JP2975626B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JP2975626B2
JP2975626B2 JP2074431A JP7443190A JP2975626B2 JP 2975626 B2 JP2975626 B2 JP 2975626B2 JP 2074431 A JP2074431 A JP 2074431A JP 7443190 A JP7443190 A JP 7443190A JP 2975626 B2 JP2975626 B2 JP 2975626B2
Authority
JP
Japan
Prior art keywords
electrode
battery
hydrogen storage
powder
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2074431A
Other languages
Japanese (ja)
Other versions
JPH03274664A (en
Inventor
高士 上田
啓文 市岡
正仁 富田
健次 井上
良和 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2074431A priority Critical patent/JP2975626B2/en
Publication of JPH03274664A publication Critical patent/JPH03274664A/en
Application granted granted Critical
Publication of JP2975626B2 publication Critical patent/JP2975626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、水素を吸蔵及び放出することのできる水素
吸蔵合金を負極材料として用いたアルカリ蓄電池用の水
素吸蔵電極に関するものである。
Description: (a) Industrial application field The present invention relates to a hydrogen storage electrode for an alkaline storage battery using a hydrogen storage alloy capable of storing and releasing hydrogen as a negative electrode material.

(ロ) 従来の技術 従来からよく用いられている蓄電池としては、ニッケ
ル−カドミウム蓄電池、あるいは鉛蓄電池などがある
が、近年、これらの電池より軽量且つ高容量で高エネル
ギー密度となる可能性があるということで、水素吸蔵合
金を負極材料として用いた水素吸蔵電極を備えたニッケ
ル−水素アルカリ蓄電池が注目されている。
(B) Conventional technology Conventionally used storage batteries include nickel-cadmium storage batteries and lead storage batteries. In recent years, there is a possibility that these batteries are lighter, have higher capacity, and have higher energy density than these batteries. Therefore, a nickel-hydrogen alkaline storage battery provided with a hydrogen storage electrode using a hydrogen storage alloy as a negative electrode material has attracted attention.

そして、このアルカリ蓄電池の負極に用いる水素吸蔵
電極は、一般に特開昭61−66366号公報に示されるよう
に、ポリテトラフルオロエチレンやポリエチレンオキサ
イドなどの結着剤と水素吸蔵合金粉末とを混練してペー
ストを作製し、パンチングメタルやエキスパンドメタル
などの支持体の両面に前記ペーストを塗着、乾燥して製
造される。また、こうして作製された水素吸蔵電極は、
ニッケル−カドミウム蓄電池に用いられる焼結式ニッケ
ル正極との間にセパレータを介在させて、渦巻状に捲回
した状態で電池外装缶に収容され、電池が構成される。
The hydrogen storage electrode used for the negative electrode of this alkaline storage battery is generally kneaded with a binder such as polytetrafluoroethylene or polyethylene oxide and a hydrogen storage alloy powder, as shown in JP-A-61-66366. To produce a paste, and apply the paste to both surfaces of a support such as punched metal or expanded metal, and then dry the paste. In addition, the hydrogen storage electrode thus manufactured is
A separator is interposed between the positive electrode and a sintered nickel positive electrode used for a nickel-cadmium storage battery, and the battery is housed in a battery outer can in a spirally wound state.

特開昭63−195960号公報では、こうして作製された電
池において、電池内で発生する酸素ガスの消費能力を向
上させるために、負極の水素吸蔵電極の表面に炭素粉末
層を形成することが提案されている。しかし、水素吸蔵
電極の表面に炭素粉末層を形成するだけでは、充分なガ
ス消費能力は得られない。
JP-A-63-195960 proposes to form a carbon powder layer on the surface of the hydrogen storage electrode of the negative electrode in order to improve the ability to consume oxygen gas generated in the battery in the battery thus manufactured. Have been. However, sufficient gas consumption capacity cannot be obtained only by forming a carbon powder layer on the surface of the hydrogen storage electrode.

