類水
素吸蔵合金も開発されており、更に特開昭60−250
558号公報に示すように、MmNi3 Co1.5 Al
0.5 などのようなアルミニウム、コバルトを添加した多
元素系水素吸蔵合金を用い、充放電サイクル特性を向上
させたものが提案されている。
[0003] By the way, this kind of metal-hydrogen alkaline storage
Examples of hydrogen storage alloys used in batteries include, for example,
As shown in JP-A-59-49671, LaNiFiveAnd
A three element LaNi that is an improvementFourCo, LaNiFour
Cu and LaNi4.8Fe 0.2Etc. are known alloys
You. As shown in Japanese Patent Publication No. 57-30273,
The mixture of the hydrogen storage alloy powder and the conductive agent powder is resistant to
Electrode support with alkaline electrolyte particulate binder
The negative electrode is fixed by a method such as fixing to form a hydrogen storage alloy electrode.
It is made. In addition, in order to reduce manufacturing costs, La
Various rare earth water using Mm (Misch metal) instead
Element storage alloys have also been developed.
No. 558, MmNiThreeCo1.5Al
0.5Such as aluminum and cobalt
Uses elemental hydrogen storage alloy to improve charge / discharge cycle characteristics
What has been proposed has been proposed.

【0004】一方、正極としては、ニッケル−カドミウ
ム蓄電池に用いられる焼結式ニッケル極等が用いられて
いる。ところで、上記構造の正負極を有する電池の電解
液としては、従来より、充放電効率の面を考慮して水酸
化カリウム溶液が用いられている。しかしながら、この
電解液を用いた電池では、水素吸蔵合金の劣化を生じる
と共に、自己放電を充分に抑制することができないとい
った課題を有していた。
On the other hand, a sintered nickel electrode used for a nickel-cadmium storage battery is used as a positive electrode. Meanwhile, a potassium hydroxide solution has been conventionally used as an electrolyte for a battery having the positive and negative electrodes having the above structure in consideration of charging and discharging efficiency. However, a battery using this electrolytic solution has a problem that the hydrogen storage alloy is deteriorated and self-discharge cannot be sufficiently suppressed.

【0005】そこで、特開昭61−214370号公報
に示されるように、水酸化カリウム中に微量の水酸化リ
チウムを添加するような電解液が提案されている。この
ような電解液を用いると、自己放電を抑制できるので保
存特性が向上し且つ充放電効率を向上させることが可能
となる。
[0005] Therefore, as disclosed in Japanese Patent Application Laid-Open No. 61-214370, an electrolytic solution in which a trace amount of lithium hydroxide is added to potassium hydroxide has been proposed. When such an electrolytic solution is used, self-discharge can be suppressed, so that storage characteristics can be improved and charge / discharge efficiency can be improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記電
解液を用いた場合には、電解液の粘度が増大するという
ことに起因して、電解液の導電率が低下する。このた
め、高率放電時の作動電圧が低下するという課題を有し
ていた。本発明は係る現状を考慮してなされたものであ
って、高率放電時における作動電圧を高くすることがで
き、且つサイクル特性を向上させることができる金属−
水素アルカリ蓄電池の提供を目的としている。
However, when the above-mentioned electrolytic solution is used, the conductivity of the electrolytic solution decreases due to an increase in the viscosity of the electrolytic solution. For this reason, there was a problem that the operating voltage at the time of high-rate discharge was reduced. The present invention has been made in view of the current situation, and is capable of increasing the operating voltage during high-rate discharge and improving the cycle characteristics.
It aims to provide hydrogen-alkaline storage batteries.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、水素吸蔵合金を主体とする負極と、金属酸
化物から成る正極と、アルカリ電解液とを有する金属−
水素アルカリ蓄電池において、上記アルカリ電解液中に
は、水酸化ルビジウム及び水酸化セシウムのうち少なく
とも1種の水酸化物が0.3規定〜3.5規定添加され
ていることを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a metal alloy comprising a negative electrode mainly composed of a hydrogen storage alloy, a positive electrode composed of a metal oxide, and an alkaline electrolyte.
In the hydrogen-alkaline storage battery, at least one hydroxide selected from the group consisting of rubidium hydroxide and cesium hydroxide is added in an amount of 0.3 N to 3.5 N in the alkaline electrolyte.

