JP2001313069A - Nickel hydrogen storage battery - Google Patents

Nickel hydrogen storage battery

Info

Publication number
JP2001313069A
JP2001313069A JP2000241061A JP2000241061A JP2001313069A JP 2001313069 A JP2001313069 A JP 2001313069A JP 2000241061 A JP2000241061 A JP 2000241061A JP 2000241061 A JP2000241061 A JP 2000241061A JP 2001313069 A JP2001313069 A JP 2001313069A
Authority
JP
Japan
Prior art keywords
cobalt
nickel
hydrogen storage
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000241061A
Other languages
Japanese (ja)
Inventor
Masuhiro Onishi
益弘 大西
Hiroshi Fukunaga
浩 福永
Masato Isogai
正人 磯貝
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2000241061A priority Critical patent/JP2001313069A/en
Publication of JP2001313069A publication Critical patent/JP2001313069A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel hydrogen storage battery of which high temperature storage characteristics that a voltage drop at high temperature storage is small, and a capacity recovery factor after high temperature storage is large, are improved. SOLUTION: In the nickel hydrogen storage battery consists of a paste type nickel electrode as a positive electrode 1 containing a cobalt electric conduction assistant containing metal cobalt or a cobalt compound with water oxidation nickel, a negative electrode 2 consists of a rare earth group system alloy expressed by MmNi5-X+YMX (Mm expresses the rare earth group elements which contain La at least, and M expresses a metallic element containing Mn at least, and is 0<x<2, -0.2<y<0.6) as a hydrogen storage alloy of a negative electrode 2, a separator 3 which is intervened among these two electrodes, and an electrolyte consists of an alkaline aqueous solution, when quantity of electricity required to deoxidize cobalt oxide in a positive electrode to a valence of 2 is set to Cco(II) and quantity of electricity of a discharge reserve currently formed in the negative electrode is set to CH2, a relation of CH2/Cco(II)<=1.3 is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニツケル水素蓄電
池に関し、さらに詳しくは、高温貯蔵特性の改善された
ニツケル水素蓄電池に関するものである。
The present invention relates to a nickel hydrogen storage battery, and more particularly to a nickel hydrogen storage battery having improved high-temperature storage characteristics.

【0002】[0002]

【従来の技術】携帯用電子機器の小型化に伴い、安全で
より高容量な二次電池が求められており、負極活物質と
して水素吸蔵合金を使用したニツケル水素蓄電池におい
ても、さらなる高容量化のための検討が続けられてい
る。このようなニツケル水素蓄電池において、負極活物
質である水素吸蔵合金としては、Zr、Ni、Vおよび
Mnなどから構成されたラ―ベス系合金(AB2 型合
金)またはMgおよびNiなどから構成されたMg−N
i系合金(A2 B型合金)のほか、希土類元素とNiな
どとの合金である希土類系合金(AB5 型合金)がよく
知られている。これらの中でも、希土類元素としてMm
(ミツシユメタル)を用いたミツシユメタル系合金(M
mNi5 系合金)は、活性化が容易であり、水素の吸
蔵、放出能にすぐれるなどの特徴を有するため、電極材
料として広く用いられている。
2. Description of the Related Art Along with the miniaturization of portable electronic devices, there is a demand for safe and higher capacity secondary batteries, and nickel hydrogen storage batteries using a hydrogen storage alloy as a negative electrode active material are also required to have higher capacities. Examination for is continuing. In such a nickel hydrogen storage battery, the hydrogen storage alloy as the negative electrode active material is a Labes alloy (AB 2 type alloy) composed of Zr, Ni, V, Mn, or the like, or Mg, Ni, or the like. Mg-N
In addition to an i-based alloy (A 2 B type alloy), a rare earth based alloy (AB 5 type alloy) which is an alloy of a rare earth element and Ni is well known. Among them, Mm is a rare earth element.
Metal alloy (Mitsubishi Metal)
mNi 5 -based alloy) is widely used as an electrode material because it has features such as easy activation and excellent hydrogen absorbing and releasing ability.

【0003】しかし、水素吸蔵合金は、水素吸蔵量にす
ぐれるとともに、充放電効率から判断して、水素解離圧
が常温で通常20〜500kPaが適切といわれている
のに対し、前記のMmNi5 系合金は、常温で水素解離
圧が1MPaと高いため、この解離圧を低下させる必要
がある。また、このMmNi5 系合金は、アルカリ電解
液中で充放電を繰り返すと、微粉化、組成変化などを生
じて水素吸蔵能の低下、反応性の低下などの好ましくな
い変化を起こす問題もある。
However, the hydrogen storage alloy is superior in hydrogen storage capacity, it is determined from the charge and discharge efficiency, while the hydrogen dissociation pressure at normal temperature normal 20~500kPa are said to correct, said MmNi 5 Since the system alloy has a high hydrogen dissociation pressure of 1 MPa at room temperature, it is necessary to reduce this dissociation pressure. Further, this MmNi 5 -based alloy also has a problem that, when charging and discharging are repeated in an alkaline electrolyte, it causes undesired changes such as a decrease in hydrogen storage capacity and a decrease in reactivity due to the occurrence of pulverization and composition change.

【0004】このため、MmNi5 系合金において、N
iの一部をMnなどの金属で置換したMmNi5 系合金
は、水素平衡解離圧が低く、水素吸蔵量にすぐれ、また
充放電反応において合金を長寿命化できるため、注目さ
れている。この種のミツシユメタル系合金は、特公平5
−15774号、特公平5−86029号、特開平1−
162741号などの公報に開示されており、これら
は、微粉化を防ぎ、電解液に対する耐食性を向上させる
ため、Coを比較的多く含ませたほぼ化学量論組成の合
金であることが特徴とされている。また、この化学量論
組成のほかに、Bサイト側の含有量を多くした非化学量
論組成のミツシユメタル系合金を使用することも、提案
されている。
For this reason, in an MmNi 5 alloy, N
MmNi 5 -based alloys, in which a part of i is substituted with a metal such as Mn, have attracted attention because they have a low hydrogen equilibrium dissociation pressure, are excellent in hydrogen storage capacity, and can prolong the life of the alloy in charge / discharge reactions. This kind of mesh metal alloy is available in
No. 15774, Japanese Patent Publication No. 5-86029,
Nos. 162741 and the like, which are characterized in that they are alloys of almost stoichiometric composition containing a relatively large amount of Co in order to prevent pulverization and improve corrosion resistance to an electrolytic solution. ing. In addition to this stoichiometric composition, it has been proposed to use a non-stoichiometric metal alloy having a higher content on the B site side.

【0005】[0005]

【発明が解決しようとする課題】ところで、蓄電池を主
電源とするポ―タブル電子機器の小型化に伴い、蓄電池
を携帯使用する機会が増加し、従来よりも広範囲な環境
で使用されるようになつてきた。そのため、蓄電池につ
いては、環境の変化、とくに温度変化に影響されること
なく、安定した性能を発揮することが要求されている。
たとえば、ラツプトツプ型パソコンや携帯電話などに使
用される場合、高温および低温でも常温時と同等の特性
が必要とされており、電池に対する要求がますます増大
する状況にある。そのため、そのような電子機器に利用
される蓄電池においても、さらなる温度特性向上のため
の検討が続けられている。
By the way, with the miniaturization of portable electronic devices using a storage battery as a main power source, the chances of using the storage battery by hand increase, and the storage battery is used in a wider environment than before. It has come. For this reason, storage batteries are required to exhibit stable performance without being affected by environmental changes, particularly temperature changes.
For example, when used in laptop computers and mobile phones, the same characteristics are required at high and low temperatures as at room temperature, and the demand for batteries is increasing. Therefore, studies have been continued on further improving the temperature characteristics of the storage batteries used in such electronic devices.

【0006】しかしながら、負極活物質である水素吸蔵
合金として前記のミツシユメタル系合金を使用し、これ
を非焼結式の正極であるペ―スト式ニツケル極と組み合
わせたニツケル水素蓄電池においては、これを80℃の
高温環境下で放置した場合、電池電圧が著しく低下し、
とくにMmNi5 のNiの一部を少なくともMnで置換
した多元系のミツシユメタル系合金を使用したもので
は、上記高温環境下での電圧低下が顕著となることがわ
かつた。このような高温貯蔵中の電圧低下はその後の電
池容量に大きく影響を及ぼすことになるため、この高温
貯蔵特性を改善することは、ニツケル水素蓄電池にとつ
て極めて重要である。
However, in a nickel hydrogen storage battery using the above-mentioned metal alloy as a hydrogen storage alloy as a negative electrode active material and combining it with a paste-type nickel electrode as a non-sintering type positive electrode, this is considered as a problem. If left in a high temperature environment of 80 ° C, the battery voltage will drop significantly,
In particular, it has been found that the voltage drop in the high-temperature environment described above becomes remarkable in the case of using a multi-component metal-based alloy in which at least a part of Ni of MmNi 5 is substituted with Mn. Since such a voltage drop during high-temperature storage has a great effect on the subsequent battery capacity, improving this high-temperature storage characteristic is extremely important for a nickel hydrogen storage battery.

【0007】本発明は、このような事情に照らし、負極
活物質である水素吸蔵合金として、希土類系合金を使用
するとともに、非焼結式の正極としてペ―スト式ニツケ
ル極を使用したニツケル水素蓄電池において、高温貯蔵
時の電圧低下が小さく、高温貯蔵後の容量回復率の大き
い、高温貯蔵特性の改善されたニツケル水素蓄電池を提
供することを目的としている。
In view of such circumstances, the present invention provides a nickel hydrogen using a rare earth alloy as a hydrogen storage alloy as a negative electrode active material and a paste nickel electrode as a non-sintered positive electrode. It is an object of the present invention to provide a nickel hydrogen storage battery having a small voltage drop during high-temperature storage, a large capacity recovery rate after high-temperature storage, and improved high-temperature storage characteristics.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するにあたり、まず、正極にコバルト導電助剤
が添加されたペ―スト式ニツケル極からなる非焼結式の
正極を使用し、負極にMnを含有するMmNi5 系の水
素吸蔵合金を用いたニツケル水素蓄電池について、これ
を高温環境下に貯蔵した場合に電圧が低下する現象につ
き、調べたところ、たとえば図2の曲線−1b(後記の
比較例1)に示すように、二段階で電圧が低下すること
を見い出した。この電圧低下の原因につき、検討した結
果、第一段階である0.9V付近までの電圧低下は、温
度上昇に伴い負極の水素吸蔵合金から発生した水素が正
極を還元することに起因する現象であり、また第二段階
の0Vまでの電圧低下は、電池中の微短絡による現象で
あることがわかつた。
Means for Solving the Problems In order to achieve the above object, the present inventors first prepared a non-sintered positive electrode comprising a paste-type nickel electrode having a cobalt conductive additive added to the positive electrode. A nickel hydrogen storage battery using an MmNi 5 -based hydrogen storage alloy containing Mn for the negative electrode was examined for a phenomenon in which the voltage is reduced when the battery is stored in a high-temperature environment. -1b (Comparative Example 1 described later), it was found that the voltage dropped in two stages. As a result of studying the cause of the voltage drop, the first step, the voltage drop to around 0.9 V, is a phenomenon caused by hydrogen generated from the hydrogen storage alloy of the negative electrode due to the temperature rise reducing the positive electrode. It was also found that the voltage drop to 0 V in the second stage was a phenomenon caused by a slight short circuit in the battery.

【0009】ここで、上記第一段階の電圧低下は、貯蔵
中の雰囲気温度の上昇に伴う水素吸蔵合金の平衡解離圧
の上昇により、負極に放電リザ―ブとして吸蔵されてい
た本来放出されないはずの水素が水素ガスとして電池中
に放出されてしまい、これが正極を還元し、その結果と
して、高温貯蔵特性の低下が起こるものであることがわ
かつた。すなわち、この理由は、以下のように考えるこ
とができる。
Here, the voltage drop in the first stage should not be released originally because it was stored as a discharge reserve in the negative electrode due to an increase in the equilibrium dissociation pressure of the hydrogen storage alloy accompanying an increase in the ambient temperature during storage. Was released into the battery as hydrogen gas, and this reduced the positive electrode, and as a result, it was found that the high-temperature storage characteristics deteriorated. That is, the reason can be considered as follows.

【0010】ニツケル水素蓄電池の正極には、焼結式の
正極とペ―スト式ニツケル極である非焼結式の正極とが
ある。このうち、非焼結式の正極は、水酸化ニツケルを
結着剤、増粘剤などとともに水または溶剤に分散してペ
―ストにし、これを集電体となる導電性多孔基材に充填
してつくられているが、この場合、活物質と基材との間
の距離が長くなり、活物質の利用率が低下しやすい。こ
の利用率を高めて高容量化を達成するため、正極中にコ
バルト導電助剤として金属コバルトまたは一酸化コバル
トや水酸化コバルトなどを加えている。これらのコバル
ト導電助剤は、充電時に二価より高い高次のコバルト酸
化物への酸化反応、すなわちCo、CoO、Co(O
H)2 →CoOOHなどの変化を生じ、水酸化ニツケル
の粒子間を電気的に接続するコバルトの導電ネツトワ―
クを形成することが知られている。
The positive electrode of the nickel hydrogen storage battery includes a sintered positive electrode and a non-sintered positive electrode which is a paste nickel electrode. Among these, the non-sintered positive electrode is made by dispersing nickel hydroxide in water or a solvent together with a binder and a thickener, etc. to make a paste, and filling it into a conductive porous base material that serves as a current collector. However, in this case, the distance between the active material and the base material increases, and the utilization rate of the active material tends to decrease. In order to increase the utilization rate and achieve a higher capacity, metallic cobalt, cobalt monoxide, cobalt hydroxide, or the like is added to the positive electrode as a cobalt conductive additive. These cobalt conductive assistants are oxidized to higher-order cobalt oxides higher than divalent during charging, that is, Co, CoO, Co (O
H) 2 → CoOOH, etc. change, and a conductive network of cobalt that electrically connects the nickel hydroxide particles.
It is known to form cracks.

【0011】また、ニツケル水素蓄電池では、負極に正
極を上回る容量を持たせることで、充電末期や放電末期
での負極からのガス発生を抑制して、正極から発生する
酸素ガスを負極で吸収し、密閉化を実現している。つま
り、充電時に正極が満充電または完全に放電したのちで
も、負極に未充電部分また未放電部分が存在し、それに
より正極から酸素ガスを優先的に発生させることができ
るので、負極から水素ガスが発生するのを防止できる構
成となつている。このような放電時での負極の過剰容
量、つまり放電リザ―ブの電気量は、充放電反応には直
接的に関与しないが、正極容量を放電末期まで放電させ
るために必要で、主に上記した正極中のコバルト導電ネ
ツトワ―ク形成反応の対反応として、負極に形成され
る。
In a nickel hydrogen storage battery, the negative electrode has a capacity greater than that of the positive electrode, thereby suppressing gas generation from the negative electrode at the end of charging or discharging, and absorbing oxygen gas generated from the positive electrode at the negative electrode. , Realizes hermetic sealing. In other words, even after the positive electrode has been fully charged or completely discharged during charging, there is an uncharged portion or an undischarged portion in the negative electrode, whereby oxygen gas can be preferentially generated from the positive electrode. Is configured to be able to prevent the occurrence of the problem. The excess capacity of the negative electrode during such discharge, that is, the amount of electricity in the discharge reserve, does not directly participate in the charge / discharge reaction, but is necessary to discharge the positive electrode capacity until the end of discharge. The negative electrode is formed on the negative electrode as a counter reaction to the formation reaction of the cobalt conductive network in the positive electrode.

【0012】しかるに、このようなニツケル水素蓄電池
を放電終了後に高温に保存すると、放電側の負極の過剰
容量、つまり放電リザ―ブの電気量として蓄えられてい
る水素が温度上昇に伴つて負極から水素ガスとして発生
し、これが正極中のコバルトの導電ネツトワ―クを還元
して、電池電圧を低下させる結果となる。この現象につ
いて、検討した結果、上記の放電リザ―ブには、ペ―ス
ト式ニツケル極では正極の導電性を保持するためのコバ
ルト導電助剤の酸化反応の対反応分以上の電気量が形成
されており、しかもこの追加分には負極活物質である水
素吸蔵合金の腐食反応分が加わり、より一段と増加して
いることがわかつた。
However, when such a nickel hydrogen storage battery is stored at a high temperature after the end of discharge, the excess capacity of the negative electrode on the discharge side, that is, the hydrogen stored as the amount of electricity in the discharge reserve, is discharged from the negative electrode as the temperature rises. Evolved as hydrogen gas, which reduces the conductive network of cobalt in the positive electrode, resulting in lower battery voltage. As a result of studying this phenomenon, in the above-mentioned discharge reserve, the amount of electricity more than the reaction amount of the oxidation reaction of the cobalt conductive assistant for maintaining the conductivity of the positive electrode is formed in the paste nickel electrode. Further, it was found that the additional component was further increased by the corrosion reaction component of the hydrogen storage alloy as the negative electrode active material, and further increased.

【0013】また、前記したNiの一部を他の金属で置
換したミツシユメタル系合金では、水素平衡解離圧を低
減し、水素吸蔵能を高め、また充放電反応において合金
を長寿命化できるものの、置換金属を含まないMmNi
5 合金と比べて、合金表面が活性であるため、電解液中
の合金の腐食反応分が大きく、それにより放電リザ―ブ
中の水素量を増加させやすく、その結果として、高温貯
蔵時の電圧低下が顕著となる。とくに、合金元素として
Mnを含有するものは、貯蔵によつてMnが電解液中に
Mnイオンとして溶出しやすいため、このMnの酸化の
対反応分も負極に放電リザ―ブとして蓄積し、さらにリ
ザ―ブの電気量が増加する。また、Mnイオンは正極に
移動すると、正極電位が貴なため、このMnイオンが正
極にさらに酸化される分、コバルトの導電ネツトワ―ク
を還元することになる。
[0013] Further, in the above-mentioned metal alloy in which a part of Ni is replaced by another metal, although the hydrogen equilibrium dissociation pressure can be reduced, the hydrogen storage capacity can be increased, and the alloy can have a longer life in the charge / discharge reaction, MmNi without substitution metal
(5) Compared to the alloy, the active surface of the alloy causes a large amount of corrosion reaction of the alloy in the electrolytic solution, thereby easily increasing the amount of hydrogen in the discharge reserve, and as a result, the voltage during high-temperature storage. The decrease is significant. In particular, for those containing Mn as an alloying element, Mn is easily eluted as Mn ions into the electrolytic solution upon storage, so that the reaction of the oxidation of Mn also accumulates in the negative electrode as a discharge reserve, and The amount of electricity in the reserve increases. Further, when the Mn ion moves to the positive electrode, the potential of the positive electrode is noble, so that the Mn ion is further oxidized to the positive electrode, thereby reducing the conductive network of cobalt.

【0014】つぎに、前記第二段階の電圧低下は、以下
のように考えられる。水酸化ニツケルの粒子間を電気的
に接続するコバルトの導電ネツトワ―クが形成される
際、溶解により生じたコバルトイオンが正極のニツケル
電極と接する側のセパレ―タ上にも析出することにな
り、初充電によりコバルトの酸化物に酸化されるものと
考えられる。しかし、この時点では、負極の水素吸蔵合
金電極に接する側のセパレ―タまでは析出を生じていな
いので、微短絡を生じるまでには至らない。
Next, the voltage drop in the second stage is considered as follows. When a conductive network of cobalt for electrically connecting the nickel hydroxide particles is formed, cobalt ions generated by dissolution also precipitate on the separator on the side in contact with the nickel electrode of the positive electrode. It is considered that the oxide is oxidized to cobalt oxide by the first charge. However, at this point, since no precipitation has occurred up to the separator in contact with the hydrogen storage alloy electrode of the negative electrode, a slight short circuit does not occur.

【0015】ところが、放電終了後、電池が高温状態に
放置されることが多くなつてきたことに伴い、上記のよ
うに第一段階として温度上昇に伴い水素吸蔵合金から発
生した水素ガスで正極が還元され、正極中の高次のコバ
ルト酸化物もアルカリ電解液に溶解可能な低次のコバル
ト化合物となつているものと思われる。この溶解にて生
じたコバルトイオンは、高温でかつ還元雰囲気のため、
比較的高濃度でも水酸化物などのコバルト化合物として
析出しにくいが、貯蔵中に徐々に負極に移動し、ここで
金属コバルトに還元される。その結果、高温放置中に負
極で金属コバルトが析出して、これと前記した正極から
セパレ―タ上に析出したコバルトの酸化物とにより、微
短絡が生じ、電池電圧の低下を招くことになる。つま
り、この第二段階における電圧低下も、第一段階におけ
る電圧低下と相関して生じているものと考えられる。
However, as the battery is often left in a high temperature state after the end of discharge, as described above, as a first step, the positive electrode is formed by hydrogen gas generated from the hydrogen storage alloy as the temperature rises. It is considered that the higher-order cobalt oxide in the positive electrode is reduced and becomes a lower-order cobalt compound that can be dissolved in the alkaline electrolyte. The cobalt ions generated by this dissolution are at a high temperature and in a reducing atmosphere.
Although it is difficult to precipitate as a cobalt compound such as hydroxide even at a relatively high concentration, it gradually moves to the negative electrode during storage and is reduced to metallic cobalt here. As a result, metallic cobalt precipitates at the negative electrode during standing at high temperature, and a minute short circuit occurs due to this and the oxide of cobalt deposited on the separator from the positive electrode, resulting in a decrease in battery voltage. . That is, it is considered that the voltage drop in the second stage also occurs in correlation with the voltage drop in the first stage.

【0016】本発明者らは、このような知見に基づき、
上記の問題を解決するため、さらに検討を続け、とくに
正極中のコバルト酸化物を2価に還元する電気量と放電
リザ―ブの電気量との関係に着目して、放電リザ―ブ中
の水素による電池電圧の低下を抑制しうる上記関係を探
究するため、広範囲の実験を試みた結果、正極中のコバ
ルト酸化物を2価に還元する電気量をCCo(II)とし、 負
極に形成されている放電リザ―ブの電気量をCH2とした
とき、CH2/CCo(II)の比が1.3以下となるようにす
ると、高温貯蔵特性を大きく改善でき、高温貯蔵時の電
圧低下が小さく、高温貯蔵後の容量回復率の大きいニツ
ケル水素蓄電池が得られるものであることを見い出し、
本発明を完成するに至つた。
[0016] The present inventors have based on such knowledge,
In order to solve the above-mentioned problems, further studies have been continued. In particular, focusing on the relationship between the amount of electricity that reduces cobalt oxide in the positive electrode to divalent and the amount of electricity in the discharge reserve, A wide-ranging experiment was conducted to explore the above relationship that could suppress the decrease in battery voltage due to hydrogen. As a result, the amount of electricity that reduces cobalt oxide in the positive electrode to divalent was defined as C Co (II) and formed on the negative electrode. Assuming that the amount of electricity of the discharged reserve is C H2 , if the ratio of C H2 / C Co (II) is 1.3 or less, the high-temperature storage characteristics can be greatly improved, It has been found that a nickel hydrogen storage battery with a small voltage drop and a large capacity recovery rate after high-temperature storage can be obtained.
The present invention has been completed.

【0017】すなわち、本発明は、水酸化ニツケルとと
もに金属コバルトまたはコバルト化合物からなるコバル
ト導電助剤を含有するペ―スト式ニツケル極を正極と
し、負極の水素吸蔵合金としてMmNi5-x+y x (M
mは少なくともLaを含む希土類元素を表し、Mは少な
くともMnを含む金属元素を表し、0<x<2、−0.
2<y<0.6である)で表される希土類系合金を用
い、これら両極間に介在されたセパレ―タとアルカリ水
溶液からなる電解液とを有するニツケル水素蓄電池にお
いて、正極中のコバルト酸化物が2価に還元されるのに
必要な電気量をCCo (II)とし、 負極に形成されている放
電リザ―ブの電気量をCH2としたとき、CH2/CCo(II)
≦1.3の関係を満たすことを特徴とするニツケル水素
蓄電池に係るものである。
That is, according to the present invention, a paste-type nickel electrode containing cobalt hydroxide or a cobalt conductive additive comprising a cobalt compound together with nickel hydroxide is used as a positive electrode, and MmNi 5-x + y M is used as a hydrogen storage alloy for a negative electrode. x (M
m represents a rare earth element containing at least La, M represents a metal element containing at least Mn, and 0 <x <2, −0.
2 <y <0.6), in a nickel hydrogen storage battery having a separator interposed between these two electrodes and an electrolytic solution composed of an alkaline aqueous solution, the cobalt oxide in the positive electrode When the amount of electricity required to reduce the substance to divalent is C Co (II), and the amount of electricity of the discharge reserve formed on the negative electrode is C H2 , C H2 / C Co (II)
The present invention relates to a nickel hydrogen storage battery characterized by satisfying a relationship of ≦ 1.3.

【0018】なお、本明細書において、正極中のコバル
ト酸化物が2価に還元されるのに必要な電気量〔C
Co(II)〕とは、前記の説明からも明らかなように、水酸
化ニツケルが放電したのちに残存する電気量であるが、
コバルトは還元速度が遅く通常の放電条件では放電しな
いため、放電後の電池を微小電流で0Vまで放電したと
きの電気量を意味するものである。また、負極に形成さ
れている放電リザ―ブの電気量〔CH2〕とは、放電終了
時にある電池の負極中に含まれる水素ガス量を水上置換
法によりモル換算し、直接測定したものである。
In the present specification, the amount of electricity [C required for the cobalt oxide in the positive electrode to be reduced to divalent
Co (II) ] is an amount of electricity remaining after nickel hydroxide is discharged, as is clear from the above description.
Since cobalt has a low reduction rate and does not discharge under normal discharge conditions, it means the quantity of electricity when the discharged battery is discharged to 0 V with a very small current. The amount of electricity [C H2 ] of the discharge reserve formed on the negative electrode is a value obtained by directly measuring the amount of hydrogen gas contained in the negative electrode of a certain battery at the end of discharge in terms of molar amount by a water-on-water replacement method. is there.

【0019】[0019]

【発明の実施の形態】本発明の正極において、水酸化ニ
ツケルとしては、従来より公知の粉末を使用することが
できる。その中でも、水酸化ニツケルの結晶中にコバル
トが0.5〜5.0重量%固溶した粉末は、高温での充
電効率を向上できるため、好ましく用いられる。また、
亜鉛が0.5〜5.0重量%固溶した粉末は、サイクル
寿命を向上できるため、やはり好ましく用いられる。さ
らにまた、このような水酸化ニツケル粉末は、一酸化コ
バルト、α−水酸化コバルト、β−水酸化コバルトおよ
びオキシ水酸化コバルトなどの中から選ばれる少なくと
も1種の2価以上のコバルト化合物で被覆された粉末で
あるのが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the positive electrode of the present invention, conventionally known powders can be used as nickel hydroxide. Among them, powder in which 0.5 to 5.0% by weight of cobalt is dissolved in nickel hydroxide crystal is preferably used because charging efficiency at high temperatures can be improved. Also,
A powder in which zinc is solid-dissolved at 0.5 to 5.0% by weight can also improve cycle life, and is also preferably used. Further, such nickel hydroxide powder is coated with at least one divalent or more cobalt compound selected from cobalt monoxide, α-cobalt hydroxide, β-cobalt hydroxide, cobalt oxyhydroxide and the like. It is preferably a powder that has been prepared.

【0020】水酸化ニツケルの表面を上記のコバルト化
合物で被覆すると、このような被覆を施さない水酸化ニ
ツケルにコバルト導電助剤を加える場合と比べ、少量の
コバルト添加量で導電ネツトワ―クを効果的に形成で
き、対反応分の放電リザ―ブの電気量を低減できる。被
覆のためのコバルト化合物の中でも、より強固な導電ネ
ツトワ―クを形成しやすいα−水酸化コバルトやβ−水
酸化コバルトが最も好ましい。なお、コバルト化合物の
被覆にあたり、Zn、Ca、Y、Yb、Mg、Ti、Z
rなどの元素が複合した複合被覆としてもよい。また、
コバルト化合物の被覆量は、水酸化ニツケル100重量
部に対し、通常1〜10重量部、好ましくは2〜5重量
部とするのがよい。
When the surface of the nickel hydroxide is coated with the above-mentioned cobalt compound, the conductive network is more effective with a small amount of cobalt added as compared with the case where a cobalt conductive aid is added to the uncoated nickel hydroxide. And the amount of electricity in the discharge reserve for the reaction can be reduced. Among the cobalt compounds for coating, α-cobalt hydroxide and β-cobalt hydroxide, which are liable to form a stronger conductive network, are most preferable. In coating the cobalt compound, Zn, Ca, Y, Yb, Mg, Ti, Z
It may be a composite coating in which elements such as r are composited. Also,
The coating amount of the cobalt compound is usually 1 to 10 parts by weight, preferably 2 to 5 parts by weight, based on 100 parts by weight of the nickel hydroxide.

【0021】本発明の正極において、コバルト導電助剤
には、金属コバルトまたは一酸化コバルト、α−水酸化
コバルトおよびβ−水酸化コバルトなどのコバルト化合
物が用いられる。負極の放電リザ―ブの電気量を低減
し、負極から発生する水素ガスの抑制を可能とする強固
なコバルト導電ネツトワ―クを形成するには、コバルト
化合物、とくに一酸化コバルトが好ましい。金属コバル
トは、導電ネツトワ―ク形成のため、Co→Co(O
H)→CoOOHの3電子反応が必要で、そのぶん放電
リザ―ブの電気量が増えるため、金属コバルトを用いる
場合は、後述するアルカリ浸漬処理を行うことが望まし
い。コバルト導電助剤の添加量は、上記性能と高容量化
の維持のた、水酸化ニツケル100重量部に対し、通常
0.5〜10重量部、好ましくは1〜10重量部とする
のがよい。
In the positive electrode of the present invention, a cobalt compound such as metallic cobalt or cobalt monoxide, α-cobalt hydroxide and β-cobalt hydroxide is used as the cobalt conductive additive. In order to reduce the amount of electricity in the discharge reserve of the negative electrode and to form a strong cobalt conductive network capable of suppressing hydrogen gas generated from the negative electrode, a cobalt compound, particularly cobalt monoxide, is preferable. Metallic cobalt is Co → Co (O) to form a conductive network.
H) → Three-electron reaction of CoOOH is necessary, and the amount of electricity in the discharge reserve increases accordingly. Therefore, when using metallic cobalt, it is desirable to carry out an alkali immersion treatment described later. The addition amount of the cobalt conductive additive is usually 0.5 to 10 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the nickel hydroxide, while maintaining the above performance and high capacity. .

【0022】本発明の正極は、上記の水酸化ニツケルと
コバルト導電助剤とを、ポリテトラフルオロエチレン
(PTFE)などの結合剤およびカルボキシメチルセル
ロ―ス(CMC)などの増粘剤とともに、有機溶剤中に
混合して、正極ペ―ストを調製し、これをニツケル発泡
体などの金属多孔質基材に担持させ、乾燥後、シ―ト状
に圧縮成形することで、ペ―スト式ニツケル極からなる
非焼結式の正極としたものである。その際、正極中のコ
バルト酸化物の還元量を低減するため、上記の圧縮成形
後、アルカリ浸漬処理や予備充電などにより、あらかじ
め酸化処理を行ってもよい。
The positive electrode of the present invention comprises the above-mentioned nickel hydroxide and a cobalt conductive additive together with a binder such as polytetrafluoroethylene (PTFE) and a thickener such as carboxymethyl cellulose (CMC). A positive electrode paste is prepared by mixing the mixture in a solvent, supporting the paste on a metal porous substrate such as a nickel foam, drying, and compression-molding a sheet. This is a non-sintered positive electrode composed of electrodes. At that time, in order to reduce the reduction amount of the cobalt oxide in the positive electrode, after the above-described compression molding, an oxidation treatment may be performed in advance by an alkali immersion treatment, a preliminary charge, or the like.

【0023】上記のアルカリ浸漬処理では、コバルト導
電助剤や水酸化ニツケルの表面を被覆したコバルト化合
物をあらかじめこれらより少々酸化の進んだ状態に変換
し、これにより低次のコバルトの酸化反応による放電リ
ザ―プ量を有効に低減させるため、温度は35〜100
℃、好ましくは50〜90℃とし、浸漬時間を0.2〜
1.2時間、好ましくは0.25〜0.8時間とするの
がよい。また、予備充電の方法としては、上記と同様の
理由から、上記のように作製した正極の容量〔C(A
h)〕に対して、0.001〜0.1C(A)、好まし
くは0.005〜0.05C(A)の電流値で、1〜1
00時間、好ましくは2〜50時間予備充電するのがよ
い。
In the above alkali immersion treatment, the cobalt compound coated on the surface of the cobalt conductive additive and the nickel hydroxide is converted into a slightly more oxidized state in advance, whereby the discharge by the lower-order oxidation reaction of cobalt is caused. The temperature should be 35-100 to effectively reduce the amount of reserve.
° C, preferably 50 to 90 ° C, and the immersion time is 0.2 to
The time is 1.2 hours, preferably 0.25 to 0.8 hours. In addition, as a method of preliminary charging, for the same reason as described above, the capacity [C (A
h)], a current value of 0.001 to 0.1 C (A), preferably 0.005 to 0.05 C (A), and 1 to 1
It is good to pre-charge for 00 hours, preferably 2 to 50 hours.

【0024】本発明の負極において、水素吸蔵合金に
は、MmNi5-x+y x(Mmは少なくともLaを含む
希土類元素を表し、Mは少なくともMnを含む金属元素
を表し、0<x<2、−0.2<y<0.6である)で
表される希土類系合金が用いられる。このように置換金
属にMnを含むものは、合金の水素平衡解離圧を低下で
き、高容量化が可能という利点があるが、その反面、M
nは標準還元電位が卑な電位をとるため、腐食反応が大
きく、またその反応により合金が微粉化して表面積が大
きくなると、より腐食反応が進みやすいという欠点があ
る。しかし、これを本発明に適用したときには、上記欠
点が克服されて、上記利点を生かすことができる。
In the negative electrode of the present invention, the hydrogen storage alloy includes MmNi 5-x + y M x (Mm represents a rare earth element containing at least La, M represents a metal element containing at least Mn, and 0 <x < 2, -0.2 <y <0.6). As described above, those containing Mn in the substitution metal have the advantage that the hydrogen equilibrium dissociation pressure of the alloy can be reduced and the capacity can be increased.
n has a disadvantage that the corrosion reaction is large because the standard reduction potential has a low potential, and the corrosion reaction is more likely to proceed when the alloy is pulverized by the reaction and the surface area is increased. However, when this is applied to the present invention, the above disadvantages can be overcome and the above advantages can be utilized.

【0025】なお、Mn以外の金属としては、Co、A
l、Cu、Mg、Cr、Zn、Sn、Feなどが挙げら
れるが、これらの中でも、少なくともCoおよびAlを
含む合金が好ましい。また、上記組成の合金の中でも、
BサイトのNi側の含有量を多くした高容量の非化学量
論組成の水素吸蔵合金(たとえば、Mm:1に対して、
Ni、Co、MnおよびAlを含む他の金属の合計量が
5.02〜5.45である水素吸蔵合金)は、遷移金属
が合金表面に存在することが多いため、水素ガス発生量
が多く、上記と同様の理由で、通常では高温貯蔵特性が
低下しやすい。しかし、本発明ではその特性を有効に発
揮させることができるので、とくに好ましく用いられ
る。また、本発明の上記水素吸蔵合金には、微量のS
i、Mo、Sb、Nb、Tiなどが含まれていてもよ
い。
The metals other than Mn include Co, A
Examples thereof include l, Cu, Mg, Cr, Zn, Sn, and Fe. Among them, an alloy containing at least Co and Al is preferable. Also, among the alloys of the above composition,
A high-capacity non-stoichiometric hydrogen storage alloy having a higher content on the Ni side of the B site (for example, for Mm: 1,
In the case of a hydrogen storage alloy in which the total amount of other metals including Ni, Co, Mn and Al is 5.02 to 5.45), a transition metal is often present on the alloy surface, so that the amount of hydrogen gas generated is large. For the same reason as above, high-temperature storage characteristics are usually liable to decrease. However, the present invention is particularly preferably used because its properties can be effectively exhibited. Further, the hydrogen storage alloy of the present invention has a small amount of S
i, Mo, Sb, Nb, Ti, etc. may be included.

【0026】本発明の負極には、CH2/CCo(II)の比を
調整するため、金属酸化物を含ませるのが望ましい。水
素吸蔵合金の腐食反応により水素ガスが発生したときで
も、これが放電リザ―ブを形成する前に、これを上記の
金属酸化物を金属に還元する反応に利用することで、放
電リザ―ブの電気量の増加を防止することができる。こ
のような金属酸化物としては、充電により金属に還元で
き、通常の作動電位領域で金属状態を維持できるものが
好ましく、とくに金属への還元反応に水素量を多く必要
とする2価以上の高次の酸化物が好ましい。たとえば、
α−(またはβ−)Co(OH)2 、Co2 3 、Co
3 4 、NiO、Ni2 3 、CuO、Cu2 O、Li
MO2 (MはCo、Niから選ばれる少なくとも1種)
などが好適なものとして挙げられる。これらの中でも、
水素吸蔵合金への副反応の影響が少ないCo3 4 、N
iO、LiMO2 が最も好ましい。このような金属酸化
物の添加量は、金属の種類や酸化状態などにより異なる
が、水素吸蔵合金100重量部に対して、通常0.5〜
5重量部とするのがよい。
The negative electrode of the present invention preferably contains a metal oxide in order to adjust the ratio of C H2 / C Co (II) . Even when hydrogen gas is generated due to the corrosion reaction of the hydrogen storage alloy, it is used for the above-mentioned reaction to reduce the metal oxide to metal before it forms a discharge reserve, so that the discharge reserve can be reduced. An increase in the amount of electricity can be prevented. As such a metal oxide, those which can be reduced to a metal by charging and which can maintain a metal state in a normal operating potential region are preferable, and in particular, a divalent or higher valent metal which requires a large amount of hydrogen for a reduction reaction to a metal. The following oxides are preferred: For example,
α- (or β-) Co (OH) 2 , Co 2 O 3 , Co
3 O 4 , NiO, Ni 2 O 3 , CuO, Cu 2 O, Li
MO 2 (M is at least one selected from Co and Ni)
And the like. Among these,
Co 3 O 4 , N with little effect of side reactions on the hydrogen storage alloy
iO and LiMO 2 are most preferred. The addition amount of such a metal oxide varies depending on the type of metal, oxidation state, etc., but is usually 0.5 to 100 parts by weight of the hydrogen storage alloy.
It is preferable to use 5 parts by weight.

【0027】本発明の負極は、上記の水素吸蔵合金と好
ましくは上記の金属酸化物とを、適宜のバインダや導電
助剤などとともに、水または溶剤中に混合して、負極ペ
―ストを調製し、これを導電性基材に塗布し、乾燥後、
シ―ト状に圧縮成形することにより、作製される。その
際、水素吸蔵合金の腐食反応を低減するため、正極の場
合と同様にアルカリ浸漬処理して、あらかじめ酸化処理
することもできる。この処理で水素吸蔵合金表面に酸化
物を形成し、これが金属に還元されることにより、放電
リザ―ブの電気量の低減に寄与させることができる。上
記のアルカリ浸漬処理の条件としては、温度を50〜1
00℃、好ましくは60〜90℃とし、浸漬時間を0.
2〜2時間、好ましくは0.5〜1時間とするのがよ
い。
The negative electrode of the present invention is prepared by mixing the above-mentioned hydrogen storage alloy and preferably the above-mentioned metal oxide with water or a solvent together with an appropriate binder and a conductive additive to prepare a negative electrode paste. Then, apply this to the conductive substrate, after drying,
It is produced by compression molding into a sheet. At this time, in order to reduce the corrosion reaction of the hydrogen storage alloy, an alkali immersion treatment and an oxidation treatment can be performed in advance as in the case of the positive electrode. This treatment forms an oxide on the surface of the hydrogen storage alloy, which is reduced to a metal, which can contribute to a reduction in the amount of electricity in the discharge reserve. The conditions for the above alkali immersion treatment are as follows:
00 ° C., preferably 60 ° C. to 90 ° C., and the immersion time is 0.1 mm.
The time is preferably 2 to 2 hours, preferably 0.5 to 1 hour.

【0028】本発明のニツケル水素蓄電池は、上記のよ
うな正極および負極と、これら両極間に介在されたセパ
レ―タとアルカリ水溶液からなる電解液とを有するもの
であり、たとえば、上記の正極および負極をセパレ―タ
を介して巻回し、これを電池缶に挿入したのち、上記の
電解液を注入することにより、作製できる。その際、初
充電により正極に添加されているコバルトによつて導電
ネツトワ―クを形成するため、正負両極とも電気化学的
に充電、放電のいずれも経ていない無化成の状態で組み
立てる。すなわち、充電、放電のいずれも経ていない正
負両極を組み合わせることにより、電池組立後のエ―ジ
ングまたは初充電(化成)によつて正極中に添加されて
いる金属コバルトまたはコバルト化合物が高次のコバル
ト酸化物に酸化され、その反応に伴つて上記した放電リ
ザ―ブの電気量が負極に形成され、正極規制の電池にす
ることができる。
The nickel hydrogen storage battery of the present invention has the above-described positive electrode and negative electrode, a separator interposed between these two electrodes, and an electrolytic solution composed of an alkaline aqueous solution. The negative electrode can be manufactured by winding it through a separator, inserting the negative electrode into a battery can, and then injecting the above-mentioned electrolytic solution. At this time, since the conductive network is formed by the cobalt added to the positive electrode by the initial charge, both the positive and negative electrodes are assembled in a non-chemical state in which neither the charge nor the discharge has been performed electrochemically. That is, by combining the positive and negative electrodes which have not undergone charging or discharging, metal cobalt or a cobalt compound added to the positive electrode by aging or initial charging (chemical formation) after assembling the battery has a higher cobalt content. It is oxidized to an oxide, and the amount of electricity of the above-mentioned discharge reserve is formed in the negative electrode along with the reaction, so that a positive electrode regulated battery can be obtained.

【0029】このように作製される本発明のニツケル水
素蓄電池は、上記化成後の正極中の高次のコバルト酸化
物が2価に還元されるのに必要な電気量と、負極に形成
されている放電リザ―ブの電気量との比〔CH2/C
Co(II)〕が1.3以下であることを特徴とする。つま
り、上記比を1.3以下、好ましくは1.1以下、さら
に好ましくは1.0以下とすることにより、放電リザ―
ブの電気量を正極中のコバルト導電ネツトワ―ク形成反
応との関係において適正化でき、高温貯蔵時でも負極か
らの水素ガスの発生を抑制し、それにより正極中のコバ
ルト酸化物の還元を低減でき、電池電圧の低下を防止で
きる。とくに、上記比を1.0以下とした場合、高温貯
蔵時に負極から水素ガスが発生しても、正極のコバルト
の導電ネツトワ―クを還元するまでの還元力に劣るた
め、前記した第二段階における微短絡が生じた場合に
も、電圧の低下を抑制することができる。
The nickel-hydrogen storage battery of the present invention thus manufactured has the amount of electricity required for the higher-order cobalt oxide in the positive electrode after the chemical conversion to be reduced to divalent and the amount of electricity formed in the negative electrode. The ratio of the discharge reserve to the amount of electricity [ CH2 / C
Co (II) ] is 1.3 or less. That is, by setting the above ratio to 1.3 or less, preferably 1.1 or less, and more preferably 1.0 or less, the discharge
The amount of electricity in the cathode can be optimized in relation to the formation of the cobalt conductive network in the positive electrode, suppressing the generation of hydrogen gas from the negative electrode even during high-temperature storage, thereby reducing the reduction of cobalt oxide in the positive electrode And the battery voltage can be prevented from lowering. In particular, when the above ratio is 1.0 or less, even if hydrogen gas is generated from the negative electrode during high-temperature storage, the reducing power required to reduce the conductive network of cobalt of the positive electrode is inferior. In the case where a slight short-circuit occurs, a decrease in voltage can be suppressed.

【0030】なお、負極に形成される放電リザ―ブの電
気量は、正極中のコバルトの酸化によつて不可避的に形
成されるものであり、かつペ―スト式正極では結合剤な
どの有機物の分解反応分や合金の腐食反応によつても放
電リザ―ブの量が増加するため、放電リザ―ブの調整を
行わない電池では、上記比は通常1.5よりも大きなも
のとなるが、これを1.3以下、可能ならばコバルト還
元反応に必要な電気量に対し、放電リザ―ブの電気量が
同量以下となる1.0以下とすることが望まれる。しか
し、過放電時に負極の劣化を防止する必要性から上記比
をあまりに小さい値にはできないこと、また低温での放
電特性は上記比が大きいほど向上する傾向にあることか
ら、通常は1.3以下の範囲内で可及的に小さくすれば
よく、下限値はおよそ0.5程度と考えられる。
The electric charge of the discharge reserve formed on the negative electrode is inevitably formed by oxidation of cobalt in the positive electrode, and in the paste type positive electrode, an organic substance such as a binder is used. Since the amount of the discharge reserve increases due to the decomposition reaction of the alloy and the corrosion reaction of the alloy, the above ratio is usually larger than 1.5 in a battery in which the discharge reserve is not adjusted. It is desired that the amount be 1.3 or less, and if possible, the amount of electricity in the discharge reserve is 1.0 or less with respect to the amount of electricity required for the cobalt reduction reaction. However, the ratio cannot be made too small because of the necessity of preventing deterioration of the negative electrode during overdischarge, and the discharge characteristics at low temperatures tend to improve as the ratio increases, so that the ratio is usually 1.3. What is necessary is just to make it as small as possible within the following ranges, and the lower limit is considered to be about 0.5.

【0031】また、電池缶に注入する電解液中には亜鉛
化合物を含ませるのが望ましい。すなわち、電解液中に
亜鉛化合物を含ませると、その一部または全部が亜鉛イ
オンになり、このイオンが充放電反応によつて電池内を
移動し、水素吸蔵合金から電解液中に溶解したMnイオ
ンの正極への移動を抑制し、また正極活物質の表面にM
n酸化物が形成されるのを防止し、それらが相乗的に働
いて高温貯蔵後の放電特性を改善できる。亜鉛化合物の
電解液中の濃度は、酸化亜鉛換算で30〜65g/リツ
トルが好ましく、40〜55g/リツトルがより好まし
い。
Further, it is desirable that a zinc compound is contained in the electrolytic solution injected into the battery can. That is, when a zinc compound is contained in the electrolytic solution, part or all of the zinc compound becomes zinc ions, and the ions move in the battery by a charge / discharge reaction, and Mn dissolved in the electrolytic solution from the hydrogen storage alloy. The transfer of ions to the positive electrode is suppressed, and M
The formation of n-oxides is prevented and they work synergistically to improve discharge characteristics after high temperature storage. The concentration of the zinc compound in the electrolyte is preferably 30 to 65 g / liter, more preferably 40 to 55 g / liter, in terms of zinc oxide.

【0032】本発明に使用するセパレ―タとしては、不
織布、織布などが好ましく、その構成繊維としては、熱
融着繊維が好ましい。また、その繊維構造としては、芯
鞘型の複合繊維、サイドバイサイド型の複合繊維、ある
いは単一成分系の繊維などが挙げられるが、強度的な面
から、芯鞘型の複合繊維が好ましい。繊維の種類として
は、その表面にスルホン化処理などの親水処理を施した
ものは、電解液の浸透性が高いので、好ましい。この親
水処理を施したものでは、正極から電解液中に溶出した
コバルトイオンがセパレ―タ中を透過しやすくなるが、
本発明ではかかる問題にも対応でき、セパレ―タとして
有効に使用できる。
The separator used in the present invention is preferably a nonwoven fabric, a woven fabric, or the like, and the constituent fibers thereof are preferably heat fusion fibers. Examples of the fiber structure include a core-sheath type composite fiber, a side-by-side type composite fiber, and a single-component type fiber. From the viewpoint of strength, a core-sheath type composite fiber is preferable. As the type of fiber, a fiber whose surface is subjected to a hydrophilic treatment such as a sulfonation treatment is preferable because of high permeability of the electrolytic solution. With this hydrophilic treatment, the cobalt ions eluted from the positive electrode into the electrolytic solution can easily pass through the separator.
The present invention can cope with such a problem and can be effectively used as a separator.

【0033】また、本発明において、上記のセパレ―タ
は、Y種、Yb種およびEr種よりなる群から選ばれる
少なくとも1種の元素種を含有しているのが好ましい。
すなわち、既述したとおり、高温貯蔵時の第二段階の電
圧低下は、第一段階で負極から発生する水素ガスが正極
のコバルト導電ネツトワ―クを還元することによるもの
であるため、正極のコバルト酸化物の還元電気量と負極
の放電リザ―ブ量との関係を前記範囲とすることによ
り、高温貯蔵時に正極から溶出して負極に析出するコバ
ルトイオンの量を低減でき、それにより第二段階でのセ
パレ―タ上のコバルトの酸化物と負極の金属コバルトと
の短絡も低減することができる。
In the present invention, the separator preferably contains at least one element selected from the group consisting of Y, Yb and Er.
That is, as described above, the voltage drop in the second stage during high temperature storage is due to the hydrogen gas generated from the negative electrode in the first stage reducing the cobalt conductive network of the positive electrode. By setting the relationship between the amount of reduction electricity of the oxide and the amount of discharge reserve of the negative electrode in the above range, the amount of cobalt ions eluted from the positive electrode and deposited on the negative electrode during high-temperature storage can be reduced. And the short circuit between the cobalt oxide on the separator and the metallic cobalt of the negative electrode can be reduced.

【0034】しかし、この場合でも、コバルト導電ネツ
トワ―クを形成する際に、正極と接するセパレ―タ上で
のコバルトの酸化物の析出をも抑制しておくのがより好
ましい。この観点から、セパレ―タ上へのコバルトイオ
ンの析出を抑制できる物質について、種々検討した結
果、Y種、Yb種またはEr種をセパレ―タ上に担持さ
せておくのが有効であることがわかつた。ここで、Yは
イツトリウム、Ybはイツテルビウム、Erはエルビウ
ムであり、Y種、Yb種またはEr種とは、Y、Ybま
たはErそれぞれの単体、Y、YbまたはErの酸化
物、錯体などを意味するが、これら希土類の混合物を主
体としたものであつてもよい。
However, even in this case, it is more preferable to suppress the precipitation of cobalt oxide on the separator in contact with the positive electrode when forming the cobalt conductive network. From this point of view, as a result of various studies on substances capable of suppressing the deposition of cobalt ions on the separator, it has been found that it is effective to support the Y, Yb or Er species on the separator. Wakata. Here, Y is yttrium, Yb is ytterbium, Er is erbium, and the Y, Yb, or Er species refers to a simple substance of Y, Yb, or Er, an oxide, a complex, or the like of Y, Yb, or Er, respectively. This means that a mixture mainly composed of a mixture of these rare earth elements may be used.

【0035】このような元素種をセパレ―タに含有させ
ると、高温貯蔵時の電圧低下をより改善できる理由は、
必ずしも明らかではないが、上記の元素種が、高温貯蔵
時にアルカリ水溶液中に溶出したコバルトイオンがセパ
レ―タ上に析出するのを抑制するためと思われる。ま
た、生成するコバルトの水酸化物などのコバルト化合物
は溶液中では固体として析出しにくいが、銀鏡反応のよ
うにセパレ―タが管壁の役割を果たし、それにより酸化
された水酸化物などのコバルト化合物がセパレ―タ上に
析出しやすくなるが、このセパレ―タ上に上記の元素種
を存在させると、この元素種がセパレ―タ上でのコバル
トイオンの溶解度を低下させ、水酸化物などのコバルト
化合物となるのを抑制するためと思われる。前記した放
電リザ―ブ量の低減のために、負極にコバルトなどの金
属酸化物を添加した場合、これが上記のセパレ―タ上に
析出したコバルトの酸化物と微短絡を生じやすいが、こ
れを回避する上でも、上記の元素種はとくに有効であ
る。
The reason why the voltage drop during high-temperature storage can be further improved by including such elemental species in the separator is as follows.
Although it is not always clear, it is considered that the above element species suppress the cobalt ions eluted in the alkaline aqueous solution during storage at a high temperature from being precipitated on the separator. In addition, a cobalt compound such as a produced hydroxide of cobalt is hardly precipitated as a solid in a solution, but a separator plays a role of a tube wall as in a silver mirror reaction. The cobalt compound tends to precipitate on the separator, but when the above element species is present on the separator, the element species lowers the solubility of cobalt ions on the separator and causes It is thought to suppress the formation of cobalt compounds such as. When a metal oxide such as cobalt is added to the negative electrode in order to reduce the above-mentioned discharge reserve, a minute short-circuit easily occurs with the oxide of cobalt deposited on the separator described above. The above element species are particularly effective in avoiding them.

【0036】なお、上記の元素種は、アルカリ水溶液中
で溶解度がコバルトに比べて極めて低く、またコバルト
の酸化物が生成するのがセパレ―タ上であることから、
電解液中に含有させても、その効果が小さくなる一方、
添加された場所からほとんど移動することがないという
特性を持つている。このため、セパレ―タ以外の電池構
成材料(とくに、正極)に影響を及ぼすことなく、導電
ネツトワ―ク形成時のセパレ―タ上へのコバルトの酸化
物の析出を抑制するためには、セパレ―タに上記の元素
種を含有させておくのが最も効果的である。
The above-mentioned elemental species have extremely low solubility in an aqueous alkali solution as compared with cobalt, and the oxide of cobalt is formed on a separator.
Even if it is contained in the electrolyte, the effect is reduced,
It has the property that it hardly moves from the place where it is added. Therefore, in order to suppress the deposition of cobalt oxide on the separator during formation of the conductive network without affecting the battery constituent materials other than the separator (especially, the positive electrode), it is necessary to use a separator. It is most effective to include the above-mentioned element types in the liquid crystal.

【0037】上記の元素種をセパレ―タに含有させる際
は、前記のとおり、各元素の単体のほか、酸化物、錯体
などの形態としてセパレ―タに含有させることができる
が、セパレ―タに含有させる際の容易さから、酸化物を
用いるのがとくに好ましい。また、セパレ―タに含有さ
せる方法としては、上記の元素種を直接セパレ―タに噴
霧する方法や、上記の元素種を分散させた水性媒体中に
セパレ―タを浸漬し、乾燥するか、あるいはそれらの水
溶液をセパレ―タに塗布し、乾燥して、上記元素種をセ
パレ―タの構成繊維に担持させるようにすればよい。
When the above-mentioned element species are contained in the separator, as described above, in addition to the simple substance of each element, the separator can be contained in the form of an oxide, a complex or the like. It is particularly preferable to use an oxide from the viewpoint of easiness in containing it. In addition, as a method of including in the separator, a method of directly spraying the above element species on the separator, a method of immersing the separator in an aqueous medium in which the above element species are dispersed and drying, Alternatively, an aqueous solution thereof may be applied to a separator and dried to allow the constituent elements of the separator to be supported on constituent fibers.

【0038】上記元素種のセパレ―タ中の含有量として
は、セパレ―タの面積に対し、各元素の酸化物〔A2
3 (AはY、YbまたはEr)〕換算で、0.05〜3
mg/cm2 とするのが好ましく、0.1〜2mg/cm2 とす
るのがより好ましい。この理由は、上記の元素種をセパ
レ―タ中に上記範囲内で含有させることにより、セパレ
―タ上へのコバルトの酸化物の析出を適正に抑制できる
からである。
With respect to the content of the above element species in the separator, the oxide [A 2 O] of each element is based on the area of the separator.
3 (A is Y, Yb or Er)], 0.05 to 3
it is preferable to be mg / cm 2, and more preferably, 0.1 to 2 mg / cm 2. The reason for this is that by including the above element species in the separator within the above range, the precipitation of cobalt oxide on the separator can be appropriately suppressed.

【0039】[0039]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明するが、本発明は以下の実施例にのみ限定さ
れるものではない。なお、以下において、部とあるのは
重量部を意味するものとする。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In the following, “parts” means “parts by weight”.

【0040】実施例1 4.7重量%のβ−水酸化コバルトで被覆された水酸化
ニツケル粉末(コバルト固溶量:1.2重量%、亜鉛固
溶量:2重量%)100部に、コバルト導電助剤として
の一酸化コバルト粉末2.9部、2重量%のカルボキシ
メチルセルロ―ス水溶液10部および60重量%のポリ
テトラフルオロエチレン分散液2部を加えて混合し、ペ
―ストにした。この正極ペ―ストをニツケル発泡体から
なる金属多孔質基材に充填、担持させ、乾燥後、シ―ト
状に圧縮成形した。このシ―トを、70℃の30重量%
水酸化カリウム水溶液に0.5時間浸漬処理したのち、
乾燥、洗浄、再乾燥を順次施し、最後に所定の寸法に裁
断して、700mAhの容量のペ―スト式ニツケル極か
らなる正極を作製した。
Example 1 To 100 parts of nickel hydroxide powder coated with 4.7% by weight of β-cobalt hydroxide (cobalt solid solution: 1.2% by weight, zinc solid solution: 2% by weight) 2.9 parts of cobalt monoxide powder as a cobalt conductive aid, 10 parts of a 2% by weight aqueous solution of carboxymethyl cellulose and 2 parts of a 60% by weight dispersion of polytetrafluoroethylene were added and mixed. did. The positive electrode paste was filled and supported on a metal porous substrate made of a nickel foam, dried, and then compression-molded into a sheet. 30% by weight of this sheet at 70 ° C
After immersion treatment in potassium hydroxide aqueous solution for 0.5 hour,
Drying, washing, and re-drying were sequentially performed, and finally, the resultant was cut into a predetermined size to produce a positive electrode made of a paste-type nickel electrode having a capacity of 700 mAh.

【0041】これとは別に、組成がMmNi4.28Co
0.4 Mn0.37Al0.3 Mg0.05(Mmの組成がLa:8
0原子%、Ce:12原子%、Nd:4原子%、Pr:
4原子%で、Mm:1に対してNi、Co、Mnおよび
Alの合計が5.4である)で表される水素吸蔵合金1
00部に、ニツケル粉末2部、Co3 4 粉末1部を加
え、さらにカルボキシメチルセルロ―ス水溶液およびポ
リテトラフルオロエチレン分散液を適量加えて、ペ―ス
トにした。この負極ペ―ストを穿孔した鉄ニツケルめつ
き鋼板からなる基材の両面に所定量塗布し、乾燥後、シ
―ト状に圧縮成形し、最後に所定の寸法に裁断して、負
極を作製した。
Separately, the composition is MmNi 4.28 Co
0.4 Mn 0.37 Al 0.3 Mg 0.05 (Mm composition is La: 8
0 atomic%, Ce: 12 atomic%, Nd: 4 atomic%, Pr:
Hydrogen storage alloy 1 represented by the following formula: 4 atomic%, Mm: 1, the total of Ni, Co, Mn and Al is 5.4).
To 00 parts, 2 parts of nickel powder and 1 part of Co 3 O 4 powder were added, and an appropriate amount of an aqueous solution of carboxymethyl cellulose and a dispersion of polytetrafluoroethylene were added to make a paste. A predetermined amount of this negative electrode paste is applied to both surfaces of a substrate made of perforated iron nickel-plated steel, dried, compression-molded into a sheet, and finally cut into predetermined dimensions to produce a negative electrode. did.

【0042】この負極と前記のペ―スト式ニツケル極か
らなる正極とを、スルフオン化処理したポリプロピレン
系セパレ―タを介して、対向するように巻回し、電極体
を作製した。この電極体を電池缶内に挿入し、30重量
%水酸化カリウム水溶液に酸化亜鉛45g/リツトルを
溶解してなる電解液を、所定量注入し、封口することに
より、図1に示す構造のニツケル水素蓄電池を作製し
た。
The negative electrode and the positive electrode composed of the above-mentioned paste-type nickel electrode were wound so as to face each other via a sulfonated polypropylene separator to prepare an electrode body. This electrode body was inserted into a battery can, and a predetermined amount of an electrolytic solution obtained by dissolving 45 g / liter of zinc oxide in a 30% by weight aqueous solution of potassium hydroxide was injected and sealed, whereby a nickel having the structure shown in FIG. A hydrogen storage battery was manufactured.

【0043】図1において、1は上記の水酸化ニツケル
を活物質とするペ―スト式ニツケル極からなる非焼結式
の正極、2は上記の水素吸蔵合金を活物質とする負極で
あり、両極1,2は、基材などを省略した単一構成のも
のとして示している。この正極1と負極2とは、上述の
とおり、セパレ―タ3を介して重ね合わせ、渦巻状に巻
回して、電極体4とされ、電池缶5内に挿入されてい
る。この電極体4の上部には絶縁体14が配置されてお
り、また電池缶5の底部には、上記電極体4の挿入に先
立つて、絶縁体13が配設されている。
In FIG. 1, reference numeral 1 denotes a non-sintered positive electrode comprising a paste-type nickel electrode using the above-mentioned nickel hydroxide as an active material, 2 denotes a negative electrode using the above-mentioned hydrogen storage alloy as an active material, Both poles 1 and 2 are shown as having a single configuration in which the base material and the like are omitted. As described above, the positive electrode 1 and the negative electrode 2 are overlapped with each other via the separator 3, spirally wound to form an electrode body 4, and inserted into the battery can 5. An insulator 14 is arranged on the upper part of the electrode body 4, and an insulator 13 is arranged on the bottom of the battery can 5 before the electrode body 4 is inserted.

【0044】6はナイロン66製の環状ガスケツト、7
は端子板8、封口板9、それらで形成される内部空間に
配置された金属バネ10および弁体11で構成された電
池蓋で、電池缶5の開口部は上記電池蓋7などで封口さ
れている。つまり、電池缶5内に電極体4や絶縁体1
3,14などを挿入し、電池缶5の開口端近傍部分に底
部が内周側に突出した環状の溝5aを形成し、その溝5
aの内周側突出部で環状ガスケツト6の下部を支えさせ
て、この環状ガスケツト6と電池蓋7とを電池缶5の開
口部に配置し、電池缶5の溝5aから先の部分を内方に
締め付けて電池缶5の開口部を封口している。端子板8
にはガス排出孔8aが、封口板9にはガス検知孔9a
が、それぞれ設けられ、この端子板8と封口板9との間
には金属バネ10と弁体11とが配置されており、封口
板9の外周部を折り曲げて端子板8の外周部を挟み込ん
で、端子板8と封口板9とを固定している。
6 is an annular gasket made of nylon 66;
Is a battery cover composed of a terminal plate 8, a sealing plate 9, a metal spring 10 and a valve body 11 arranged in an internal space formed by them, and an opening of the battery can 5 is sealed with the battery cover 7 or the like. ing. That is, the electrode body 4 and the insulator 1 are placed in the battery can 5.
3, 14 and the like are inserted, and an annular groove 5a having a bottom protruding inwardly is formed near the opening end of the battery can 5, and the groove 5a is formed.
The lower portion of the annular gasket 6 is supported by the inner peripheral side protruding portion a, and the annular gasket 6 and the battery cover 7 are arranged in the opening of the battery can 5. To close the opening of the battery can 5. Terminal plate 8
Has a gas discharge hole 8a, and a sealing plate 9 has a gas detection hole 9a.
A metal spring 10 and a valve body 11 are arranged between the terminal plate 8 and the sealing plate 9, and the outer peripheral portion of the sealing plate 9 is bent to sandwich the outer peripheral portion of the terminal plate 8. Thus, the terminal plate 8 and the sealing plate 9 are fixed.

【0045】このニツケル水素蓄電池においては、通常
の状況下では、金属バネ10の押圧力により弁体11が
ガス検出孔9aを閉鎖し、電池内部は密閉状態に保たれ
ているが、電池内部にガスが発生して電池内部の圧力が
異常に上昇した場合には、金属バネ10が収縮して弁体
11とガス検知孔9aとの間に隙間が生じ、電池内部の
ガスはガス検知孔9aおよびガス排出孔8aを通過して
電池外部に放出され、それによつて電池内圧が低下して
電池内圧が正常に戻ると、金属バネ10が元の状態に復
元し、その押圧力により弁体11が再びガス検知孔9a
を閉鎖して、電池内部を密閉構造に保つようになつてい
る。
In this nickel hydrogen storage battery, under normal circumstances, the valve body 11 closes the gas detection hole 9a by the pressing force of the metal spring 10, and the inside of the battery is kept in a sealed state. When the gas is generated and the pressure inside the battery rises abnormally, the metal spring 10 contracts to create a gap between the valve body 11 and the gas detection hole 9a, and the gas inside the battery is released from the gas detection hole 9a. When the internal pressure of the battery is reduced and the internal pressure of the battery returns to normal, the metal spring 10 is restored to its original state, and the valve body 11 is restored by the pressing force. Is the gas detection hole 9a again
To keep the inside of the battery sealed.

【0046】なお、12はニツケルリボン製の正極リ―
ド体であり、一方の端部は正極2の最外周部における金
属多孔質基材の露出部分にスポツト溶接されており、ま
た他方の端部は封口板9の下端にスポツト溶接されてい
る。端子板8は上記封口板9との接触により正極端子と
して機能できるようになつている。また、負極2の最外
周部の外面側は穿孔した鉄ニツケルめつき鋼板からなる
基材が露出していて、この基材が電池缶5の内壁に接触
しており、それにより、電池缶5は負極端子として機能
できるようになつている。
Reference numeral 12 denotes a nickel ribbon positive electrode lead.
One end is spot-welded to the exposed portion of the metal porous substrate at the outermost periphery of the positive electrode 2, and the other end is spot-welded to the lower end of the sealing plate 9. The terminal plate 8 can function as a positive electrode terminal by contact with the sealing plate 9. Further, a base made of perforated iron nickel-plated steel plate is exposed on the outer surface side of the outermost peripheral portion of the negative electrode 2, and this base is in contact with the inner wall of the battery can 5, whereby the battery can 5 Can function as a negative electrode terminal.

【0047】このようにして作製したニツケル水素蓄電
池を、40℃で6時間保持し、25℃に冷却後、25
℃,0.14Aで7時間の充電と0.14Aの放電(終
始電圧1.0V)を5サイクル繰り返し、これら放電後
の電池における正極中のコバルト酸化物が2価に還元さ
れるのに必要な電気量〔CCo(II)〕と負極に形成されて
いる放電リザ―ブの電気量〔CH2〕とを、下記の方法に
より、測定した。この両測定値から、上記両者の比〔C
H2/CCo(II)〕を算出したところ、この比は1.1であ
つた。
The nickel hydrogen storage battery thus manufactured is kept at 40.degree. C. for 6 hours, cooled to 25.degree.
5 cycles of charging at 0.14 A for 7 hours and discharging at 0.14 A (1.0 V throughout) at 5 ° C. are necessary for reducing the cobalt oxide in the positive electrode of the battery after these discharges to divalent. The amount of electricity [C Co (II) ] and the amount of electricity [C H2 ] of the discharge reserve formed on the negative electrode were measured by the following methods. From these two measured values, the ratio [C
H2 / CCo (II) ] was found to be 1.1.

【0048】<CCo(II)およびCH2の測定>0.07A
で0.7Vまで電池を放電させたのち、電池を解体して
正極と負極を取り分け、以下のようにして、正極中のコ
バルト酸化物が2価に還元されるのに必要な電気量〔C
Co(II)〕および負極の放電リザ―ブの電気量〔CH2〕を
求めた。すなわち、上記の正極と、この正極に対して十
分な容量を有するあらかじめ充電されたカドミウム電極
とを組み合わせ、これを電池作製に用いたのと同組成の
電解液に浸してセルを作製し、0.000035Aで0
Vまで放電させたときの電気量を測定することにより、
Co(II)を求めた。また、上記の負極を、沸騰させた純
粋中に浸漬することにより、負極中に放電リザ―ブとし
て蓄えられた水素を水素ガスとして放出させ、これを水
上置換法で捕集し、20℃に冷却して体積を測定し、そ
の体積から計算される水素ガスのモル数を電気量に換算
して、C H2の値とした。なお、実施例および比較例で用
いたCCo(II)およびCH2の値は、それぞれ10個ずつの
電池の測定値を平均したものである。
<CCo (II)And CH2Measurement> 0.07A
After discharging the battery to 0.7V, disassemble the battery
Separate the positive and negative electrodes, and copy the
The amount of electricity [C
Co (II)] And the amount of electricity of the negative electrode discharge reserve [CH2]
I asked. That is, the positive electrode and the positive electrode
Precharged cadmium electrode with sufficient capacity
And the same composition as used in the battery fabrication.
A cell is prepared by immersion in an electrolytic solution.
By measuring the amount of electricity when discharged to V,
CCo (II)I asked. In addition, the above-mentioned negative electrode is boiled pure
By immersing it in the air, a discharge reserve is provided in the negative electrode.
Release the stored hydrogen as hydrogen gas.
It was collected by the top displacement method, cooled to 20 ° C, and its volume was measured.
Converts the number of moles of hydrogen gas calculated from the volume of
And C H2Value. It is used in Examples and Comparative Examples.
CCo (II)And CH2The value of
It is the average of the measured values of the battery.

【0049】実施例2 正極の作製において、コバルト導電助剤としての一酸化
コバルト2.9部に代えて、金属コバルト1.2部を使
用し、また負極の作製において、Co3 4 粉末1部に
代えて、β−Co(OH)2 粉末1.6部を使用した以
外は、実施例1と同様にして、ニツケル水素蓄電池を作
製した。この蓄電池は、実施例1と同様にして測定算出
したCH2/CCo(II)の比が1.3であつた。
[0049] In the preparation of Example 2 positive electrode, instead of cobalt monoxide 2.9 parts of a cobalt conductive additive, and a metal cobalt 1.2 parts, and in preparation of the negative electrode, Co 3 O 4 powder 1 A nickel hydrogen storage battery was produced in the same manner as in Example 1 except that 1.6 parts of β-Co (OH) 2 powder was used instead of the parts. In this storage battery, the ratio of C H2 / C Co (II) measured and calculated in the same manner as in Example 1 was 1.3.

【0050】実施例3 表面にYb2 3 の粉末を1.5mg/cm2 の割合で塗布
したセパレ―タを用いた以外は、実施例2と同様にし
て、ニツケル水素蓄電池を作製した。この蓄電池は、実
施例1と同様にして測定算出したCH2/CCo(II)の比が
1.2であつた。
Example 3 A nickel hydrogen storage battery was produced in the same manner as in Example 2, except that a separator coated with Yb 2 O 3 powder at a rate of 1.5 mg / cm 2 was used. This storage battery had a ratio of C H2 / C Co (II) of 1.2 as measured and calculated in the same manner as in Example 1.

【0051】実施例4 正極の作製において、シ―ト状の圧縮成形後、アルカリ
浸漬処理に代え、30重量%の水酸化カリウム水溶液中
で0.035Aで4時間充電したのち、洗浄、乾燥する
ようにした以外は、実施例3と同様にして、ニツケル水
素蓄電池を作製した。この蓄電池は、実施例1と同様に
して測定換算したCH2/CCo(II)の比が0.9であつ
た。
Example 4 In the preparation of the positive electrode, after the sheet was compression-molded, it was charged with 0.035 A for 4 hours in a 30% by weight aqueous solution of potassium hydroxide instead of the alkali immersion treatment, and then washed and dried. A nickel hydrogen storage battery was fabricated in the same manner as in Example 3 except for the above. This storage battery had a ratio of C H2 / C Co (II) measured and converted in the same manner as in Example 1 of 0.9.

【0052】比較例1 正極の作製において、水酸化ニツケルとしてコバルト被
覆を施していない水酸化ニツケルを使用し、コバルト導
電助剤としての一酸化コバルト2.9部に代えて、金属
コバルト2.2部を使用するとともに、シ―ト状の圧縮
成形後にアルカリ浸漬処理を行わず、また負極の作製に
おいて、Co3 4 粉末を含ませなかつた以外は、実施
例1と同様にして、ニツケル水素蓄電池を作製した。こ
のニツケル水素蓄電池は、実施例1と同様にして測定算
出したCH2/CCo(II)の比が2.4であつた。
Comparative Example 1 In the preparation of the positive electrode, nickel hydroxide not coated with cobalt was used as nickel hydroxide, and instead of 2.9 parts of cobalt monoxide as a cobalt conductive additive, 2.2 metallic cobalt was used. In the same manner as in Example 1, except that the alkaline immersion treatment was not performed after the sheet-shaped compression molding and that the Co 3 O 4 powder was not included in the production of the negative electrode. A storage battery was manufactured. In this nickel hydrogen storage battery, the ratio of C H2 / C Co (II) measured and calculated in the same manner as in Example 1 was 2.4.

【0053】比較例2 正極の作製において、シ―ト状の圧縮成形後にアルカリ
浸漬処理を行わず、また負極の作製において、Co3
4 粉末の使用量を0.6部に変更した以外は、実施例1
と同様にしてニツケル水素蓄電池を作製した。この蓄電
池は、実施例1と同様にして測定算出したCH2/C
Co(II)の比が1.6であつた。
[0053] In the preparation of Comparative Example 2 positive electrode, shea - without the alkali immersion treatment after bets like compression molding, also in preparation of the negative electrode, Co 3 O
4 Example 1 except that the amount of powder used was changed to 0.6 part.
In the same manner as in the above, a nickel hydrogen storage battery was produced. This storage battery has C H2 / C measured and calculated in the same manner as in Example 1.
The ratio of Co (II) was 1.6.

【0054】上記の実施例1〜4および比較例1,2の
各ニツケル水素蓄電池を、80℃で14日間保存し、高
温貯蔵中の電圧変化を調べた。この結果は、図2に示さ
れるとおりであつた。図2中、1aは実施例1のニツケ
ル水素蓄電池の結果、2aは実施例2のニツケル水素蓄
電池の結果、3aは実施例3のニツケル水素蓄電池の結
果、4aは実施例4のニツケル水素蓄電池の結果、1b
は比較例1のニツケル水素蓄電池の結果、2bは比較例
2のニツケル水素蓄電池の結果である。
Each of the nickel hydrogen storage batteries of Examples 1 to 4 and Comparative Examples 1 and 2 was stored at 80 ° C. for 14 days, and the voltage change during high-temperature storage was examined. The result was as shown in FIG. 2, 1a is the result of the nickel hydrogen storage battery of Example 1, 2a is the result of the nickel hydrogen storage battery of Example 2, 3a is the result of the nickel hydrogen storage battery of Example 3, and 4a is the result of the nickel hydrogen storage battery of Example 4. Result, 1b
Is the result of the nickel hydrogen storage battery of Comparative Example 1, and 2b is the result of the nickel hydrogen storage battery of Comparative Example 2.

【0055】また、上記の実施例1〜4および比較例
1,2の各ニツケル水素蓄電池について、初期(貯蔵
前)の放電容量と高温貯蔵後(80℃で14日間貯蔵
後)の放電容量を測定し、初期の放電容量を基準として
高温貯蔵後の放電容量の割合を求め、これを高温貯蔵後
の容量回復率として評価した。この結果は、下記の表1
に示されるとおりであつた。なお、同表には、参考のた
めに、各ニツケル水素蓄電池のCH2/CCo(II)の比を併
記した。
For each of the nickel hydrogen storage batteries of Examples 1 to 4 and Comparative Examples 1 and 2, the initial (before storage) discharge capacity and the discharge capacity after high temperature storage (after storage at 80 ° C. for 14 days) were determined. The measurement was performed, and the ratio of the discharge capacity after high-temperature storage was determined based on the initial discharge capacity, and this was evaluated as the capacity recovery rate after high-temperature storage. This result is shown in Table 1 below.
The results were as shown in FIG. Incidentally, in the table, for reference, it is also shown the ratio of the nickel hydride storage battery C H2 / C Co (II) .

【0056】 [0056]

【0057】上記の表1および図2の結果から、実施例
1〜4の各ニツケル水素蓄電池は、水素吸蔵合金として
Mnを含有する非化学量論組成のミツシユメタル系合金
を用いたときでも、高温貯蔵時の電圧低下が小さく、高
温貯蔵後の放電容量も初期とほぼ同等であり、高温貯蔵
特性が改善されていることがわかる。これに対し、比較
例1,2の両ニツケル水素蓄電池は、正極中のコバルト
酸化物が還元されて、高温貯蔵時の電圧低下が大きく、
高温貯蔵後の容量回復率に劣つている。
From the results shown in Table 1 and FIG. 2, each of the nickel hydrogen storage batteries of Examples 1 to 4 has a high temperature even when a nonstoichiometric metal alloy containing Mn is used as the hydrogen storage alloy. The voltage drop during storage was small, and the discharge capacity after high-temperature storage was almost equal to the initial level, indicating that the high-temperature storage characteristics were improved. In contrast, in the two-nickel hydrogen storage batteries of Comparative Examples 1 and 2, the cobalt oxide in the positive electrode was reduced, and the voltage drop during high-temperature storage was large.
Poor capacity recovery after high temperature storage.

【0058】[0058]

【発明の効果】以上のように、本発明は、非焼結式の正
極としてペ―スト式ニツケル極を、負極の水素吸蔵合金
としてMmNi5-x+y x(Mmは少なくともLaを含
む希土類元素を表し、Mは少なくともMnを含む金属元
素を表し、0<x<2、−0.2<y<0.6である)
で表される希土類系合金を使用したニツケル水素蓄電池
において、正極中のコバルト酸化物が2価に還元される
のに必要な電気量〔CCo (II)〕と負極に形成されている
放電リザ―ブの電気量〔CH2〕との比が1.3以下とな
る構成としたことにより、高温貯蔵時の電圧低下が小さ
く、高温貯蔵後の容量回復率の大きい、高温貯蔵特性の
改善されたニツケル水素蓄電池を提供することができ
る。
As described above, according to the present invention, a paste-type nickel electrode is used as a non-sintered type positive electrode, and MmNi 5-x + y M x (Mm contains at least La) as a hydrogen storage alloy of a negative electrode. Represents a rare earth element, M represents a metal element containing at least Mn, and 0 <x <2, -0.2 <y <0.6)
In a nickel hydrogen storage battery using a rare earth alloy represented by the following formula, the amount of electricity [C Co (II) ] required for the cobalt oxide in the positive electrode to be reduced to divalent and the discharge reservoir formed in the negative electrode -The ratio of the amount of electricity to the electric charge [C H2 ] is 1.3 or less, so that the voltage drop during high-temperature storage is small, the capacity recovery rate after high-temperature storage is large, and the high-temperature storage characteristics are improved. A nickel hydrogen storage battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で作製したニツケル水素蓄電池を示す
断面図である。
FIG. 1 is a cross-sectional view showing a nickel hydrogen storage battery manufactured in Example 1.

【図2】実施例1〜4および比較例1,2の各ニツケル
水素蓄電池について、高温貯蔵時の電圧変化を示す特性
図である。
FIG. 2 is a characteristic diagram showing voltage changes during high-temperature storage for each of the nickel hydrogen storage batteries of Examples 1 to 4 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 正極(ペ―スト式ニツケル極) 2 負極 3 セパレ―タ 5 電池缶 DESCRIPTION OF SYMBOLS 1 Positive electrode (paste type nickel pole) 2 Negative electrode 3 Separator 5 Battery can

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/38 H01M 4/38 A 4/52 4/52 (72)発明者 磯貝 正人 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 長井 龍 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H021 AA06 CC02 EE04 EE22 EE23 EE31 5H028 AA01 AA05 EE01 EE05 HH10 5H050 AA10 BA14 CA08 CB17 DA19 GA02 GA22 HA19 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/38 H01M 4/38 A 4/52 4/52 (72) Inventor Masato Isogai Ushitora, Ibaraki-shi, Osaka 1-88, Hitachi Maxell Co., Ltd. (72) Inventor Ryu Nagai 1-1-88, Ushitora, Ibaraki City, Osaka Prefecture F-term, Hitachi Maxell Co., Ltd. 5H021 AA06 CC02 EE04 EE22 EE23 EE31 5H028 AA01 AA05 EE01 EE05 HH10 5H050 AA10 BA14 CA08 CB17 DA19 GA02 GA22 HA19

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニツケルとともに金属コバルトま
たはコバルト化合物からなるコバルト導電助剤を含有す
るペ―スト式ニツケル極を正極とし、負極の水素吸蔵合
金としてMmNi5-x+y x (Mmは少なくともLaを
含む希土類元素を表し、Mは少なくともMnを含む金属
元素を表し、0<x<2、−0.2<y<0.6であ
る)で表される希土類系合金を用い、これら両極間に介
在されたセパレ―タとアルカリ水溶液からなる電解液と
を有するニツケル水素蓄電池において、正極中のコバル
ト酸化物が2価に還元されるのに必要な電気量をC
Co(II)とし、 負極に形成されている放電リザ―ブの電気
量をCH2としたとき、CH2/C Co(II)≦1.3の関係を
満たすことを特徴とするニツケル水素蓄電池。
(1) Cobalt metal with nickel hydroxide.
Or a cobalt conductive additive consisting of a cobalt compound
The paste-type nickel electrode is used as a positive electrode, and the negative electrode absorbs hydrogen.
MmNi as gold5-x + yMx(Mm is at least La
Represents a rare earth element containing M, and M represents a metal containing at least Mn.
0 <x <2, -0.2 <y <0.6
Using a rare earth alloy represented by
Electrolyte consisting of a separated separator and an alkaline aqueous solution
In a nickel hydrogen storage battery with
The amount of electricity required for the oxide to be reduced to divalent is C
Co (II)And the electricity of the discharge reserve formed on the negative electrode
Amount CH2And CH2/ C Co (II)≤ 1.3
A nickel hydrogen storage battery characterized by satisfying.
【請求項2】 セパレ―タがY種、Yb種およびEr種
よりなる群から選ばれる少なくとも1種の元素種を含有
する請求項1に記載のニツケル水素蓄電池。
2. The nickel hydrogen storage battery according to claim 1, wherein the separator contains at least one element selected from the group consisting of Y, Yb, and Er.
JP2000241061A 1999-08-13 2000-08-09 Nickel hydrogen storage battery Pending JP2001313069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000241061A JP2001313069A (en) 1999-08-13 2000-08-09 Nickel hydrogen storage battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP22952199 1999-08-13
JP2000050497 2000-02-22
JP11-229521 2000-02-22
JP2000-50497 2000-02-22
JP2000241061A JP2001313069A (en) 1999-08-13 2000-08-09 Nickel hydrogen storage battery

Publications (1)

Publication Number Publication Date
JP2001313069A true JP2001313069A (en) 2001-11-09

Family

ID=27331539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000241061A Pending JP2001313069A (en) 1999-08-13 2000-08-09 Nickel hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP2001313069A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007549A1 (en) * 2009-07-14 2011-01-20 川崎重工業株式会社 Fiber electrode and fiber cell, and method for producing same, facility for producing fiber electrode and fiber cell
CN103117393A (en) * 2013-02-02 2013-05-22 吉林卓尔科技股份有限公司 Zinc-nickel secondary sealed cylindrical alkaline battery adopting nickel-plated shell as negative electrode and manufacturing method thereof
US9065139B2 (en) 2009-02-04 2015-06-23 National Institute Of Advanced Industrial Science And Technology Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode
US9281539B2 (en) 2009-07-14 2016-03-08 Kawasakai Jukogyo Kabushiki Kaisha Electrical storage device including fiber electrode, and method of fabricating the same
JP2018056113A (en) * 2016-09-26 2018-04-05 プライムアースEvエナジー株式会社 Nickel hydrogen storage battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065139B2 (en) 2009-02-04 2015-06-23 National Institute Of Advanced Industrial Science And Technology Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode
WO2011007549A1 (en) * 2009-07-14 2011-01-20 川崎重工業株式会社 Fiber electrode and fiber cell, and method for producing same, facility for producing fiber electrode and fiber cell
CN102473903A (en) * 2009-07-14 2012-05-23 川崎重工业株式会社 Fiber electrode and fiber cell, and method for producing same, facility for producing fiber electrode and fiber cell
TWI415322B (en) * 2009-07-14 2013-11-11 Kawasaki Heavy Ind Ltd A manufacturing method of a fiber electrode, and a manufacturing apparatus for a fiber electrode
KR101341166B1 (en) * 2009-07-14 2013-12-13 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Fiber electrode and fiber cell, and method for producing same, facility for producing fiber electrode and fiber cell
JP5527671B2 (en) * 2009-07-14 2014-06-18 川崎重工業株式会社 Fiber battery and manufacturing method thereof, fiber electrode and fiber battery manufacturing equipment
US9281539B2 (en) 2009-07-14 2016-03-08 Kawasakai Jukogyo Kabushiki Kaisha Electrical storage device including fiber electrode, and method of fabricating the same
CN103117393A (en) * 2013-02-02 2013-05-22 吉林卓尔科技股份有限公司 Zinc-nickel secondary sealed cylindrical alkaline battery adopting nickel-plated shell as negative electrode and manufacturing method thereof
JP2018056113A (en) * 2016-09-26 2018-04-05 プライムアースEvエナジー株式会社 Nickel hydrogen storage battery

Similar Documents

Publication Publication Date Title
US8101121B2 (en) Hydrogen absorbing alloy for alkaline storage battery
EP0817291A2 (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JP3429741B2 (en) Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries
US7393612B2 (en) Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
US5879429A (en) Method for producing hydrogen storage alloy electrode
US7198868B2 (en) Alkaline storage battery
EP1054463A1 (en) Positive electrode, alkaline secondary battery, and method for manufacturing alkaline secondary battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP2001313069A (en) Nickel hydrogen storage battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPH11111330A (en) Nickel-hydrogen storage battery
US20050056349A1 (en) Hydrogen absorbing alloy for alkaline storage battery, method for manufacturing the same and alkaline storage battery
US6593031B1 (en) Nickel metal-hydride cell
JP4128635B2 (en) Manufacturing method of nickel metal hydride storage battery
JP2987873B2 (en) Alkaline storage battery
JP3082348B2 (en) Nickel-hydrogen battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3379893B2 (en) Paste-type positive electrode for alkaline secondary battery and method for producing alkaline secondary battery
JP2006236692A (en) Nickel hydrogen storage battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
KR100276798B1 (en) Manufacturing method of paste type positive electrode and alkali secondary battery for alkali secondary battery, alkali secondary battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721