JP2994704B2 - Manufacturing method of hydrogen storage alloy electrode - Google Patents

Manufacturing method of hydrogen storage alloy electrode

Info

Publication number
JP2994704B2
JP2994704B2 JP2196581A JP19658190A JP2994704B2 JP 2994704 B2 JP2994704 B2 JP 2994704B2 JP 2196581 A JP2196581 A JP 2196581A JP 19658190 A JP19658190 A JP 19658190A JP 2994704 B2 JP2994704 B2 JP 2994704B2
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
weight
electrode
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2196581A
Other languages
Japanese (ja)
Other versions
JPH0482162A (en
Inventor
修弘 古川
晃治 西尾
房吾 水瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2196581A priority Critical patent/JP2994704B2/en
Publication of JPH0482162A publication Critical patent/JPH0482162A/en
Application granted granted Critical
Publication of JP2994704B2 publication Critical patent/JP2994704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、金属−水素アルカリ蓄電池等の負極として
用いられる水素吸蔵合金電極の製造方法に関するもので
ある。
The present invention relates to a method for producing a hydrogen storage alloy electrode used as a negative electrode of a metal-hydrogen alkaline storage battery or the like.

(ロ)従来の技術 従来から用いられている蓄電池としては、ニッケルー
カドミウム蓄電池の様なアルカリ蓄電池、あるいは鉛蓄
電池などがあるが、近年、これらの電池よりも軽量かつ
高容量で高エネルギー密度になる可能性のある、水素吸
蔵合金を負極に用いた金属−水素アルカリ蓄電池が注目
されている。
(B) Conventional technology Conventional storage batteries include alkaline storage batteries such as nickel-cadmium storage batteries and lead storage batteries, but in recent years, these batteries are lighter, have higher capacity, and have higher energy density than these batteries. Attention has been focused on a metal-hydrogen alkaline storage battery using a hydrogen storage alloy as a negative electrode, which is likely to be possible.

この種、金属−水素アルカリ蓄電池の負極に用いられ
る水素吸蔵合金電極の製造方法としては、水素吸蔵合金
粉末と導電材粉末との混合物を、耐アルカリ電解液性の
粒子状結着剤によって電極支持体に固着させて、水素吸
蔵合金電極とする方法(特公昭57−30273号公報)があ
る。
As a method for producing a hydrogen storage alloy electrode used for a negative electrode of a metal-hydrogen alkaline storage battery of this kind, a mixture of a hydrogen storage alloy powder and a conductive material powder is supported by an alkaline electrolyte resistant particulate binder. There is a method in which a hydrogen storage alloy electrode is fixed to a body (Japanese Patent Publication No. 57-30273).

(ハ)発明が解決しようとする課題 しかしながら、上記方法により製造された水素吸蔵合
金電極は、初期容量が低いという欠点があった。これは
かかる電極の製造過程において、水素吸蔵合金の表面が
酸化物に覆われ合金の活性が悪くなるからである。従っ
て、電池としての安定した高い容量を得るために、化成
処理として数サイクルの充放電が従来必要であった。
(C) Problems to be solved by the invention However, the hydrogen storage alloy electrode manufactured by the above method has a drawback that the initial capacity is low. This is because in the process of manufacturing such an electrode, the surface of the hydrogen storage alloy is covered with the oxide, and the activity of the alloy deteriorates. Therefore, in order to obtain a stable high capacity as a battery, several cycles of charge and discharge have conventionally been required as a chemical conversion treatment.

本発明はかかる従来技術の問題点に鑑み、初期容量を
高め、サイクル特性の良好な電極を製造する方法を提供
することを目的とする。
The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to provide a method for increasing the initial capacity and manufacturing an electrode having good cycle characteristics.

(ニ)課題を解決するための手段 上記目的のため、本発明の水素吸蔵合金電極の製造方
法は、水素吸蔵合金の粒子と炭素材料とを混合して混合
物を得、この混合物を集電体に圧着した後、前記水素吸
蔵合金の融点以下の温度で焼結して、前記水素吸蔵合金
の粒子を焼結することを特徴とする。
(D) Means for Solving the Problems To achieve the above object, a method for manufacturing a hydrogen storage alloy electrode according to the present invention provides a method of mixing particles of a hydrogen storage alloy and a carbon material to obtain a mixture. And then sintering at a temperature equal to or lower than the melting point of the hydrogen storage alloy to sinter the particles of the hydrogen storage alloy.