また、特開昭63−55857号公報では、金属で部分的に
被覆した水素吸蔵合金粉末と炭素粉末の混合物からなる
層を、水素吸蔵電極の表面に形成することが提案されて
いるが、この方法では電極表面に存在する水素吸蔵合金
が、正極から発生する酸素により酸化されて、電極のガ
ス消費能力が低下することがある。
JP-A-63-55857 proposes that a layer made of a mixture of a hydrogen storage alloy powder and a carbon powder partially coated with a metal is formed on the surface of a hydrogen storage electrode. In the method, the hydrogen storage alloy present on the electrode surface may be oxidized by oxygen generated from the positive electrode, and the gas consuming ability of the electrode may be reduced.

(ハ) 発明が解決しようとする課題 本発明は、上記問題を解決するものであって、負極の
水素吸蔵電極における酸素ガス消費能力を効果的に向上
させようとするものである。
(C) Problems to be Solved by the Invention The present invention is to solve the above-mentioned problem, and is to effectively improve the oxygen gas consuming ability of a hydrogen storage electrode of a negative electrode.

(ニ) 課題を解決するための手段 本発明の水素吸蔵電極は、電極の表面に金属粉末と炭
素粉末の混合物層を設けたことを特徴とするものであ
り、前記電極表面に設けられた混合物層中の前記金属粉
末及び炭素粉末の量を、前記電極表面1cm2当り0.0001g
以上0.01g以下とし、また、前記金属粉末を、前記炭素
粉末に対して、5重量部以上40重量部以下とすることで
より一層の効果を奏するものである。
(D) Means for Solving the Problems The hydrogen storage electrode of the present invention is characterized in that a mixture layer of a metal powder and a carbon powder is provided on the surface of the electrode, and the mixture provided on the surface of the electrode is provided. the amount of the metal powder and carbon powder in the layer, the electrode surface 1 cm 2 per 0.0001g
The effect is further enhanced when the content is not less than 0.01 g and the metal powder is not less than 5 parts by weight and not more than 40 parts by weight based on the carbon powder.

(ホ) 作用 この種電池では、水素吸蔵合金を負極材料として用い
た水素吸蔵電極の表面において、正極から発生した酸素
ガスと、負極中に吸蔵された水素を反応させて水を生成
させることにより、酸素ガスを消費させることができ
る。したがって、充電時の早い時期から、負極の表面付
近の水素吸蔵合金が水素を吸蔵できれば、負極表面にお
ける前記酸素ガス消費反応を促進すること可能である。
ところが、負極では水素吸蔵合金を保持する導電性支持
体の近傍から充電されて行くため、負極の表面付近に存
在する合金は、充電により水素を吸蔵され難い状態にあ
る。
(E) Function In this type of battery, the oxygen gas generated from the positive electrode and the hydrogen stored in the negative electrode react on the surface of the hydrogen storage electrode using the hydrogen storage alloy as the negative electrode material to generate water. , Oxygen gas can be consumed. Therefore, if the hydrogen storage alloy near the surface of the negative electrode can store hydrogen from an early stage of charging, the oxygen gas consumption reaction on the negative electrode surface can be promoted.
However, since the negative electrode is charged from the vicinity of the conductive support holding the hydrogen storage alloy, the alloy existing near the surface of the negative electrode is in a state where it is difficult to store hydrogen by charging.

そこで、水素吸蔵電極の表面に炭素粉末からなる導電
層を形成すると、負極表面の導電性が向上して、表面近
傍の水素吸蔵合金が充電され易くなると共に、炭素粉末
の触媒作用も加わって、負極の酸素ガス処理能力はある
程度向上する。しかしながら、負極表面の導電性はまだ
充分には向上したとは言えず、酸素ガス消費能力も充分
ではない。
Therefore, when a conductive layer made of carbon powder is formed on the surface of the hydrogen storage electrode, the conductivity of the negative electrode surface is improved, the hydrogen storage alloy near the surface is easily charged, and the catalytic action of the carbon powder is added, The oxygen gas processing capacity of the negative electrode is improved to some extent. However, the conductivity of the negative electrode surface has not yet been sufficiently improved, and the oxygen gas consuming capacity is not sufficient.

これに対して、前記炭素粉末からなる導電層にニッケ
ルなどの金属粉末を添加すると、負極表面の導電性が更
に向上し、負極内部に比較して表面側での充電がより進
行し易くなり、負極表面に水素を吸蔵した合金が存在し
易くなる。このため正極から発生した酸素ガスは、導電
層内で電極表面近くに存在する合金から水素の供給を容
易に受けることができるようになり、炭素粉末を触媒と
して容易に水に還元できるようになる。
On the other hand, when a metal powder such as nickel is added to the conductive layer made of the carbon powder, the conductivity of the negative electrode surface is further improved, and the charging on the surface side is more easily progressed compared to the inside of the negative electrode, An alloy that has absorbed hydrogen easily exists on the negative electrode surface. Therefore, the oxygen gas generated from the positive electrode can easily receive the supply of hydrogen from the alloy existing near the electrode surface in the conductive layer, and can be easily reduced to water using the carbon powder as a catalyst. .

また、上記炭素と金属の導電層を形成すると、酸素ガ
スと接触し易い負極表面に合金が露出しないので、酸素
ガスによって水素吸蔵合金が酸化されることがなく、酸
素ガス消費能力の低下や放電効率の低下も防止できる。
In addition, when the conductive layer of carbon and metal is formed, the alloy is not exposed on the surface of the negative electrode that is likely to come into contact with oxygen gas. A decrease in efficiency can also be prevented.

尚、炭素粉末とニッケル粉末の塗着量が、電極表面1c
m2当り0.0001g未満であると酸素ガス消費能力が不十分
であり、一方、0.01gを越えると炭素粉末とニッケル粉
末との混合物層の塗着量が多いため、混合物層中のニッ
ケル量が過剰になり、水素ガスの発生が起こりやすくな
る。
Note that the amount of carbon powder and nickel powder applied is
oxygen gas consumption capacity is less than m 2 per 0.0001g is insufficient, whereas, since the coating amount of the mixture layer of carbon powder and nickel powder exceeds 0.01g often, the amount of nickel in the mixture layer is It becomes excessive and hydrogen gas is likely to be generated.

従って、炭素粉末とニッケル粉末の塗着量を電極表面
1cm2当り0.0001g以上0.01g以下にすることが好ましい。
Therefore, the amount of carbon powder and nickel powder applied should be
It is preferable that the content be 0.0001 g or more and 0.01 g or less per 1 cm 2 .

(ヘ) 実施例 [実施例] 本発明の実施例を以下に示し、説明する。(F) Example [Example] An example of the present invention will be shown and described below.

水素吸蔵合金の原料金属としての市販のミッシュメタ
ル(Mm、希土類元素の混合物)とニッケルとコバルトと
アルミニウムとマンガンを、元素比で1.0:3.2:1.0:0.2:
0.6に秤量したのち、高周波誘導炉内で溶解、鋳造す
る。これにより、MmNi3.2CoAl0.2Mn0.6という組成の合
金を得る。次いで、この合金鋳塊を機械的に粉砕して平
均粒径が75μmの粉末を作製した。
Commercially available misch metal (Mm, a mixture of rare earth elements), nickel, cobalt, aluminum, and manganese as elemental metals for hydrogen storage alloys, with an elemental ratio of 1.0: 3.2: 1.0: 0.2:
After weighing to 0.6, it is melted and cast in a high frequency induction furnace. Thus, an alloy having a composition of MmNi 3.2 CoAl 0.2 Mn 0.6 is obtained. Next, this alloy ingot was mechanically pulverized to produce a powder having an average particle size of 75 μm.

更に、この粉末に対して1wt%のポリエチレンオキサ
イドと,分散媒としての水を前記合金に加えスラリーを
作製し、パンチングメタルからなる導電性支持体の表面
に塗着した後、乾燥及び加圧を行ないベース電極を得
た。
Further, 1% by weight of polyethylene oxide and water as a dispersion medium are added to the powder to prepare a slurry, and the slurry is applied to the surface of a conductive support made of a punching metal. A base electrode was obtained.

また、アセチレンブラック100重量部に対してニッケ
ル粉末を20重量部添加し結合剤としてのポリビニルアル
コール及び分散媒としての水を添加しスラリーを得、こ
のスラリーを前記ベース電極の両面にローラ転写法によ
り塗着し、60℃で乾燥を行ない、表面に導電層を有する
水素吸蔵電極を得た。
Also, 20 parts by weight of nickel powder was added to 100 parts by weight of acetylene black, and polyvinyl alcohol as a binder and water as a dispersion medium were added to obtain a slurry, and this slurry was applied to both surfaces of the base electrode by a roller transfer method. Coating and drying at 60 ° C. yielded a hydrogen storage electrode having a conductive layer on the surface.

尚、前記電極表面に設けた導電層中の炭素粉末とニッ
ケル粉末の総量は、電極単位面積当り0.001g/cm2であ
る。
The total amount of the carbon powder and the nickel powder in the conductive layer provided on the electrode surface is 0.001 g / cm 2 per unit area of the electrode.

このように作製した電極を負極とし、正極として焼結
式ニッケル極を使用して、正、負極の間に不織布からな
るセパレータを介して捲回することにより渦巻電極体を
得た。そして,この渦巻電極体を電池外装缶に挿入し、
30重量%の水酸化カリウム水溶液を電解液として注液し
たのち,封口して公称容量1000mAhの本発明の密閉型ニ
ッケル−水素電池Aを組立てた。
The electrode thus fabricated was used as a negative electrode, a sintered nickel electrode was used as a positive electrode, and a spiral electrode body was obtained by winding the positive electrode and the negative electrode through a separator made of a nonwoven fabric. Then, insert this spiral electrode body into the battery outer can,
A 30% by weight aqueous solution of potassium hydroxide was injected as an electrolytic solution, and then sealed to assemble a sealed nickel-hydrogen battery A of the present invention with a nominal capacity of 1000 mAh.

[比較例1] 前記ベース電極を完成電極として用い、その他は前記
電池Aと同一条件で比較電池Bを作製した。
Comparative Example 1 A comparative battery B was manufactured under the same conditions as the battery A except that the base electrode was used as a completed electrode.

[比較例2] 前記導電層にニッケル粉末を添加せず、アセチレンブ
ラック単独として前記結合剤と共に、ベース電極の両面
にアセチレンブラックの塗着量が、電極単位面積当り0.
001g/cm2となるよう塗着し、その他は前記電池Aと同一
条件で比較電池Cを作製した。
[Comparative Example 2] The amount of acetylene black applied to both surfaces of the base electrode together with the binder as acetylene black alone without adding nickel powder to the conductive layer was 0.
A comparative battery C was prepared under the same conditions as the battery A except that the coating was performed so as to be 001 g / cm 2 .

[比較例3] 前記導電層にアセチレンブラックを添加せず、ニッケ
ル粉末単独とし前記結合剤と共に、ベース電極の両面に
ニッケル粉末の塗着量が、電極単位面積当り0.001g/cm2
となるよう塗着し、その他は前記電池Aと同一条件で比
較電池Dを作製した。
Comparative Example 3 Acetylene black was not added to the conductive layer, nickel powder was used alone, and the amount of nickel powder applied to both surfaces of the base electrode together with the binder was 0.001 g / cm 2 per unit area of the electrode.
A comparative battery D was produced under the same conditions as the battery A except for the following.

こうして作製した電池をそれぞれ100mAの電流で16時
間充電した後、200mAの電流で放電し、電池電圧が1.0V
に達した時点で放電を停止するサイクル条件で充放電サ
イクル試験を行ない、初期容量の50%以下になった時点
をサイクル寿命とした。
Each of the batteries thus produced was charged at a current of 100 mA for 16 hours, then discharged at a current of 200 mA, and the battery voltage was 1.0 V
A charge / discharge cycle test was performed under the cycle condition in which the discharge was stopped at the time when the discharge capacity reached, and the time when the capacity reached 50% or less of the initial capacity was defined as the cycle life.

また同一の電池を使用し、前記充放電を5サイクル行
なった後,電池外装缶の底部に孔を設け、この孔部に内
圧測定用の圧力センサーを取りつけた。この電池を1000
mAの電流で充電を行ない、電池電圧がピーク値に到達し
た後、このピーク値から10mV低下した時点で充電を停止
させ、この間を電池内部圧力を測定した。この結果を第
1表に示す。但し、電池内部圧力は前記充電中における
最大値で示している。
After the above battery was charged and discharged for 5 cycles using the same battery, a hole was formed in the bottom of the battery outer can, and a pressure sensor for measuring the internal pressure was attached to the hole. 1000 batteries
The battery was charged at a current of mA, and after the battery voltage reached a peak value, the charging was stopped when the battery voltage dropped by 10 mV from the peak value, and the battery internal pressure was measured during this time. Table 1 shows the results. However, the battery internal pressure is shown as the maximum value during the charging.