【0008】[0008]

【作用】上記構成であれば、電解液に添加された水酸化
ルビジウムと水酸化セシウムとは、電解液中でルビジウ
ムイオン或いはセシウムイオンとなっている。この場
合、これらのイオンはリチウムイオン(従来添加してい
た水酸化リチウムより生成する)に比べて水和力が弱く
なっているので、電解液の導電性が向上する。この結
果、特に電解液の導電性に影響される高率放電時におい
て作動電圧を高くすることができる。
With the above construction, rubidium hydroxide and cesium hydroxide added to the electrolytic solution are converted into rubidium ions or cesium ions in the electrolytic solution. In this case, the hydration power of these ions is lower than that of lithium ions (produced from lithium hydroxide that has been conventionally added), so that the conductivity of the electrolytic solution is improved. As a result, the operating voltage can be increased particularly at the time of high-rate discharge affected by the conductivity of the electrolytic solution.

【0009】また、理由は定かではないが、ルビジウム
イオンとセシウムイオンとは水素吸蔵合金の表面に吸着
され、そしてこれらイオンが触媒としての作用を奏する
ため、これによっても高率放電時における作動電圧を高
くすることができる。更に、水酸化ルビジウム等の添加
割合を0.3規定〜3.5規定とするのは、0.3規定
未満では添加効果が余り発揮されない一方、3.5規定
を超えると電解液の粘度が高くなり過ぎるため、高率放
電時における作動電圧が低下してしまうという理由によ
る。
Although the reason is not clear, rubidium ions and cesium ions are adsorbed on the surface of the hydrogen storage alloy, and these ions act as a catalyst. Can be higher. Furthermore, the reason why the addition ratio of rubidium hydroxide or the like is set to 0.3 N to 3.5 N is that if the addition ratio is less than 0.3 N, the effect of addition is not sufficiently exhibited, whereas if it exceeds 3.5 N, the viscosity of the electrolytic solution is reduced. This is because the operating voltage at the time of high-rate discharge is reduced because it is too high.

【0010】加えて、上記構成であれば電解液が適度な
水和力を有するので、水素吸蔵合金の周囲の水の量が減
少する。したがって、水素吸蔵合金の微粉化が抑制でき
るので、サイクル特性も向上する。
[0010] In addition, with the above configuration, the amount of water around the hydrogen storage alloy is reduced because the electrolyte has an appropriate hydration power. Therefore, since the pulverization of the hydrogen storage alloy can be suppressed, the cycle characteristics are also improved.

【0011】[0011]