この時混合する炭素材料は水素吸蔵合金の重量に対し
て、0.1重量%以上10.0重量%以下が望ましい。
The carbon material to be mixed at this time is desirably from 0.1% by weight to 10.0% by weight based on the weight of the hydrogen storage alloy.

(ホ)作用 水素吸蔵合金と炭素材料を混合し焼結することにより
水素吸蔵合金粒子表面の酸化物は炭素材料により還元さ
れ水素吸蔵合金は活性化する。従って、この水素吸蔵合
金電極を負極に用いたニッケル−水素アルカリ蓄電池は
活性が高く初期容量の高いものとなる。
(E) Action By mixing and sintering the hydrogen storage alloy and the carbon material, the oxide on the surface of the hydrogen storage alloy particles is reduced by the carbon material and the hydrogen storage alloy is activated. Therefore, a nickel-hydrogen alkaline storage battery using this hydrogen storage alloy electrode as a negative electrode has high activity and high initial capacity.

さらに、還元反応に使用されなかった炭素材料は導電
剤として働くことにより、水素吸蔵合金粒子間の接触抵
抗が減少する。その結果、前記負極の充放電効率が高く
なり初期容量が高くなると共に、該負極でのガス発生が
抑えられるために電解液の漏液等を防止することができ
るので、前記電池のサイクル特性も向上する。
Further, the carbon material not used for the reduction reaction acts as a conductive agent, thereby reducing the contact resistance between the hydrogen storage alloy particles. As a result, the charge / discharge efficiency of the negative electrode is increased, the initial capacity is increased, and gas generation at the negative electrode is suppressed, so that it is possible to prevent electrolyte leakage and the like, so that the cycle characteristics of the battery are also improved. improves.

(ヘ)実施例 市販のミッシュメタルMm(ランタンLa,セリウムCe,ネ
オジムNd,プロセオジムPr等の希土類元素の混合物)、
ニッケルNi,コバルトCo,及びアルミニウムAlを用い、元
素比でMm:Ni:Co:Alが1:3:1.5:0.5となるように秤量して
混合した。次に、この混合物をアルゴン不活性雰囲気の
アーク炉にて溶解し、MmNi3Co1.5Al0.5で表される水素
吸蔵合金(融点略1350℃)を作製した。この水素吸蔵合
金を平均粒径50μmになるように機械的に粉砕した。
(F) Example Commercially available misch metal Mm (a mixture of rare earth elements such as lanthanum La, cerium Ce, neodymium Nd, and proseodymium Pr),
Nickel Ni, cobalt Co, and aluminum Al were weighed and mixed so that the elemental ratio of Mm: Ni: Co: Al was 1: 3: 1.5: 0.5. Next, this mixture was melted in an arc furnace in an inert atmosphere of argon to produce a hydrogen storage alloy (melting point approximately 1350 ° C.) represented by MmNi 3 Co 1.5 Al 0.5 . This hydrogen storage alloy was mechanically pulverized so as to have an average particle size of 50 μm.

この水素吸蔵合金に対して、平均粒径50μmからなる
炭素を0.1,0.5,1.0,2.0,3.0,5.0,10.0重量%添加し、均
一に混合した。これらの混合物に結着剤としてPTFE(フ
ッ素樹脂)粉末5.0重量%を添加し、均一に混合するこ
とによりPTFEを繊維化し、これに水を加えてペースト状
とした。このペーストを、ニッケルメッキを施したパン
チングメタル集電体の両面に圧着し、室温で乾燥させ
た。この電極をアルゴンガス雰囲気中、1200℃で10時間
焼結した。
To this hydrogen storage alloy, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0% by weight of carbon having an average particle size of 50 μm was added and mixed uniformly. PTFE (fluororesin) powder (5.0% by weight) was added as a binder to these mixtures, and the mixture was mixed uniformly to form PTFE fibers. Water was added to the mixture to form a paste. This paste was pressed on both sides of a nickel-plated punched metal current collector and dried at room temperature. This electrode was sintered at 1200 ° C. for 10 hours in an argon gas atmosphere.

この様にして作製した負極と、公知の容量1000Ahの焼
結式ニッケル正極を、耐アルカリ性のセパレータと共に
捲回して、渦巻電極体を得、電池外装缶にこの電極体を
挿入した。
The negative electrode produced in this way and a known sintered nickel positive electrode having a capacity of 1000 Ah were wound together with an alkali-resistant separator to obtain a spiral electrode body, and this electrode body was inserted into a battery outer can.