第1表に示すように本発明電池Aはサイクル寿命が長
く、電池内圧の上昇も小さくなっているのに対し、比較
電池B、C及びDは、サイクル寿命が短く内圧上昇も大
きくなっていることがわかる。
As shown in Table 1, the battery A of the present invention has a long cycle life and a small increase in battery internal pressure, whereas the comparative batteries B, C and D have a short cycle life and a large internal pressure rise. You can see that.

比較電池Bでは,水素吸蔵電極の表面に導電層を形成
していないため、酸素ガス消費能力が低く、電池内部圧
力の上昇をもたらし,更に、サイクルの進行と共に前記
圧力が増加して、安全弁が作動し電池内のガスを放出す
る。このガス放出と同時に電解液も電池外部に放出さ
れ、この結果、電池内の電解液量が不足して、サイクル
寿命の低下を起こしている。
In the comparative battery B, since no conductive layer was formed on the surface of the hydrogen storage electrode, the oxygen gas consumption capacity was low, which caused an increase in the internal pressure of the battery. Operates and releases gas in the battery. At the same time as this gas release, the electrolyte is also discharged to the outside of the battery. As a result, the amount of the electrolyte in the battery is insufficient, and the cycle life is shortened.

また、比較電池Cでは導電層の導電性が充分ではな
く、比較電池Dでは導電層の触媒作用が充分ではないた
め、夫々酸素ガス消費能力が本発明電池Aより劣り、上
記比較電池Bと同様の理由で、サイクル劣化が生じてい
る。
Further, in Comparative Battery C, the conductivity of the conductive layer was not sufficient, and in Comparative Battery D, the catalytic action of the conductive layer was not sufficient. Therefore, the oxygen gas consumption capacity was inferior to that of Battery A of the present invention, respectively. For this reason, cycle deterioration has occurred.

これに対して本発明電池Aでは、正極から発生した酸
素ガスを負極表面で充分消費することができ電池内圧の
上昇も起こらないため、サイクル寿命が長くなってい
る。
On the other hand, in the battery A of the present invention, the oxygen gas generated from the positive electrode can be sufficiently consumed on the negative electrode surface, and the internal pressure of the battery does not increase, so that the cycle life is long.

次に、前記導電層中の炭素粉末とニッケル粉末の最適
量を調べるため、以下の電池を作製した。
Next, in order to examine the optimal amounts of the carbon powder and the nickel powder in the conductive layer, the following batteries were manufactured.

前記実施例において、ニッケル粉末をアセチレンブラ
ック100重量部に対して夫々2重量部、5重量部、40重
量部及び50重量部添加し、その他は前記電池Aと同一条
件で電池E、F、G及びHを作製した。
In the above Examples, 2 parts by weight, 5 parts by weight, 40 parts by weight, and 50 parts by weight of nickel powder were added to 100 parts by weight of acetylene black, respectively. And H were produced.

また、前記実施例において、電極表面に設けた導電層
中の炭素粉末とニッケル粉末の総量を、電極単位面積当
り0.00001g/cm2、0.0001g/cm2、0.01g/cm2及び0.1g/cm2
とし、その他は前記電池Aと同一条件で電池I、J、K
及びLを作製した。
Further, in the above embodiments, the total amount of carbon powder and nickel powder in the conductive layer provided on the electrode surface, the electrode per unit area 0.00001g / cm 2, 0.0001g / cm 2, 0.01g / cm 2 and 0.1 g / cm 2
Other than that, the batteries I, J, K
And L were produced.

これらの電池E乃至Lを用い、前述と同一条件でサイ
クル寿命と電池内部圧力を測定した。この結果を第2表
に示す。
Using these batteries E to L, cycle life and battery internal pressure were measured under the same conditions as described above. Table 2 shows the results.

炭素粉末とニッケル粉末の比率を変化させた電池E〜
Hでは、電池F及びGが特に優れた特性を示しており、
一方、導電層中の炭素粉末とニッケル粉末の総量を変化
させた電池I〜Lでは、電池J及びKが特に優れた特性
を示している。
Battery E with different ratio of carbon powder and nickel powder
In H, batteries F and G show particularly excellent properties,
On the other hand, in the batteries I to L in which the total amount of the carbon powder and the nickel powder in the conductive layer was changed, the batteries J and K exhibited particularly excellent characteristics.

電池Eではニッケル粉末の含有率が2重量部と少ない
ため、電極表面の導電性が低く、電極表面近傍において
充分優先的に充電が行なえないので、電池内圧の上昇を
もたらし寿命が低下している。逆に、電池Hではニッケ
ル粉末の含有率が50重量部と高いため、水素吸蔵電極の
水素過電圧が低下し、充電途中で水素ガスの発生が生じ
て電池内部圧力が上昇したと考えられる。
In the battery E, since the content of the nickel powder is as small as 2 parts by weight, the conductivity of the electrode surface is low, and charging cannot be performed with sufficient priority in the vicinity of the electrode surface. . Conversely, in the battery H, the nickel powder content is as high as 50 parts by weight, so the hydrogen overvoltage of the hydrogen storage electrode is reduced, and it is considered that hydrogen gas is generated during charging and the internal pressure of the battery is increased.

他方、電池Iでは炭素粉末とニッケル粉末の塗着量が
0.00001g/cm2と少ないため、充分に酸素ガス消費能力を
向上できなかったものと考えられ、電池Lでは炭素粉末
とニッケルの混合物層の塗着量が多いため、導電層中の
ニッケル量が過剰になり、前記電池Hと同様に水素ガス
の発生が起こったものと考えられる。
On the other hand, in Battery I, the amount of carbon powder and nickel powder applied is
It is considered that the oxygen gas consumption ability could not be sufficiently improved due to the small amount of 0.00001 g / cm 2, and the amount of nickel in the conductive layer was low because the amount of the mixture of the carbon powder and nickel mixture layer was large in the battery L. It is considered that the gas became excessive and hydrogen gas was generated similarly to the battery H.

これに対して、電池F、G、J及びKでは、炭素粉末
とニッケル粉末の比率及び塗着量が適量であったため、
効率よく酸素ガスを消費でき、サイクル寿命が向上して
いる。
On the other hand, in the batteries F, G, J and K, the ratio of the carbon powder to the nickel powder and the coating amount were appropriate.
Oxygen gas can be efficiently consumed, and the cycle life is improved.

尚、上記実施例では、炭素粉末とニッケルの混合物層
の結合剤としてポリビニルアルコールを使用したが、ポ
リテトラフルオロエチレンなどの他の結合剤を使用して
も構わない。特に、ヒドロキシプロピルセルロース,メ
チルセルロース,カルボキシメチルセルロースなど、ア
ルカリ水溶液と接して糊料薄膜層を形成するような水溶
性の結合剤を使用した場合には、酸素ガスが前記導電層
を透過して水素吸蔵合金を酸化させることが防止できる
のでより好ましい。
In the above embodiment, polyvinyl alcohol is used as a binder for the mixture layer of carbon powder and nickel, but another binder such as polytetrafluoroethylene may be used. In particular, when a water-soluble binder, such as hydroxypropylcellulose, methylcellulose, or carboxymethylcellulose, which is in contact with an alkaline aqueous solution and forms a paste thin film layer, is used, oxygen gas permeates the conductive layer to absorb hydrogen. It is more preferable because the oxidation of the alloy can be prevented.

また、上記実施例では、導電層に添加する金属として
ニッケルを、炭素としてアセチレンブラックを示した
が、ニッケルにかえてコバルトや銅などの金属を用いて
も同様の効果が得られ、アセチレンブラックにかえて他
の炭素を用いても同様の効果が得られる。
Further, in the above embodiment, nickel was added as a metal to be added to the conductive layer, and acetylene black was shown as carbon.However, a similar effect can be obtained by using a metal such as cobalt or copper instead of nickel. The same effect can be obtained by using other carbon instead.

(ト) 発明の効果 本発明の水素吸蔵電極は、水素吸蔵合金を負極材料と
して用いた電極の表面に、金属粉末と炭素粉末の混合物
層を設け、かつ、その混合物層の量及びその混合物層中
の金属粉末と炭素粉末との混合割合を最適化したので、
負極の酸素ガス消費能力が向上すると共に、水素ガスの
発生を抑制することができる。従って、電池内部圧力が
上昇し、電池の安全弁が作動して電解液量が減少するこ
とが防止できるので、サイクル寿命が向上する。
(G) Effects of the Invention The hydrogen storage electrode of the present invention provides a mixture layer of a metal powder and a carbon powder on the surface of an electrode using a hydrogen storage alloy as a negative electrode material, and the amount of the mixture layer and the mixture layer thereof. Optimized the mixing ratio of metal powder and carbon powder in the
The oxygen gas consumption capacity of the negative electrode is improved, and generation of hydrogen gas can be suppressed. Accordingly, it is possible to prevent the battery internal pressure from increasing and the safety valve of the battery to operate to prevent the amount of the electrolyte from decreasing, thereby improving the cycle life.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 健次 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 石倉 良和 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭63−175340(JP,A) 特開 昭63−195960(JP,A) 特開 昭63−55857(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/24,4/26,4/38 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Inoue 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yoshikazu Ishikura 2-18-18 Keihanhondori, Moriguchi-shi, Osaka (56) References JP-A-63-175340 (JP, A) JP-A-63-195960 (JP, A) JP-A-63-55857 (JP, A) (58) Fields investigated ( Int.Cl. 6 , DB name) H01M 4 / 24,4 / 26,4 / 38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金を負極材料として用いた電極
の表面に、金属粉末と炭素粉末の混合物層を設けた水素
吸蔵電極において、 前記電極表面に設けられた混合物層中の前記金属粉末及
び炭素粉末の量は、前記電極表面1cm2当り0.0001g以上
0.01g以下であり、かつ前記金属粉末は、前記炭素粉末1
00重量部に対して、5重量部以上40重量部以下であるこ
とを特徴とする水素吸蔵電極。
1. A hydrogen storage electrode in which a mixture layer of a metal powder and a carbon powder is provided on the surface of an electrode using a hydrogen storage alloy as a negative electrode material, wherein the metal powder in the mixture layer provided on the electrode surface is The amount of carbon powder is 0.0001 g or more per 1 cm 2 of the electrode surface
0.01 g or less, and the metal powder is the carbon powder 1
A hydrogen storage electrode characterized in that the amount is from 5 parts by weight to 40 parts by weight with respect to 00 parts by weight.
【請求項2】前記金属はニッケルであることを特徴とす
る請求項(1)記載の水素吸蔵電極。
2. The hydrogen storage electrode according to claim 1, wherein said metal is nickel.
JP2074431A 1990-03-23 1990-03-23 Hydrogen storage electrode Expired - Lifetime JP2975626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074431A JP2975626B2 (en) 1990-03-23 1990-03-23 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074431A JP2975626B2 (en) 1990-03-23 1990-03-23 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH03274664A JPH03274664A (en) 1991-12-05
JP2975626B2 true JP2975626B2 (en) 1999-11-10

Family

ID=13547024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074431A Expired - Lifetime JP2975626B2 (en) 1990-03-23 1990-03-23 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP2975626B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506074A (en) * 1993-09-30 1996-04-09 Sanyo Electric Co. Ltd. Metal hydride electrode and nickel-hydrogen alkaline storage cell

Also Published As

Publication number Publication date
JPH03274664A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
JP2655810B2 (en) Manufacturing method of alkaline secondary battery and catalytic electrode body
JP2975626B2 (en) Hydrogen storage electrode
JPH1186898A (en) Alkaline storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP2966627B2 (en) Metal hydride storage battery
JP2603188B2 (en) Hydrogen storage alloy electrode
JP2692936B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP3071026B2 (en) Metal hydride storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP3407989B2 (en) Metal hydride electrode
JP3514088B2 (en) Nickel-hydrogen storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2919544B2 (en) Hydrogen storage electrode
JP4839575B2 (en) Nickel metal hydride battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3501378B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP2950895B2 (en) Metal-hydrogen alkaline storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JP3150546B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3362400B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11