JPH05144432A - Electrode with hydrogen storage alloy - Google Patents

Electrode with hydrogen storage alloy

Info

Publication number
JPH05144432A
JPH05144432A JP3353557A JP35355791A JPH05144432A JP H05144432 A JPH05144432 A JP H05144432A JP 3353557 A JP3353557 A JP 3353557A JP 35355791 A JP35355791 A JP 35355791A JP H05144432 A JPH05144432 A JP H05144432A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
metal
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3353557A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3353557A priority Critical patent/JPH05144432A/en
Publication of JPH05144432A publication Critical patent/JPH05144432A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To suppress the internal pressure of gas generated at the time of over-charging and prolong the lifetime of a battery by including as additive at least one type of powder of metal oxides and metal hydroxides in an electrode molding made from a hydrogen storage alloy. CONSTITUTION:An electroconductive agent and a binder are added to a powder of hydrogen storage alloy, to which further at least one type of powder of metal oxide and metal hydroxide is added, followed by agitating and molding into a specified size to prepare an electrode of hydrogen storage alloy. Examples of the metal used as additive are Ni, Co, and Mn. The electrode thus fabricated is installed in a sealed battery as a neg. electrode, and when this battery is charged, the oxides or hydroxides included in the electrode molding educe in the form of metal ions. The metal is in priority oxidated by the oxygen generated from a pos. electrode, and thereby the hydrogen storage alloy is prevented from oxidation to maintain the activation of the catalyst effect of the hydrogen storage alloy. This suppresses pressure rise of the gas generated at the time of over-charging.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池などの負極に
用いる電気化学的に水素の吸蔵・放出が可能な水素吸蔵
合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode capable of electrochemically storing and releasing hydrogen used for a negative electrode of a secondary battery or the like.

【0002】[0002]

【従来の技術】従来二次電池としては、ニッケル−カド
ミウム電池、鉛蓄電池等が良く知られているが、これら
の電池は単位重量又は単位体積当たりのエネルギー密度
が比較的小さい欠点がある。そこで、電気化学的に多量
の水素の吸蔵・放出が可能な水素吸蔵合金を用いた電極
を負極とし、正極にはニッケル酸化物を用い電解液とし
てアルカリ水溶液を用いたエネルギー密度の大きいニッ
ケル−水素電池が提案されていた。ここでの負極にはL
aNi等の水素吸蔵合金が用いられていたが、充放電
の繰り返しに対するサイクル寿命が30サイクル程度と
短く実用的ではなかった。この問題を解決するためにL
aNiのNiの一部をCo、Al、Mn等で置換し多
元化するとともに、経済的な観点から、Laを希土類元
素の混合物であるMm(ミッシュメタル)に置換した水
素吸蔵合金が用いられている。この改良型の合金を用い
た水素吸蔵合金電極は、例えば、その合金粉末に、導電
剤粉と結着剤とを添加混合して合剤を調製し、この合剤
を多孔集電板に圧着成形して製造される。
2. Description of the Related Art Conventionally, nickel-cadmium batteries, lead-acid batteries and the like are well known as secondary batteries, but these batteries have a drawback that the energy density per unit weight or unit volume is relatively small. Therefore, an electrode using a hydrogen storage alloy capable of electrochemically absorbing and releasing a large amount of hydrogen is used as a negative electrode, nickel oxide is used as a positive electrode, and an alkaline aqueous solution is used as an electrolytic solution. Batteries were proposed. The negative electrode here is L
Although hydrogen storage alloys such as aNi 5 have been used, the cycle life for repeated charging / discharging is about 30 cycles and is not practical. L to solve this problem
A hydrogen storage alloy in which a part of Ni of aNi 5 is replaced by Co, Al, Mn, etc. to make it multi-elemental, and La is replaced by Mm (Misch metal) which is a mixture of rare earth elements is used from an economical viewpoint. ing. A hydrogen storage alloy electrode using this improved alloy is prepared, for example, by mixing an alloy powder with a conductive agent powder and a binder to prepare a mixture, and pressing the mixture onto a porous collector plate. Manufactured by molding.

【0003】[0003]

【発明が解決しようとする課題】上記の改良型の合金を
用いた水素吸蔵合金電極を負極として密閉型ニッケル−
水素電池を製造し、これを使用すると、過充電時に水素
ガスを発生し易く、内圧の上昇が起こる。この内圧を構
成するガスの90%以上が水素であるが、この内圧が1
0気圧を越えると安全弁が作動し、ガスを外部へ排出す
るが、このガス排出が繰り返されるので、電解液も液霧
となってガスと共に排出され、電池内の電解液が減少し
電池寿命の短縮をもたらす。従って、過充電時の内圧を
可及的に減少させて、電池寿命の延長をもたらすことが
できれば望ましい。
A hydrogen-storing alloy electrode using the above-mentioned improved alloy is used as a negative electrode for a sealed nickel-type electrode.
When a hydrogen battery is manufactured and used, hydrogen gas is easily generated at the time of overcharging, and the internal pressure rises. 90% or more of the gas that constitutes this internal pressure is hydrogen, but this internal pressure is 1
When the pressure exceeds 0 atm, the safety valve operates to discharge the gas to the outside, but this gas discharge is repeated, so the electrolytic solution also becomes a liquid mist and is discharged together with the gas, reducing the electrolytic solution in the battery and reducing the battery life. Bring about shortening. Therefore, it is desirable that the internal pressure at the time of overcharging can be reduced as much as possible to extend the battery life.

【0004】[0004]

【課題を解決するための手段】本発明は、上記従来の課
題を解決し、上記の要望を満足した電池の長寿命をもた
らす水素吸蔵電極を提供するもので、少なくとも1種の
金属の酸化物又は/及び水酸化物の粉末を水素吸蔵合金
電極成形体中に混入して成る。
SUMMARY OF THE INVENTION The present invention provides a hydrogen storage electrode which solves the above-mentioned conventional problems and provides a long service life of a battery satisfying the above-mentioned needs, and is an oxide of at least one metal. Or, and / or a powder of hydroxide is mixed in the hydrogen storage alloy electrode compact.

【0005】[0005]

【作用】本発明の作用は明らかでないが、該電極を負極
として組み込んだ密閉電池を充電すると、該電極成形体
に混入している該金属の酸化物又は/及び水酸化物は、
金属イオンとして析出し、正極で発生する酸素によって
該金属は優先的に酸化されて水素吸蔵合金の酸化を防止
し、該合金の触媒作用の活性化を維持する。その結果、
発生するガス圧の上昇を抑制するものと考えられる。
Although the function of the present invention is not clear, when a sealed battery in which the electrode is incorporated as a negative electrode is charged, the metal oxide or / and hydroxide mixed in the molded electrode is
The metal is deposited as a metal ion and is preferentially oxidized by oxygen generated in the positive electrode to prevent oxidation of the hydrogen storage alloy and maintain activation of the catalytic action of the alloy. as a result,
It is considered that this suppresses the rise in the generated gas pressure.

【0006】[0006]

【実施例】次に本発明の実施例を詳述する。本発明に用
いる水素吸蔵合金の種類は問わないが、一般には、サイ
クル寿命が比較的長く得られ、且つ経済的なミッシュメ
タルの一部をCo、Alなどで置換し多元化した合金が
好ましい。その特定の組成の水素吸蔵合金粉に、カーボ
ンニッケル粉末などの導電剤と四フッ化エチレン粉末な
どの結着剤とを添加し、更に本発明によれば、少なくと
も1種の金属の酸化物又は水酸化物の粉末を添加して混
合し、得られる混合物、即ち水素吸蔵合金の合剤を打抜
きニッケル多孔板やニッケル金網などの多孔集電板に充
填圧着して常法により所定の大きさの肉薄板状の水素吸
蔵合金電極を作製した。該金属としては、Ni、Co又
はMnであり、その少なくとも1種の酸化物、水酸化物
が本発明の添加剤として使用することにより上記の効果
を奏する。
EXAMPLES Next, examples of the present invention will be described in detail. The hydrogen storage alloy used in the present invention may be of any type, but in general, an alloy obtained by substituting Co, Al or the like for a part of an economical misch metal which has a relatively long cycle life and is economical is preferable. To the hydrogen storage alloy powder having the specific composition, a conductive agent such as carbon nickel powder and a binder such as tetrafluoroethylene powder are added, and further according to the present invention, an oxide of at least one metal or Hydroxide powder is added and mixed, and the resulting mixture, that is, a mixture of hydrogen-absorbing alloy is punched out, filled into a porous current collector plate such as a nickel perforated plate or a nickel wire mesh, and pressure-bonded to give a predetermined size by a conventional method. A thin plate-shaped hydrogen storage alloy electrode was produced. The metal is Ni, Co, or Mn, and at least one oxide or hydroxide thereof is used as the additive of the present invention to achieve the above effects.

【0007】このようにして得られた本発明の水素吸蔵
合金極板を従来公知の正極板とセパレータを介して積層
し、角形又は円筒形密閉電池容器に組み込み、常法によ
り気密に蓋を施し、密閉電池を製造した。これに充放電
を繰り返し、充電時発生するガスの内圧を測定した所、
その内圧は、本発明の上記添加剤を混入しない水素吸蔵
合金極板を負極とした従来の密閉電池が充電時発生する
ガスの内圧に比し著しくその圧力は減少し、低く抑えら
れることが確認された。
The hydrogen-absorbing alloy electrode plate of the present invention thus obtained is laminated with a conventionally known positive electrode plate via a separator, incorporated into a prismatic or cylindrical sealed battery container, and hermetically sealed by a conventional method. , A sealed battery was manufactured. Charge and discharge were repeated, and the internal pressure of the gas generated during charging was measured.
It is confirmed that the internal pressure is significantly reduced as compared with the internal pressure of the gas generated during charging of the conventional closed battery using the hydrogen storage alloy electrode plate, which does not contain the additive of the present invention as the negative electrode, and is kept low. Was done.

【0008】次に、更にその詳細な実施例と比較例につ
き説明する。 実施例1 市販のミッシュメタル、ニッケル、コバルト、アルミニ
ウムの各粉末を所定の組成比、例えばMnNi4.0
0.5Al0.5となるように秤量混合し、これらを
アーク溶解法により加熱溶融して水素吸蔵合金を得、こ
の合金を機械的に粉砕して150メッシュ以下の粉末と
した。この粉末に対して導電剤としてカーボニルニッケ
ル粉末を10wt.%、本発明の添加剤としてNi(O
H)粉末を4wt.%、結着剤として四フッ化エチレ
ン粉末を3wt.%添加して混合し、これをニッケル金
網に圧着して板状の本発明の水素吸蔵合金電極を作製し
た。これを公知のペースト式ニッケル極、セパレータと
ともに捲回し、電解液として30%水酸化カリウム水溶
液を用いて単3サイズ1000mAHの円筒密閉型ニッ
ケル−水素電池を作製した。比較のために上記の本発明
の添加剤を添加しない以外は同様にして水素吸蔵合金電
極を作製し、これを同様に組み込んで同様の円筒密閉型
ニッケル−水素電池を作製した。これを比較電池と称す
る。この電池と比較電池には内圧センサーを装着し、過
充電試験を行って内圧の上昇度合いを比較した。過充電
試験は0℃の環境温度中電池を1C(1A)の電流で、
定格容量の450%(4.5時間)充電して行った。こ
の時の内圧を夫々測定した。その結果、過充電時の該電
池の内圧は7Kgf/cm、該比較電池の内圧は14
Kgf/cmであった。
Next, further detailed examples and comparative examples will be described. Example 1 Commercially available powders of misch metal, nickel, cobalt, and aluminum were mixed in a predetermined composition ratio, for example, MnNi 4.0 C.
o 0.5 Al 0.5 were weighed and mixed, and these were heated and melted by an arc melting method to obtain a hydrogen storage alloy, and this alloy was mechanically pulverized into a powder of 150 mesh or less. Carbonyl nickel powder as a conductive agent was added to this powder in an amount of 10 wt. %, As an additive of the present invention, Ni (O
H) 2 powder 4 wt. %, 3 wt.% Of tetrafluoroethylene powder as a binder. % Of the hydrogen-absorbing alloy electrode of the present invention was prepared by pressing the nickel-metal mesh with nickel and then mixing it. This was wound together with a known paste-type nickel electrode and a separator, and an AA size 1000 mAH cylindrical sealed nickel-hydrogen battery was prepared using a 30% aqueous potassium hydroxide solution as an electrolytic solution. For comparison, a hydrogen storage alloy electrode was produced in the same manner except that the above-mentioned additive of the present invention was not added, and this was similarly incorporated to produce a similar cylindrical sealed nickel-hydrogen battery. This is called a comparative battery. An internal pressure sensor was attached to this battery and the comparative battery, and an overcharge test was performed to compare the degree of increase in internal pressure. The overcharge test uses a battery with a current of 1C (1A) at an environmental temperature of 0 ° C.
It was charged by 450% of the rated capacity (4.5 hours). The internal pressure at this time was measured. As a result, the internal pressure of the battery during overcharge was 7 Kgf / cm 2 , and the internal pressure of the comparative battery was 14
It was Kgf / cm 2 .

【0009】これから明らかなように、水素吸蔵合金と
して、これに添加剤としてNi(OH)粉末を混入せ
しめることにより、電池の内圧を著しく抑制する効果を
もたらすことが判る。尚、ニッケル水酸化物として、N
i(OH)に代えて、NiOH、Ni・XH
O、Ni(OH)の夫々を添加剤として用いて
も同様に内圧抑制効果が認められた。
As is clear from the above, it can be seen that by mixing the hydrogen storage alloy with Ni (OH) 2 powder as an additive, the effect of significantly suppressing the internal pressure of the battery is brought about. As the nickel hydroxide, N
Instead of i (OH) 2 , NiOH, Ni 2 O 3 .XH 2
Even when each of O and Ni 3 O 2 (OH) 4 was used as an additive, the effect of suppressing the internal pressure was similarly recognized.

【0010】実施例2 本発明の添加剤としてNiO粉末を用いた以外は、実施
例1と同様にして本発明の水素吸蔵合金電極を作製し
た。次にこれを用い実施例1と同様にして密閉型ニッケ
ル−水素電池を作製した。この電池について、実施例1
で行ったと同様にして過充電試験を行った。その結果、
過充電時の該電池内圧は7Kgf/cmであった。
尚、上記の酸化ニッケルとして、上記のNiOに代え
て、Ni、NiOを夫々添加剤として用いて
も、同様に内圧抑制効果が認められた。
Example 2 A hydrogen storage alloy electrode of the present invention was produced in the same manner as in Example 1 except that NiO powder was used as the additive of the present invention. Then, using this, a sealed nickel-hydrogen battery was produced in the same manner as in Example 1. About this battery, Example 1
An overcharge test was conducted in the same manner as in the above. as a result,
The internal pressure of the battery during overcharge was 7 Kgf / cm 2 .
Even when Ni 2 O 3 and NiO 2 were used as the additives instead of the NiO as the nickel oxide, the effect of suppressing the internal pressure was similarly observed.

【0011】実施例3 本発明の添加剤としてCoO粉末を用いた以外は、実施
例1と同様にして本発明の水素吸蔵合金電極を作製し
た。次にこれを用い実施例1と同様にして密閉型ニッケ
ル−水素電池を作製した。この電池について、実施例1
で行ったと同様にして過充電試験を行った。その結果、
過充電時の内圧は7Kgf/cmであった。尚、上記
の酸化コバルトとして、CoOに代えて、Co
添加剤として用いても、同様に内圧抑制効果が認められ
た。又、酸化コバルトに代えて、Co(OH)、Co
(OH)を用いても、同様に内圧抑制効果が得られ
た。
Example 3 A hydrogen storage alloy electrode of the present invention was produced in the same manner as in Example 1 except that CoO powder was used as the additive of the present invention. Then, using this, a sealed nickel-hydrogen battery was produced in the same manner as in Example 1. About this battery, Example 1
An overcharge test was conducted in the same manner as in the above. as a result,
The internal pressure during overcharge was 7 Kgf / cm 2 . Even when Co 3 O 4 was used as an additive instead of CoO as the cobalt oxide, the effect of suppressing the internal pressure was similarly confirmed. Also, instead of cobalt oxide, Co (OH) 2 , Co
Even when (OH) 3 was used, the effect of suppressing the internal pressure was similarly obtained.

【0012】実施例4 本発明の添加剤としてMn(OH)を用いた以外は、
実施例1と同様にして本発明の水素吸蔵合金電極を作製
した。次にこれを用い実施例1と同様にして密閉型ニッ
ケル−水素電池を作製した。この電池について、実施例
1で行ったと同様にして過充電試験を行った。その結
果、過充電時の内圧は6Kgf/cmであった。尚、
水酸化マンガンとして、上記のMn(OH)に代え
て、MnO(OH)、Mn・XHOを夫々用い
ても、同様に内圧抑制効果が認められた。又、酸化コバ
ルトに代えて、Co(OH)、Co(OH)を用い
ても、同様に内圧抑制効果が得られた。
Example 4 Except that Mn (OH) 2 was used as the additive of the present invention,
A hydrogen storage alloy electrode of the present invention was produced in the same manner as in Example 1. Then, using this, a sealed nickel-hydrogen battery was produced in the same manner as in Example 1. An overcharge test was performed on this battery in the same manner as in Example 1. As a result, the internal pressure during overcharge was 6 Kgf / cm 2 . still,
Even if MnO (OH) and Mn 3 O 4 .XH 2 O were used as the manganese hydroxides instead of Mn (OH) 2 , the internal pressure suppressing effect was similarly observed. Even if Co (OH) 2 or Co (OH) 3 was used instead of cobalt oxide, the same effect of suppressing the internal pressure was obtained.

【0013】実施例5 本発明の添加剤としてMnOを用いた以外は、実施例1
と同様にして本発明の水素吸蔵合金電極を作製した。次
にこれを用い実施例1と同様にして密閉型ニッケル−水
素電池を作製した。この電池について、実施例1で行っ
たと同様にして過充電試験を行った。その結果、過充電
時の内圧は7.5Kgf/cmであった。尚、酸化マ
ンガンとして、上記のMnOに代えて、Mn、M
、MnOを添加剤として用いても、同様に内
圧抑制効果が認められた。
Example 5 Example 1 except that MnO was used as the additive of the present invention.
A hydrogen storage alloy electrode of the present invention was produced in the same manner as in. Then, using this, a sealed nickel-hydrogen battery was produced in the same manner as in Example 1. An overcharge test was performed on this battery in the same manner as in Example 1. As a result, the internal pressure during overcharge was 7.5 Kgf / cm 2 . As manganese oxide, instead of MnO described above, Mn 3 O 4 , M
Even when n 2 O 3 and MnO 2 were used as additives, the effect of suppressing the internal pressure was similarly confirmed.

【0014】以上の他、1種の金属の酸化物と水酸化物
とを併用し、或いは金属の種類を異にした酸化物又は水
酸化物を併用しても上記と同様に内圧抑制効果をもたら
すことは勿論である。
In addition to the above, even if one kind of metal oxide and hydroxide are used in combination, or an oxide or hydroxide in which the kind of metal is different is used together, the internal pressure suppressing effect is obtained in the same manner as described above. Of course it brings.

【0015】[0015]

【発明の効果】このように本発明は、水素吸蔵合金電極
は上記各種の金属酸化物又は各種の金属水酸化物の少な
くとも1種の粉末を添加剤として混入して含有するの
で、これを負極として密閉電池に組み込むときは、過充
電時の内圧が著しく低く抑えることができ、電池寿命の
延長をもたらす等の効果を奏する。
As described above, according to the present invention, since the hydrogen storage alloy electrode contains at least one powder of the above-mentioned various metal oxides or various metal hydroxides as an additive, it is contained in the negative electrode. As a result, when incorporated in a sealed battery, the internal pressure at the time of overcharging can be suppressed to a significantly low level, and the effect of extending the battery life can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1種の金属の酸化物又は/及
び水酸化物の粉末を水素吸蔵合金電極成形体中に混入し
て成る水素吸蔵合金電極。
1. A hydrogen storage alloy electrode obtained by mixing at least one metal oxide or / and hydroxide powder into a hydrogen storage alloy electrode compact.
【請求項2】 該金属は、Ni、Co又はMnである請
求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the metal is Ni, Co or Mn.
JP3353557A 1991-11-15 1991-11-15 Electrode with hydrogen storage alloy Pending JPH05144432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3353557A JPH05144432A (en) 1991-11-15 1991-11-15 Electrode with hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3353557A JPH05144432A (en) 1991-11-15 1991-11-15 Electrode with hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH05144432A true JPH05144432A (en) 1993-06-11

Family

ID=18431650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3353557A Pending JPH05144432A (en) 1991-11-15 1991-11-15 Electrode with hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH05144432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088355A1 (en) * 1999-04-14 2001-04-04 Ovonic Battery Company, Inc. Electrochemical cell having reduced cell pressure
JP2001307721A (en) * 2000-04-24 2001-11-02 Toshiba Corp Hydrogen-storage alloy electrode, alkaline secondary battery, hybrid car and electric vehicle
WO2002041418A1 (en) * 1998-09-23 2002-05-23 Ovonic Battery Company, Inc. Nickel positive electrode material comprising rare earth minerals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041418A1 (en) * 1998-09-23 2002-05-23 Ovonic Battery Company, Inc. Nickel positive electrode material comprising rare earth minerals
EP1088355A1 (en) * 1999-04-14 2001-04-04 Ovonic Battery Company, Inc. Electrochemical cell having reduced cell pressure
EP1088355A4 (en) * 1999-04-14 2002-07-17 Ovonic Battery Co Electrochemical cell having reduced cell pressure
US6492057B1 (en) 1999-04-14 2002-12-10 Ovonic Battery Company, Inc. Electrochemical cell having reduced cell pressure
JP2001307721A (en) * 2000-04-24 2001-11-02 Toshiba Corp Hydrogen-storage alloy electrode, alkaline secondary battery, hybrid car and electric vehicle

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2001316744A (en) Hydrogen storage alloy and alkali secondary battery
JP3433033B2 (en) Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode
JP2012099250A (en) Alkaline storage battery
JP4010630B2 (en) Hydrogen storage alloy electrode
JP2001325957A (en) Alkaline secondary cell
JPH05144432A (en) Electrode with hydrogen storage alloy
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP2005142146A (en) Nickel hydrogen storage battery
JPH1021908A (en) Active material for battery, and battery
JP3802703B2 (en) Nickel metal hydride battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2975658B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3071026B2 (en) Metal hydride storage battery
JP2750793B2 (en) Nickel-metal hydride battery
JP4236399B2 (en) Alkaline storage battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP3343413B2 (en) Alkaline secondary battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH1040950A (en) Alkaline secondary battery
JP2919544B2 (en) Hydrogen storage electrode
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH09199162A (en) Sealed alkaline storage battery