また、水素吸蔵合金粉末をこれら正負極と絶縁性を保
たれるようにセパレータで包み、電極体巻心に挿入し
た。この後、電解液を注液し、封口を行い、本発明によ
る円筒密閉型ニッケル水素アルカリ蓄電池A1〜A7を作製
した。ここで電池Alは炭素が0.1重量%、A2が0.5重量
%、A3が1.0重量%、A4が2.0重量%、A5が3.0重量%、A
6が5.0重量%、A7が10.0重量%である。
In addition, the hydrogen storage alloy powder was wrapped with a separator so as to maintain insulation between the positive and negative electrodes, and inserted into the core of the electrode body. Thereafter, an electrolytic solution was injected and the container was sealed, thereby producing cylindrical sealed nickel-metal hydride alkaline batteries A1 to A7 according to the present invention. Here, the battery Al has 0.1% by weight of carbon, 0.5% by weight of A2, 1.0% by weight of A3, 2.0% by weight of A4, 3.0% by weight of A5, A
6 is 5.0% by weight and A7 is 10.0% by weight.

また比較例として、炭素を添加せずに水素吸蔵合金に
PTFE5重量%を混合し、前記の方法と同様にして作製さ
れた負極を備えた比較電池A8を得た。
As a comparative example, a hydrogen storage alloy without carbon was added.
5% by weight of PTFE was mixed to obtain a comparative battery A8 having a negative electrode produced in the same manner as described above.

この様にして得られた本発明電池A1〜A7、及び比較電
池A8を用い、1Aの電流で、1.2時間充電した後、1Aの電
流で電池電圧が1.0Vになるまで放電を行い、初期容量及
び放電容量が半減するまでのサイクル寿命を調べた。
Using the batteries A1 to A7 of the present invention thus obtained and the comparative battery A8, the battery was charged at a current of 1 A for 1.2 hours, and then discharged at a current of 1 A until the battery voltage became 1.0 V, and the initial capacity was The cycle life until the discharge capacity was reduced to half was examined.

これらの結果を夫々第1図、及び第2図に示す。この
結果より、炭素の添加量が増加するほど初期容量は大き
くなり、例えば1.0重量%で略1000mAhになっている。こ
の時、正極の容量が1000mAhであるので、この値以上に
は上昇しない。これは水素吸蔵合金粒子表面の酸化物が
炭素により還元され、水素吸蔵合金の活性が高くなった
ためである。そして炭素の添加量が10.0重量%を越える
と、比較電池の初期容量よりも小さくなってしまうの
で、0.1〜10.0重量%の添加量が望ましいと言える。
These results are shown in FIGS. 1 and 2, respectively. From this result, the initial capacity becomes larger as the amount of carbon added increases, and for example, becomes about 1000 mAh at 1.0% by weight. At this time, since the capacity of the positive electrode is 1000 mAh, it does not increase above this value. This is because the oxide on the surface of the hydrogen storage alloy particles was reduced by carbon, and the activity of the hydrogen storage alloy was increased. If the addition amount of carbon exceeds 10.0% by weight, the initial capacity of the comparative battery becomes smaller than that of the comparative battery. Therefore, it can be said that the addition amount of 0.1 to 10.0% by weight is desirable.

また、酸化物の還元に使用された炭素が水素吸蔵合金
から抜け出た後は、その部位が空間となり、電極は多孔
質に成る。このため、電極内部まで電解液が浸透し、負
極の初期活性が高くなると考えられる。
After the carbon used for the reduction of the oxide escapes from the hydrogen storage alloy, the site becomes a space and the electrode becomes porous. For this reason, it is considered that the electrolytic solution permeates into the inside of the electrode and the initial activity of the negative electrode increases.

さらに、還元反応に使用されずに残留した炭素は導電
剤として働き、負極の充放電効率が高くなるために初期
容量は大きくなると考えられる。
Further, carbon remaining without being used in the reduction reaction acts as a conductive agent, and the charge and discharge efficiency of the negative electrode is increased, so that the initial capacity is considered to be increased.

一方、サイクル寿命は炭素の添加率1.0重量%の場合
に800回で、無添加の場合の400回の約2倍になってい
る。そして炭素の添加量が2.0重量%より多くなるとサ
イクル寿命が減少してくるが、これは負極の合金量が減
少するためである。
On the other hand, the cycle life is 800 times when the carbon addition rate is 1.0% by weight, and is about twice as long as 400 times when no carbon is added. When the amount of added carbon is more than 2.0% by weight, the cycle life is reduced. This is because the alloy amount of the negative electrode is reduced.

尚、合金に混合する炭素材料としては黒鉛、カーボン
ブラック、アセチレンブラック、活性炭など炭素を成分
とする材料であれば同様の効果が期待できる。
Similar effects can be expected as long as the carbon material to be mixed with the alloy is a material containing carbon, such as graphite, carbon black, acetylene black, and activated carbon.

(ト)発明の効果 本発明による水素吸蔵合金を負極に用いたニッケル−
水素アルカリ蓄電池は、初期特性及びサイクル特性に優
れたものとなり、その工業的価値は極めて大きい。
(G) Effect of the Invention Nickel using the hydrogen storage alloy according to the present invention for a negative electrode
Hydrogen-alkali storage batteries have excellent initial characteristics and cycle characteristics, and their industrial value is extremely large.

また、負極でのガス発生が押さえられるために電解液
の漏液を防止できる効果がある。
Further, since gas generation at the negative electrode is suppressed, there is an effect that leakage of the electrolytic solution can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は初期の電池容量と水素吸蔵合金に対する炭素の
添加量との関係、第2図はサイクル寿命と水素吸蔵合金
に対する炭素の添加量との関係を示す図である。
FIG. 1 shows the relationship between the initial battery capacity and the amount of carbon added to the hydrogen storage alloy, and FIG. 2 shows the relationship between the cycle life and the amount of carbon added to the hydrogen storage alloy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−96301(JP,A) 特開 平2−152162(JP,A) 特公 昭57−30273(JP,B2) (58)調査した分野(Int.Cl.6,DB名) H01M 4/24 - 4/26 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-96301 (JP, A) JP-A-2-152162 (JP, A) JP-B-57-30273 (JP, B2) (58) Field (Int.Cl. 6 , DB name) H01M 4/24-4/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金の粒子と炭素材料とを混合し
て混合物を得、この混合物を集電体に圧着した後、前記
水素吸蔵合金の融点以下の温度で焼結して、前記水素吸
蔵合金の粒子を焼結することを特徴とする水素吸蔵合金
電極の製造方法。
A mixture is obtained by mixing particles of a hydrogen storage alloy and a carbon material, and the mixture is pressed against a current collector and then sintered at a temperature equal to or lower than the melting point of the hydrogen storage alloy. A method for producing a hydrogen storage alloy electrode, comprising sintering particles of a storage alloy.
【請求項2】前記炭素材料の添加量は、前記水素吸蔵合
金の重量に対して0.1重量%以上10.0重量%以下である
ことを特徴とする請求項記載の水素吸蔵合金電極の製
造方法。
2. The method for manufacturing a hydrogen storage alloy electrode according to claim 2, wherein the amount of the carbon material added is 0.1% by weight or more and 10.0% by weight or less based on the weight of the hydrogen storage alloy.
JP2196581A 1990-07-24 1990-07-24 Manufacturing method of hydrogen storage alloy electrode Expired - Fee Related JP2994704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196581A JP2994704B2 (en) 1990-07-24 1990-07-24 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196581A JP2994704B2 (en) 1990-07-24 1990-07-24 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH0482162A JPH0482162A (en) 1992-03-16
JP2994704B2 true JP2994704B2 (en) 1999-12-27

Family

ID=16360124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196581A Expired - Fee Related JP2994704B2 (en) 1990-07-24 1990-07-24 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2994704B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284071A (en) * 1997-04-02 1998-10-23 Sanyo Electric Co Ltd Sintered hydrogen storage alloy electrode

Also Published As

Publication number Publication date
JPH0482162A (en) 1992-03-16

Similar Documents

Publication Publication Date Title
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2595967B2 (en) Hydrogen storage electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2594149B2 (en) Manufacturing method of metal-hydrogen alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3113345B2 (en) Hydrogen storage alloy electrode
JP2001313069A (en) Nickel hydrogen storage battery
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP3192694B2 (en) Alkaline storage battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2680628B2 (en) Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JP2679441B2 (en) Nickel-metal hydride battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPS60175367A (en) Production of negative electrode for closed storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees