JP2919544B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JP2919544B2
JP2919544B2 JP2074440A JP7444090A JP2919544B2 JP 2919544 B2 JP2919544 B2 JP 2919544B2 JP 2074440 A JP2074440 A JP 2074440A JP 7444090 A JP7444090 A JP 7444090A JP 2919544 B2 JP2919544 B2 JP 2919544B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
negative electrode
battery
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2074440A
Other languages
Japanese (ja)
Other versions
JPH03274667A (en
Inventor
高士 上田
啓文 市岡
真介 中堀
健次 井上
良和 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2074440A priority Critical patent/JP2919544B2/en
Publication of JPH03274667A publication Critical patent/JPH03274667A/en
Application granted granted Critical
Publication of JP2919544B2 publication Critical patent/JP2919544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、水素を吸蔵及び放出することのできる水素
吸蔵合金を負極材料として用いたアルカリ蓄電池用の水
素吸蔵電極に関するものである。
Description: (a) Industrial application field The present invention relates to a hydrogen storage electrode for an alkaline storage battery using a hydrogen storage alloy capable of storing and releasing hydrogen as a negative electrode material.

(ロ) 従来の技術 従来からよく用いられている蓄電池としては、ニッケ
ル−カドミウム蓄電池、あるいは鉛蓄電池などがある
が、近年、これらの電池より軽量且つ高容量で高エネル
ギー密度となる可能性があるということで、水素吸蔵合
金を負極材料として用いた水素吸蔵電極を備えたニッケ
ル−水素アルカリ蓄電池が注目されている。
(B) Conventional technology Conventionally used storage batteries include nickel-cadmium storage batteries and lead storage batteries. In recent years, there is a possibility that these batteries are lighter, have higher capacity, and have higher energy density than these batteries. Therefore, a nickel-hydrogen alkaline storage battery provided with a hydrogen storage electrode using a hydrogen storage alloy as a negative electrode material has attracted attention.

このアルカリ蓄電池の負極に用いる水素吸蔵合金電極
は、一般に特開昭61−66366号公報に示されるように、
ポリテトラフルオロエチレンやポリエチレンオキサイド
などの結着剤と水素吸蔵合金粉末とを混練してペースト
を作製し、パンチングメタルやエクスパンドメタルなど
の芯体の両面に前記ペーストを塗着、乾燥して製造され
る。このようにして作製された水素吸蔵電極は、ニッケ
ル−カドミウム蓄電池に用いられる焼結式ニッケル正極
との間にセパレータを介在させて、渦巻状に捲回した状
態で電池外装缶に収容され、電池が構成される。
The hydrogen storage alloy electrode used for the negative electrode of this alkaline storage battery is generally, as shown in JP-A-61-66366,
A binder is prepared by kneading a binder such as polytetrafluoroethylene or polyethylene oxide and a hydrogen storage alloy powder to prepare a paste, and the paste is applied to both surfaces of a core body such as a punching metal or expanded metal, and dried to produce a paste. You. The hydrogen storage electrode manufactured in this manner is housed in a battery outer can in a spirally wound state with a separator interposed between the sintered nickel positive electrode used in the nickel-cadmium storage battery and the battery. Is configured.

このように、水素吸蔵合金粉末と結着剤とを主体とす
る水素吸蔵電極を負極に用いる場合には、負極の性能は
水素吸蔵合金粉末の性能に大きく左右されることにな
る。この点を考慮して、特開昭62−154562号公報では、
水素吸蔵合金の粒径を20〜149μmに規制して電極を構
成することにより、充放電の繰り返しによるサイクル寿
命が長く、高い性能を有する電池を提供することを可能
としている。
As described above, when the hydrogen storage electrode mainly composed of the hydrogen storage alloy powder and the binder is used for the negative electrode, the performance of the negative electrode largely depends on the performance of the hydrogen storage alloy powder. In view of this point, JP-A-62-154562 discloses that
By configuring the electrode by regulating the particle size of the hydrogen storage alloy to 20 to 149 μm, it is possible to provide a battery having a long cycle life due to repeated charge and discharge and high performance.

しかしながら、特開昭62−154562号公報に示されるよ
うに、予め水素吸蔵合金を規定の粒径に分級し、範囲外
の粒径の粒子を除いて使用したりすると、負極の放電容
量などの性能を向上させることはできるが、負極の酸素
ガス消費能力はまだ充分満足できる程度に高めることは
できなかった。
However, as disclosed in JP-A-62-154562, if the hydrogen storage alloy is classified in advance to a prescribed particle size and used without particles having a particle size outside the range, the discharge capacity of the negative electrode may be reduced. Although the performance can be improved, the oxygen gas consuming capacity of the negative electrode has not been able to be sufficiently increased yet.

(ハ) 発明が解決しようとする課題 本発明は、上記問題を解決するものであって、電極容
量を向上させると共に、負極における酸素ガス消費能力
を向上させた水素吸蔵電極を提供しようとするものであ
る。
(C) Problems to be Solved by the Invention The present invention is to solve the above-mentioned problems, and is to provide a hydrogen storage electrode having an improved electrode capacity and an improved oxygen gas consuming capacity in a negative electrode. It is.

(ニ) 課題を解決するための手段 本発明の水素吸蔵電極は、負極材料に用いる水素吸蔵
合金として、平均粒径が50〜100μmであり、且つ粒径1
50μm以上の合金を前記合金の総量の3wt%以上含有す
る合金を用いることを特徴とするものである。
(D) Means for Solving the Problems The hydrogen storage electrode of the present invention has a mean particle diameter of 50 to 100 μm and a particle diameter of 1 as a hydrogen storage alloy used for a negative electrode material.
An alloy containing an alloy of 50 μm or more in an amount of 3 wt% or more of the total amount of the alloy is used.

(ホ) 作用 負極材料である水素吸蔵合金として粒径の大きなもの
を使用すると、合金の負極への充填密度が小さくなり、
負極のエネルギー密度が低下する。更に、合金の粒径が
小さい場合に比べ、負極内に充填した合金同志の接触点
が少なくなり、集電性が低下する。
(E) Action When a hydrogen storage alloy having a large particle diameter is used as a negative electrode material, the packing density of the alloy in the negative electrode decreases,
The energy density of the negative electrode decreases. Furthermore, compared with the case where the alloy has a small particle size, the number of contact points between the alloys filled in the negative electrode is reduced, and the current collecting property is reduced.

ところが、これとは逆に粒径の大きな合金を、合金粉
末中に混入しておくと、負極の酸素ガス消費能力は大き
く向上する。
However, conversely, if an alloy having a large particle size is mixed in the alloy powder, the oxygen gas consuming capacity of the negative electrode is greatly improved.

一般に、負極の酸素ガス消費能力を向上させるために
は合金表面の活性度を高く維持することが必要であり、
これにより合金表面での酸素と水素の反応を容易にする
ことができる。
Generally, it is necessary to maintain high activity of the alloy surface in order to improve the oxygen gas consumption capacity of the negative electrode,
This facilitates the reaction between oxygen and hydrogen on the alloy surface.

一方、負極材料としての水素吸蔵合金は、本来活性な
合金であるが、酸素の存在下では容易に表面が酸化され
てしまい、合金は不活性なものになる。こうして表面が
不活性になった合金は、合金の粒径が大きい場合には、
充放電などにより水素を吸蔵・放出させると、合金表面
の酸化膜にクラックが生じて合金内部の活性な部分が、
合金の表面に露出するようになり反応性が向上する。し
かしながら、水素吸蔵合金の粒径が小さいと、合金の表
面にクラックが生じにくいため、活性な状態の合金が表
面に生成し難い。このため、粒径の大きな合金を用いる
ことで、合金表面に内部の活性な部分を露出させ易くす
ると、合金表面での酸素と水素の反応を容易にでき、酸
素ガス消費能力を向上させることができるものと考えら
れる。
On the other hand, a hydrogen storage alloy as a negative electrode material is an active alloy by nature, but its surface is easily oxidized in the presence of oxygen, and the alloy becomes inactive. In the case of an alloy whose surface has been made inert in this way, if the alloy has a large particle size,
When hydrogen is absorbed and released by charging and discharging, cracks occur in the oxide film on the alloy surface, and active parts inside the alloy become
Exposed on the surface of the alloy, the reactivity is improved. However, when the particle size of the hydrogen storage alloy is small, cracks are less likely to be generated on the surface of the alloy, so that an active alloy is less likely to be generated on the surface. For this reason, by using an alloy having a large particle size, it is possible to easily expose an active portion inside on the alloy surface, so that a reaction between oxygen and hydrogen on the alloy surface can be facilitated and oxygen gas consumption ability can be improved. It is considered possible.

本発明では、負極材料としての水素吸蔵合金の平均粒
径を50〜100μmと適切な粒径に調整することにより、
負極容量を向上させると共に、合金の表面にクラックが
生じ易い150μm以上と粒径の大きな水素吸蔵合金を合
金粉末中に混入させることにより、酸素ガス消費能力を
も向上させることを可能とした。
In the present invention, by adjusting the average particle size of the hydrogen storage alloy as a negative electrode material to an appropriate particle size of 50 to 100 μm,
In addition to improving the capacity of the negative electrode, it is possible to improve the oxygen gas consumption ability by mixing a hydrogen storage alloy having a large particle size of 150 μm or more, which easily causes cracks on the surface of the alloy, into the alloy powder.

(ヘ) 実施例 本発明の実施例を以下に示し、比較例との対比に言及
する。
(F) Examples Examples of the present invention are shown below, and reference is made to comparison with comparative examples.

水素吸蔵合金の原料金属としての市販のミッシュメタ
ル(Mm、希土類元素の混合物)とニッケルとコバルトと
アルミニウムとマンガンを、元素比で1.0:3.2:1.0:0.2:
0.6に秤量したのち、高周波誘導炉内で溶解、鋳造す
る。これにより、MmNi3.2CoAl0.2Mn0.6という組成の合
金を得る。次いで、粉砕条件を種々変化させて、前記合
金鋳塊を機械的に粉砕し、平均粒径が30,40,50,75,10,1
10及び120μmの粉末を作製した。
Commercially available misch metal (Mm, a mixture of rare earth elements), nickel, cobalt, aluminum, and manganese as elemental metals for hydrogen storage alloys, with an elemental ratio of 1.0: 3.2: 1.0: 0.2:
After weighing to 0.6, it is melted and cast in a high frequency induction furnace. Thus, an alloy having a composition of MmNi 3.2 CoAl 0.2 Mn 0.6 is obtained. Next, the pulverization conditions were variously changed, and the alloy ingot was pulverized mechanically to have an average particle size of 30, 40, 50, 75, 10, 1.
Powders of 10 and 120 μm were made.

更に、これらの粉末に対して、夫々1wt%のポリエチ
レンオキサイドと,分散媒としての水を前記合金に加え
スラリーを作製し、パンチングメタルからなる導電性支
持体の表面に塗着した後、乾燥及び加圧を行ない水素吸
蔵電極を得た。
Further, 1 wt% of polyethylene oxide and water as a dispersing medium were added to each of these powders to form a slurry, and a slurry was prepared. The slurry was applied to the surface of a conductive support made of punched metal, and then dried and dried. Pressurization was performed to obtain a hydrogen storage electrode.

次いで、これらの各電極に対して30%KOHを満たした5
atmの加圧容器中で充放電テストを行った。その時の充
放電条件は、50mA/gの電流値で8時間充電した後,50mA/
gの電流値で放電し、電極電位が−0.7VvsHg/HgOに達し
た時点で放電停止するものである。
Then, each of these electrodes was filled with 30% KOH 5
The charge / discharge test was performed in an atm pressurized container. The charge and discharge conditions at that time were as follows: after charging for 8 hours at a current value of 50 mA / g,
It discharges at a current value of g and stops when the electrode potential reaches -0.7 V vs Hg / HgO.

この結果を第1図に示した。第1図から明らかなよう
に、電極に使用した合金の平均粒径が50μm〜100μm
の場合には、放電容量が高くなることがわかる。これに
対して、平均粒径が50μmよりも小さい場合、及び平均
粒径が100μmよりも大きな場合には、いずれも放電容
量が低くなっている。
The result is shown in FIG. As is clear from FIG. 1, the average particle size of the alloy used for the electrode is 50 μm to 100 μm.
It can be seen that in the case of (1), the discharge capacity increases. On the other hand, when the average particle size is smaller than 50 μm and when the average particle size is larger than 100 μm, the discharge capacity is low.

更に、上述と同様に合金鋳塊を作製し粉砕の条件を種
々変化させて第1表に示す粒度の粉末a〜cを作製し、
この粉末を使用して同様の方法で水素吸蔵電極を得た。
Furthermore, in the same manner as described above, alloy ingots were produced, and various conditions of pulverization were changed to produce powders a to c having the particle sizes shown in Table 1,
Using this powder, a hydrogen storage electrode was obtained in the same manner.

こうして作製した電極を負極とし、正極に焼結式ニッ
ケル電極を使用して、これら正、負極の間に不織布から
なるセパレータを介して捲回することにより渦巻電極体
を得た。そして,この渦巻電極体を電池外装缶に挿入し
30重量%の水酸化カリウム水溶液を電解液として注液し
たのち、封口して公称容量1000mAhの密閉型ニッケル−
水素電池を組み立てた。こうして組み立てた電池を、負
極に用いた水素吸蔵合金の符号に対応させて電池A〜C
とする。
The electrode thus fabricated was used as a negative electrode, a sintered nickel electrode was used as a positive electrode, and a spiral electrode body was obtained by winding the positive and negative electrodes through a separator made of a nonwoven fabric. Then, insert this spiral electrode body into the battery outer can.
A 30% by weight aqueous solution of potassium hydroxide was injected as an electrolytic solution, which was then sealed and sealed with a nominal capacity of 1000 mAh.
A hydrogen battery was assembled. The batteries assembled in this manner were used as batteries A to C according to the reference number of the hydrogen storage alloy used for the negative electrode.
And

こうして作製した電池を、夫々100mAの電流で16時間
充電した後、200mAの電流で放電し、電池電圧が1.0Vに
達した時点で放電を停止するサイクル条件で、充放電サ
イクル試験を行ない、サイクル寿命を測定した。尚、こ
のサイクル試験では、初期容量の50%以下になった時点
をサイクル寿命とした。
The batteries thus fabricated were charged at a current of 100 mA for 16 hours, then discharged at a current of 200 mA, and a discharge / charge cycle test was performed under a cycle condition in which the discharge was stopped when the battery voltage reached 1.0 V. The life was measured. In this cycle test, the point at which the capacity became 50% or less of the initial capacity was defined as the cycle life.

また同様の電池を使用し、前記充放電を5サイクル行
なった後,電池外装缶の底部に孔を設け、この孔部に内
圧測定用の圧力センサーを取り付けた。この電池を1000
mAの電流で充電を行ない、電池電圧がピーク値に到達し
た後、このピーク値から10mV低下した時点で充電を停止
させ、この負の電池内部圧力を測定した。この結果を第
2表に示す。但し、電池内部圧力は前記充電中における
最大値で示している。
After the same battery was used and the above-described charge / discharge cycle was performed for 5 cycles, a hole was provided in the bottom of the battery outer can, and a pressure sensor for measuring the internal pressure was attached to the hole. 1000 batteries
The battery was charged with a current of mA, and after the battery voltage reached a peak value, the charging was stopped when the battery voltage dropped by 10 mV from the peak value, and the negative battery internal pressure was measured. Table 2 shows the results. However, the battery internal pressure is shown as the maximum value during the charging.

第2表に示すように、電池A及びBはサイクル寿命が
長く、電池内部圧力の上昇も少ないことがわかる。これ
に対して、電池Cはサイクル寿命が短く内圧上昇も大き
い。
As shown in Table 2, it can be seen that batteries A and B have a long cycle life and a small increase in battery internal pressure. In contrast, battery C has a short cycle life and a large increase in internal pressure.

電池Cでは150μm以上の粒子が含まれていないた
め、合金の酸素ガス消費能力が低く、電池内部圧力の上
昇をもたらし、更に、サイクルの進行と共に圧力が増加
して、電池弁が作動して電池内のガスを放出する。そし
て、このガス放出と共に、電解液が同時に電池外部に放
出され、電池内の電解液量が不足して、サイクル寿命の
低下を起こす。これに対して、電池A及びBでは負極の
ガス消費能力が高く、電池内圧の上昇も少なくなってお
り、これに伴ってサイクル寿命も向上している。
Since the battery C does not contain particles of 150 μm or more, the oxygen gas consumption capacity of the alloy is low, causing an increase in the internal pressure of the battery. Release the gas inside. Then, along with the gas release, the electrolyte is simultaneously discharged to the outside of the battery, and the amount of the electrolyte in the battery becomes insufficient, resulting in a decrease in cycle life. On the other hand, in the batteries A and B, the gas consumption capacity of the negative electrode is high, the rise in the battery internal pressure is small, and the cycle life is accordingly improved.

(ト) 効果 本発明の水素吸蔵電極は、負極材料としての水素吸蔵
合金の平均粒径を50〜100μmにすると共に、粒径150μ
m以上の合金を前記合金総量の3wt%以上含有させたも
のであるので、合金の性能を充分に引き出すことが可能
となり、負極容量を向上させることができ、且つ、酸素
ガス消費能力を向上させることができる。また、酸素ガ
ス消費能力の向上に伴い、本発明電極を負極に用いた電
池はサイクル寿命が向上するという効果がある。
(G) Effect The hydrogen storage electrode of the present invention has a hydrogen storage alloy as a negative electrode material having an average particle size of 50 to 100 μm and a particle size of 150 μm.
m or more containing 3 wt% or more of the total amount of the alloy, it is possible to sufficiently bring out the performance of the alloy, to improve the capacity of the negative electrode, and to improve the oxygen gas consumption capacity. be able to. In addition, a battery using the electrode of the present invention as a negative electrode has an effect of improving the cycle life as the oxygen gas consuming ability is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、水素吸蔵合金の平均粒径と放電容量との関係
を示す図である。
FIG. 1 is a view showing the relationship between the average particle size of the hydrogen storage alloy and the discharge capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 健次 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 石倉 良和 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平1−12766(JP,A) 特開 平2−65058(JP,A) (58)調査した分野(Int.Cl.6,DB名) H04M 4/38 H04M 4/24 - 4/26 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kenji Inoue 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yoshikazu Ishikura 2--18 Keihanhondori, Moriguchi-shi, Osaka (56) References JP-A-1-1766 (JP, A) JP-A-2-65058 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H04M 4 / 38 H04M 4/24-4/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金を負極材料として用いる水素
吸蔵電極において、前記水素吸蔵合金は平均粒径が50〜
100μmであり、且つ粒径150μm以上の合金を前記合金
総量の3wt%以上含有することを特徴とする水素吸蔵電
極。
1. A hydrogen storage electrode using a hydrogen storage alloy as a negative electrode material, wherein the hydrogen storage alloy has an average particle size of 50 to 50.
A hydrogen storage electrode comprising an alloy having a particle size of 100 μm and a particle size of 150 μm or more, 3 wt% or more of the total amount of the alloy.
JP2074440A 1990-03-23 1990-03-23 Hydrogen storage electrode Expired - Lifetime JP2919544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074440A JP2919544B2 (en) 1990-03-23 1990-03-23 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074440A JP2919544B2 (en) 1990-03-23 1990-03-23 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH03274667A JPH03274667A (en) 1991-12-05
JP2919544B2 true JP2919544B2 (en) 1999-07-12

Family

ID=13547297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074440A Expired - Lifetime JP2919544B2 (en) 1990-03-23 1990-03-23 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP2919544B2 (en)

Also Published As

Publication number Publication date
JPH03274667A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP2919544B2 (en) Hydrogen storage electrode
US5496665A (en) Hydrogen-occlusion-alloy electrode
JP2692936B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JP3071026B2 (en) Metal hydride storage battery
JP2975658B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2823301B2 (en) Hydrogen storage alloy electrode
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JPH05242908A (en) Metal hydride storage battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP2975626B2 (en) Hydrogen storage electrode
JPH05144432A (en) Electrode with hydrogen storage alloy
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3268013B2 (en) Hydrogen storage alloy electrode
JP3229672B2 (en) Metal hydride storage battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP3392700B2 (en) Alkaline secondary battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP2005056679A (en) Cylindrical alkaline storage battery
JPH05335015A (en) Hydrogen storage electrode
JP2962857B2 (en) Metal-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

EXPY Cancellation because of completion of term