【実施例】本発明の一実施例を、図1及び図2に基づい
て、以下に説明する。 〔実施例1〕図1は本発明の一例に係る密閉円筒型ニッ
ケル−水素アルカリ蓄電池の断面図であり、焼結式ニッ
ケルから成る正極1と、水素吸蔵合金粉末及び結着剤を
含む負極2と、これら正負両極1・2間に介挿されたセ
パレータ3とから成る電極体4は渦巻状に巻回されてい
る。この電極体4は負極端子兼用の外装缶6内に配置さ
れており、この外装缶6と上記負極2とは負極用導電タ
ブ5により接続されている。上記外装缶6の上部開口に
はパッキング7を介して封口体8が装着されており、こ
の封口体8の内部にはコイルスプリング9が設けられて
いる。このコイルスプリング9は電池内部の内圧が異常
上昇したときに矢印A方向に押圧されて内部のガスが大
気中に放出されるように構成されている。また、上記封
口体8と前記正極1とは正極用導電タブ10にて接続さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. Embodiment 1 FIG. 1 is a cross-sectional view of a sealed cylindrical nickel-hydrogen alkaline storage battery according to one embodiment of the present invention, in which a positive electrode 1 made of sintered nickel and a negative electrode 2 containing a hydrogen storage alloy powder and a binder are shown. The electrode body 4 composed of the separator 3 interposed between the positive and negative electrodes 1 and 2 is spirally wound. The electrode body 4 is disposed in an outer can 6 also serving as a negative electrode terminal. The outer can 6 and the negative electrode 2 are connected by a negative electrode conductive tab 5. A sealing body 8 is attached to the upper opening of the outer can 6 via a packing 7, and a coil spring 9 is provided inside the sealing body 8. The coil spring 9 is configured such that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere. The sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0012】ここで、上記電解液としては、KOH
(6.7N)にRbOH(0.3N)が添加された電解
液を用いている。次に、上記構造の密閉円筒型ニッケル
−水素アルカリ蓄電池を、以下のようにして作製した。
先ず初めに、水素吸蔵合金の原料金属として、市販材料
としてのMm(希土類元素の混合物)とNiとCoとA
lとMnとが元素比で1:3.2:1:0.2:0.6
となるように秤量した後、これらを混合し、更に炉内で
溶解,鋳造する。これにより、MmNi3.2 CoAl
0.2 Mn0.6 という組成の合金が作製される。次に、こ
の合金鋳塊を粉砕して微粉化した後、この微粉化した合
金95重量%に、結着剤としてのPTFE(フッ素樹
脂)5重量%を添加し、これらを均一に混合することに
より上記PTFEを繊維化し、更にこれに水を加えてペ
ーストを作成する。この後、このペーストを、ニッケル
メッキを施したパンチングメタル集電体の両面に圧着す
ることにより負極2を作製した。
Here, the electrolyte is KOH
An electrolytic solution obtained by adding RbOH (0.3N) to (6.7N) is used. Next, the sealed cylindrical nickel-hydrogen alkaline storage battery having the above structure was manufactured as follows.
First, as a raw material metal of the hydrogen storage alloy, Mm (mixture of rare earth elements), Ni, Co and A
1 and Mn are in an element ratio of 1: 3.2: 1: 0.2: 0.6.
After being weighed so as to obtain, they are mixed, and further melted and cast in a furnace. Thereby, MmNi 3.2 CoAl
An alloy having a composition of 0.2 Mn 0.6 is produced. Next, the alloy ingot is pulverized and pulverized, and 5% by weight of PTFE (fluororesin) as a binder is added to 95% by weight of the pulverized alloy and uniformly mixed. The above-mentioned PTFE is fiberized, and water is further added thereto to form a paste. Thereafter, the paste was pressure-bonded to both surfaces of a nickel-plated punched metal current collector to produce a negative electrode 2.

【0013】このようにして作製した負極2と、公知の
焼結式ニッケルから成る正極1とを、耐アルカリ性を有
するセパレータ3と共に巻回して渦巻状の電極体4を作
製した後、この電極体4を外装缶6内に挿入した。この
後、外装缶6内に上記組成の電解液を注入し、更に外装
缶6の封口を行なって、公称容量1000mAhの円筒
密閉型ニッケル−水素電池を作製した。
The thus-prepared negative electrode 2 and a known positive electrode 1 made of sintered nickel are wound together with an alkali-resistant separator 3 to form a spiral electrode body 4. 4 was inserted into the outer can 6. Thereafter, the electrolytic solution having the above composition was poured into the outer can 6, and the outer can 6 was further sealed to produce a cylindrical sealed nickel-hydrogen battery having a nominal capacity of 1000 mAh.

【0014】このようにして作製した電池を、以下(A
1 )電池と称する。 〔実施例2〜6〕電解液の組成(KOHとRbOHとの
比率)を下記表1に示すように設定する他は、上記実施
例1と同様にして電池を作製した。このようにして作製
した電池を、以下それぞれ(A2 )電池〜(A6 )電池
と称する。 〔実施例7,8〕RbOHの代わりにCsOHを用い、
且つKOHとCsOHとの比率を下記表1に示すように
設定する他は、上記実施例1と同様にして電池を作製し
た。
The battery fabricated in this manner is referred to as (A)
1 ) Called a battery. [Examples 2 to 6] Batteries were produced in the same manner as in Example 1 except that the composition of the electrolytic solution (ratio between KOH and RbOH) was set as shown in Table 1 below. The batteries fabricated in this manner are hereinafter referred to as (A 2 ) battery to (A 6 ) battery, respectively. [Examples 7 and 8] Using CsOH instead of RbOH,
A battery was manufactured in the same manner as in Example 1 except that the ratio between KOH and CsOH was set as shown in Table 1 below.

【0015】このようにして作製した電池を、以下それ
ぞれ(A7 )電池,(A8 )電池と称する。
The batteries fabricated in this manner are hereinafter referred to as (A 7 ) battery and (A 8 ) battery, respectively.

【0016】[0016]

【表1】 [Table 1]

【0017】〔比較例1〕電解液にRbOHを添加しな
い他は、上記実施例1と同様にして電池を作製した。こ
のようにして作製した電池を、以下(X1 )電池と称す
る。 〔比較例2,3〕電解液の組成(KOHとRbOHとの
比率)を上記表1に示すように設定する他は、上記実施
例1と同様にして電池を作製した。
Comparative Example 1 A battery was manufactured in the same manner as in Example 1 except that RbOH was not added to the electrolytic solution. The battery fabricated in this manner is hereinafter referred to as (X 1 ) battery. Comparative Examples 2 and 3 A battery was produced in the same manner as in Example 1 except that the composition of the electrolytic solution (ratio between KOH and RbOH) was set as shown in Table 1 above.

【0018】このようにして作製した電池を、以下それ
ぞれ(X2 )電池,(X3 )電池と称する。 〔実験1〕上記本発明の(A1 )電池〜(A8 )電池と
比較例の(X1 )電池〜(X3 )電池とにおける高率放
電特性を調べたので、その結果を表2に示す。尚、実験
条件は、電流1000mAで1.25時間充電した後、
電流4000mAで電池電圧が1.0Vに達するまで放
電するという条件である。また、表2においては、公称
容量を100として、上記条件で充放電したときの放電
容量を示している。
The batteries fabricated in this manner are hereinafter referred to as (X 2 ) battery and (X 3 ) battery, respectively. [Experiment 1] The high-rate discharge characteristics of the batteries (A 1 ) to (A 8 ) of the present invention and the batteries (X 1 ) to (X 3 ) of the comparative example were examined. Shown in The experimental conditions were as follows: after charging at a current of 1000 mA for 1.25 hours,
The condition is that the battery is discharged at a current of 4000 mA until the battery voltage reaches 1.0 V. Further, in Table 2, the discharge capacity when charging and discharging under the above conditions is shown, with the nominal capacity as 100.

【0019】[0019]

【表2】 [Table 2]

【0020】表2より明らかなように、本発明の
(A1 )電池〜(A8 )電池は、比較例の(X1 )電池
〜(X3 )電池に比べて、放電容量が大きくなっている
ことが認められる。特に、RbOH或いはCsOHの濃
度が1規定〜3.5規定の(A3 )電池〜(A5 )電
池,(A7 )電池,(A8 )電池では、放電容量が格段
に大きくなっていることが認められる。
As is clear from Table 2, the batteries (A 1 ) to (A 8 ) of the present invention have a larger discharge capacity than the batteries (X 1 ) to (X 3 ) of the comparative example. Is recognized. In particular, in the (A 3 ) battery to (A 5 ) battery, (A 7 ) battery, and (A 8 ) battery in which the concentration of RbOH or CsOH is 1 to 3.5 N, the discharge capacity is significantly large. It is recognized that.

【0021】したがって、RbOH或いはCsOHの濃
度は0.3規定〜3.5規定である必要があり、特に1
規定〜3規定であることが望ましい。また、上記電池の
うち本発明の(A2)電池,(A4)電池及び比較例の
(X1)電池における、上記高率放電時の放電曲線を図
2に示す。図2より明らかなように、本発明の(A2
電池,(A4)電池は比較例の(X1)電池に比べて、作
動電圧が20m以上増大していることが認められる。 [実験2] 上記本発明の(A1)電池〜(A8)電池と比較例の(X
1)電池〜(X3)電池とにおけるサイクル特性を調べた
ので、その結果を上記表2に併せて示す。尚、実験条件
は上記実験1と同様の条件であり、また、サイクル寿命
は放電容量が公称容量の50%に達した時点とした。
Therefore, the concentration of RbOH or CsOH needs to be in the range of 0.3-3.5N, especially 1N.
It is desirable that the number be between three and three. FIG. 2 shows discharge curves of the (A 2 ) battery, the (A 4 ) battery of the present invention, and the (X 1 ) battery of the comparative example at the time of the high-rate discharge. As is clear from FIG. 2, (A 2 )
It can be seen that the operating voltage of the battery and the (A 4 ) battery was increased by 20 mV or more as compared with the (X 1 ) battery of the comparative example. [Experiment 2] The batteries (A 1 ) to (A 8 ) of the present invention and the battery (X) of the comparative example
1 ) The cycle characteristics of the batteries to (X 3 ) batteries were examined, and the results are also shown in Table 2 above. The experiment conditions were the same as those in Experiment 1, and the cycle life was determined when the discharge capacity reached 50% of the nominal capacity.

【0022】表2より明らかなように、本発明の
(A1 )電池〜(A8 )電池は、比較例の(X1 )電池
〜(X3 )電池に比べて、サイクル寿命が長くなってい
ることが認められる。特に、RbOH或いはCsOHの
濃度が1規定〜3規定の(A3 )電池〜(A5 )電池,
(A7 )電池,(A8 )電池では、サイクル寿命が格段
に長くなっていることが認められる。
As is clear from Table 2, the batteries (A 1 ) to (A 8 ) of the present invention have a longer cycle life than the batteries (X 1 ) to (X 3 ) of the comparative example. Is recognized. In particular, (A 3 ) battery to (A 5 ) battery in which the concentration of RbOH or CsOH is 1N to 3N,
It is recognized that the cycle life of the (A 7 ) battery and the (A 8 ) battery is much longer.

【0023】したがって、高率放電の面のみならずサイ
クル特性の面においても、RbOH或いはCsOHの濃
度は0.3規定〜3.5規定である必要があり、特に1
規定〜3規定であることが望ましい。 〔その他の事項〕 上記実施例では、水酸化ルビジウム及び水酸化セシウ
ムを単独で添加しているが、両者を共に添加しても上記
と同様の効果を奏する。但し、この場合にも、水酸化ル
ビジウムと水酸化セシウムとの合計が0.3規定〜3.
5規定となる必要がある。 上記実施例では、水素吸蔵合金としてMmNi3.2
oAl0.2 Mn0.6 を用いているが、これに限定するも
のではなく、その他の水素吸蔵合金を用いた電池であっ
ても上記と同様の効果を奏する。
Therefore, the concentration of RbOH or CsOH must be in the range of 0.3 to 3.5, not only in terms of high-rate discharge but also in terms of cycle characteristics.
It is desirable that the number be between three and three. [Other Matters] In the above embodiment, rubidium hydroxide and cesium hydroxide are added alone, but the same effect can be obtained by adding both of them. However, also in this case, the total of the rubidium hydroxide and the cesium hydroxide is 0.3N to 3N.
It is necessary to be 5 regulations. In the above embodiment, MmNi 3.2 C was used as the hydrogen storage alloy.
Although oAl 0.2 Mn 0.6 is used, the present invention is not limited to this, and the same effects as described above can be obtained with batteries using other hydrogen storage alloys.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、電
解液の導電性が向上し、且つルビジウムイオン等が触媒
としての作用を奏するため、高率放電時において作動電
圧を高くすることができると共に、電解液が適度な水和
力を有するので、電池のサイクル特性を向上させること
ができるといった優れた効果を奏する。
As described above, according to the present invention, since the conductivity of the electrolytic solution is improved and rubidium ions and the like act as a catalyst, the operating voltage can be increased during high-rate discharge. In addition, since the electrolyte has an appropriate hydration power, an excellent effect of improving the cycle characteristics of the battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例に係る密閉円筒型ニッケル−水素
アルカリ蓄電池の断面図である。
FIG. 1 is a sectional view of a sealed cylindrical nickel-hydrogen alkaline storage battery according to an example of the present invention.

【図2】本発明の(A2 )電池,(A4 )電池及び比較
例の(X1 )電池における放電容量と放電電圧との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the discharge capacity and the discharge voltage in the (A 2 ) battery of the present invention, the (A 4 ) battery and the (X 1 ) battery of the comparative example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭39−977(JP,B1) 特表 平2−502499(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/24 - 10/30 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-B-39-977 (JP, B1) JP-T2-502499 (JP, A) (58) Fields surveyed (Int. Cl. 7 , DB name) H01M 10/24-10/30

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金を主体とする負極と、金属
酸化物から成る正極と、アルカリ電解液とを有する金属
−水素アルカリ蓄電池において、 上記アルカリ電解液中には、水酸化ルビジウム及び水酸
化セシウムのうち少なくとも1種の水酸化物が0.3規
定〜3.5規定添加されていることを特徴とする金属−
水素アルカリ蓄電池。
1. A metal-hydrogen alkaline storage battery comprising a negative electrode mainly composed of a hydrogen storage alloy, a positive electrode made of a metal oxide, and an alkaline electrolyte, wherein the alkaline electrolyte contains rubidium hydroxide and hydroxide. A metal, characterized in that at least one hydroxide of cesium is added in an amount of 0.3 N to 3.5 N.
Hydrogen alkaline storage battery.
JP34307691A 1991-12-25 1991-12-25 Metal-hydrogen alkaline storage battery Expired - Fee Related JP3157237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34307691A JP3157237B2 (en) 1991-12-25 1991-12-25 Metal-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34307691A JP3157237B2 (en) 1991-12-25 1991-12-25 Metal-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH05174867A JPH05174867A (en) 1993-07-13
JP3157237B2 true JP3157237B2 (en) 2001-04-16

Family

ID=18358758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34307691A Expired - Fee Related JP3157237B2 (en) 1991-12-25 1991-12-25 Metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3157237B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042753A (en) * 1996-10-06 2000-03-28 Matsushita Electric Industrial Co., Ltd. Active materials for the positive electrode in alkaline storage batteries
US7393612B2 (en) 1996-12-17 2008-07-01 Toshiba Battery Co., Ltd. Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
CN109378432B (en) * 2018-10-19 2021-09-28 淄博国利新电源科技有限公司 Method for improving performance of capacitive nickel-metal hydride battery

Also Published As

Publication number Publication date
JPH05174867A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
US5132177A (en) Alkaline storage cell
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2604282B2 (en) Alkaline storage battery
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP2966627B2 (en) Metal hydride storage battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2680623B2 (en) Hydrogen storage alloy electrode
JP3802703B2 (en) Nickel metal hydride battery
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP3071026B2 (en) Metal hydride storage battery
JP3192694B2 (en) Alkaline storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP3091514B2 (en) Metal-hydrogen alkaline storage battery
JP2925612B2 (en) Method for producing metal-hydrogen alkaline storage battery
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2962857B2 (en) Metal-hydrogen alkaline storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JPH10241727A (en) Nickel-hydrogen battery assembly
JPH08315852A (en) Nickel hydrogen storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees