JP3362400B2 - Nickel-metal hydride storage battery - Google Patents

Nickel-metal hydride storage battery

Info

Publication number
JP3362400B2
JP3362400B2 JP29083891A JP29083891A JP3362400B2 JP 3362400 B2 JP3362400 B2 JP 3362400B2 JP 29083891 A JP29083891 A JP 29083891A JP 29083891 A JP29083891 A JP 29083891A JP 3362400 B2 JP3362400 B2 JP 3362400B2
Authority
JP
Japan
Prior art keywords
weight
storage battery
powder
hydroxide
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29083891A
Other languages
Japanese (ja)
Other versions
JPH05101825A (en
Inventor
利雄 村田
和弘 中満
田中  義則
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP29083891A priority Critical patent/JP3362400B2/en
Publication of JPH05101825A publication Critical patent/JPH05101825A/en
Application granted granted Critical
Publication of JP3362400B2 publication Critical patent/JP3362400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素の可逆的な吸蔵お
よび放出が可能な水素吸蔵合金を備えて、その水素の電
気化学的な酸化還元反応を起電反応に用いる負極と、水
酸化ニッケルを主たる活物質とする正極とを備えるニッ
ケル−金属水素化物蓄電池に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, and a negative electrode using an electrochemical redox reaction of the hydrogen in an electromotive reaction, and a hydroxylation. The present invention relates to a nickel-metal hydride storage battery including a positive electrode containing nickel as a main active material.

【0002】[0002]

【従来の技術】ニッケル−金属水素化物蓄電池は、水素
の可逆的な吸蔵および放出が可能な水素吸蔵合金を備え
て、その水素の電気化学的な酸化還元反応を起電反応に
用いる負極と、水酸化ニッケルを活物質とする正極と、
水酸化カリウム水溶液などのアルカリ電解液とを備えて
いる。
2. Description of the Related Art A nickel-metal hydride storage battery is equipped with a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, and a negative electrode using an electrochemical redox reaction of the hydrogen for an electromotive reaction. A positive electrode using nickel hydroxide as an active material,
It is provided with an alkaline electrolyte such as an aqueous potassium hydroxide solution.

【0003】この負極は水素吸蔵電極と呼ばれ、この電
極に用いられる水素吸蔵合金にはLaNi、ZrNi
、TiNiおよびTiNiなどの金属間化合物や、
これらの金属間化合物の構成元素を他の元素で置換した
ものがある。これらの水素吸蔵合金は、その組成が異な
ると、水素吸蔵量、平衡水素圧力、アルカリ電解液中で
充放電を繰り返す場合の保持容量特性などの性質が変化
するので、合金の組成を変えて水素吸蔵電極の性能の改
良が試みられている。
This negative electrode is called a hydrogen storage electrode, and the hydrogen storage alloys used for this electrode are LaNi 5 and ZrNi.
2 , intermetallic compounds such as TiNi and Ti 2 Ni,
There is one in which the constituent elements of these intermetallic compounds are replaced with other elements. When the composition of these hydrogen storage alloys is different, properties such as hydrogen storage capacity, equilibrium hydrogen pressure, and retention capacity characteristics when charging and discharging are repeated in an alkaline electrolyte change. Attempts have been made to improve the performance of the occlusion electrode.

【0004】この水素吸蔵電極を、同じアルカリ電解液
中で作動するカドミウム電極と比較すると、これらの電
極の作動電位はほぼ同じであり、電極の体積当たりの放
電容量は、水素吸蔵電極がカドミウム電極の2−3倍の
大きさになる。したがって、カドミウム電極を用いてい
た従来のアルカリ蓄電池の負極に水素吸蔵電極を用いる
場合には、正極と負極との放電容量の比が一定になるよ
うに、負極の体積を小さくし、正極の体積を大きくする
ことができるので、カドミウム電極を用いる蓄電池と作
動電圧が同じで、しかも1.5倍以上の放電容量を有す
るアルカリ蓄電池が得られる。
Comparing this hydrogen storage electrode with a cadmium electrode that operates in the same alkaline electrolyte, the operating potentials of these electrodes are almost the same, and the discharge capacity per volume of the electrode is that the hydrogen storage electrode is a cadmium electrode. It will be 2-3 times larger. Therefore, when a hydrogen storage electrode is used for the negative electrode of a conventional alkaline storage battery that uses a cadmium electrode, the volume of the negative electrode is reduced and the volume of the positive electrode is reduced so that the discharge capacity ratio between the positive electrode and the negative electrode is constant. Therefore, it is possible to obtain an alkaline storage battery having the same operating voltage as the storage battery using the cadmium electrode and having a discharge capacity of 1.5 times or more.

【0005】この電池の正極の水酸化ニッケル電極の1
つとして、発泡ニッケルやニッケル繊維の焼結体などか
らなる耐アルカリ性導電性の3次元多孔体に、水酸化ニ
ッケルを主体とする活物質粉末と、金属コバルト、水酸
化コバルト、および酸化コバルトとからなる群から選択
した少なくとも1つからなる添加物とを充填したものが
用いられてきた。この正極を、以下では非焼結式ニッケ
ル極と呼ぶ。
One of the nickel hydroxide electrodes of the positive electrode of this battery
As an example, an alkali-resistant conductive three-dimensional porous body made of foamed nickel, a sintered body of nickel fibers, or the like, and an active material powder mainly composed of nickel hydroxide, and metallic cobalt, cobalt hydroxide, and cobalt oxide are used. Filled with at least one additive selected from the group consisting of Hereinafter, this positive electrode is referred to as a non-sintered nickel electrode.

【0006】この正極は、焼結式の水酸化ニッケル電極
と異なって、ニッケルのネットワークが疎であるので、
電極内の集電性が高くない。そこで、金属コバルト、水
酸化コバルト、および酸化コバルトとからなる群から選
択した少なくとも1つを添加する方法が用いられる。こ
れらの添加物は、正極を充電する際に酸化されるととも
に、正極活物質である水酸化ニッケルの放電を容易にし
て、正極の活物質利用率を高くするという効果が大き
い。
Unlike the sintered nickel hydroxide electrode, this positive electrode has a sparse nickel network.
The current collection in the electrode is not high. Therefore, a method of adding at least one selected from the group consisting of metallic cobalt, cobalt hydroxide, and cobalt oxide is used. These additives have a great effect of being oxidized when the positive electrode is charged, facilitating the discharge of nickel hydroxide which is a positive electrode active material, and increasing the utilization rate of the active material of the positive electrode.

【0007】[0007]

【発明が解決しようとする課題】ニッケル・金属水素化
物蓄電池に用いられる上記の非焼結式ニッケル極は、例
えば1時間率よりも大きい電流で過充電する場合には、
水酸化ニッケルの充電生成物にγ相オキシ水酸化ニッケ
ルと呼ばれる化合物が生成しやすい。このγ相の化合物
はモル体積が大きいので、これが生成すると正極板が膨
張して、セパレータ中の電解液が吸収されたり、正極板
の強度が低下する。しかも、このγ相は、その結晶の内
部にも、水やカリウムイオンが挿入されるので、電解液
がさらに吸収されるものと考えられる。
The non-sintered nickel electrode used in the nickel-metal hydride storage battery is, for example, when overcharged with a current larger than 1 hour rate,
A compound called γ-phase nickel oxyhydroxide is likely to be generated in the charge product of nickel hydroxide. Since this γ-phase compound has a large molar volume, when it is generated, the positive electrode plate expands, the electrolytic solution in the separator is absorbed, and the strength of the positive electrode plate decreases. Moreover, this γ phase is considered to be further absorbed by the electrolytic solution since water and potassium ions are also inserted inside the crystal.

【0008】このようなことが起こると、充放電サイク
ルを繰り返す間にセパレータの電解液が正極に吸収され
て、セパレータ中の電解液量が少なくなり、ニッケル・
金属水素化物蓄電池の内部抵抗が高くなって、電池の充
放電が困難になり、電池の充放電サイクル寿命が短くな
るという不都合が発生する。
When this happens, the electrolytic solution in the separator is absorbed by the positive electrode during repeated charge and discharge cycles, and the amount of electrolytic solution in the separator decreases, resulting in nickel.
Since the internal resistance of the metal hydride storage battery becomes high, charging and discharging of the battery becomes difficult, and the charge and discharge cycle life of the battery becomes short, which is a disadvantage.

【0009】水酸化ニッケル電極の性能は、従来はニッ
ケル・カドミウム電池において詳しく調べられてきてお
り、水酸化ニッケル電極のγ相の抑制についても種種の
対策が施されてきた。そこで、従来のニッケル・金属水
素化物蓄電池では、正極のγ相の生成を抑制するため
に、ニッケル・カドミウム蓄電池でおこなわれてきた手
段を採用していた。その手段は、具体的には、ニッケル
カドミウム電池の場合と同様に、水酸化ニッケルに、
カドミウム、亜鉛などを共沈したり、カドミウムの酸化
物や水酸化物を水酸化ニッケルと別の相として添加する
方法である。
The performance of nickel hydroxide electrodes has been conventionally investigated in detail in nickel-cadmium batteries, and various measures have been taken to suppress the γ phase of nickel hydroxide electrodes. Therefore, in the conventional nickel-metal hydride storage battery, in order to suppress the generation of the γ phase of the positive electrode, the means used in the nickel-cadmium storage battery has been adopted. Specifically, the means is nickel.
Similar to the case of cadmium battery, in nickel hydroxide,
This is a method of coprecipitating cadmium, zinc, etc., or adding an oxide or hydroxide of cadmium as a separate phase from nickel hydroxide.

【0010】しかし、これらの手段には次のような欠点
がある。
However, these means have the following drawbacks.

【0011】カドミウムを添加する手段によれば、γ相
の生成を抑制することができる。カドミウムを添加する
場合には、酸化カドミウムや水酸化カドミウムの粉末を
水酸化ニッケル粉末と混合する手段は、カドミウムを水
酸化ニッケルと共沈する手段と比較してγ相の生成を抑
制する効果が大きい。しかし、カドミウムは環境汚染の
原因物質であるという疑いがある。そして、ニッケル・
金属水素化物蓄電池では、正極へのカドミウムの添加を
おこなわなければ、カドミウムを含有しない電池が得ら
れるので、正極にカドミウムを用いないことが望まれて
いる。
The means for adding cadmium can suppress the production of the γ phase. When adding cadmium, the means of mixing the powder of cadmium oxide or cadmium hydroxide with the nickel hydroxide powder has the effect of suppressing the formation of the γ phase as compared with the means of coprecipitating cadmium with nickel hydroxide. large. However, cadmium is suspected to be a causative agent of environmental pollution. And nickel
In a metal hydride storage battery, a cadmium-free battery can be obtained without adding cadmium to the positive electrode. Therefore, it is desired not to use cadmium in the positive electrode.

【0012】また、酸化カドミウムや水酸化カドミウム
の粉末を水酸化ニッケル粉末と混合して添加する手段で
は、正極からカドミウムが溶出しやすく、このカドミウ
ムが水素吸蔵電極上で還元されて金属カドミウムの樹枝
状晶(デンドライト)や苔状の析出物が生成し、これが
電池の内部短絡の原因になることがあった。
[0012] Further, in the means for adding the powder of cadmium oxide or cadmium hydroxide mixed with the powder of nickel hydroxide, cadmium is easily eluted from the positive electrode, and the cadmium is reduced on the hydrogen storage electrode so that the cadmium of metal cadmium is reduced. Crystals (dendrites) and mossy precipitates were formed, which sometimes caused an internal short circuit of the battery.

【0013】亜鉛を水酸化ニッケルに共沈して添加する
手段は、カドミウムを添加する場合と同様に、水酸化ニ
ッケルの充放電が起こる電位を卑に移行させることな
く、γ相の生成を防止できる。しかも、亜鉛は、カドミ
ウムのような環境汚染の恐れが小さいので、これを添加
することは問題が少ない。しかし、水酸化ニッケルに水
酸化亜鉛を添加する場合には、ニッケルと亜鉛との水溶
性塩(たとえば、硫酸塩、硝酸塩、塩化物など)の溶液
とアルカリ(例えば苛性ソーダや苛性カリなど)とを反
応させて調製するのであるが、亜鉛がアルカリ水溶液に
溶解しやすいので、亜鉛の含有率の制御が困難であると
いう欠点があった。
As in the case of adding cadmium, the means of adding zinc by coprecipitation to nickel hydroxide prevents the formation of the γ phase without shifting the potential at which the nickel hydroxide is charged and discharged to base. it can. Moreover, since zinc is less likely to cause environmental pollution such as cadmium, its addition is less problematic. However, when adding zinc hydroxide to nickel hydroxide, a solution of a water-soluble salt of nickel and zinc (eg, sulfate, nitrate, chloride, etc.) is reacted with an alkali (eg, caustic soda, caustic potash, etc.). However, since zinc is easily dissolved in an alkaline aqueous solution, it is difficult to control the zinc content.

【0014】また、ニッケル−金属水素化物蓄電池は、
単に1時間率という大電流で充電されるだけではなく、
同じ電池が45℃程度の高温下で10時間率という小さ
い電流で充電される場合がある。この場合には、ニッケ
ル−金属水素化物蓄電池では、正極の充電高率が低下し
て放電容量が小さくなるという不都合があった。
Further, the nickel-metal hydride storage battery is
Not only is it charged with a large current of 1 hour rate,
The same battery may be charged at a high current of about 45 ° C. and a small current of 10 hours. In this case, in the nickel-metal hydride storage battery, there is a disadvantage that the charging rate of the positive electrode is reduced and the discharge capacity is reduced.

【0015】したがって、カドミウムまたは亜鉛を水酸
化ニッケルに共沈したり、酸化カドミウムや水酸化カド
ミウムの粉末を水酸化ニッケル粉末と混合することな
く、大きい電流で充電する際の充放電サイクルの進行に
ともなう電池の内部抵抗の増加を抑制して、しかも高温
下における充電効率の低下を抑制したニッケル・金属水
素化物蓄電池が望まれていた。
Therefore, without coprecipitating cadmium or zinc in nickel hydroxide or mixing the powder of cadmium oxide or cadmium hydroxide with the powder of nickel hydroxide, the charging / discharging cycle for charging with a large current can be used. There has been a demand for a nickel-metal hydride storage battery that suppresses an increase in internal resistance of the battery that accompanies it and also suppresses a decrease in charging efficiency at high temperatures.

【0016】[0016]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、水酸化ニッケルを主体とする活物質
と、カルシウム、マグネシウム、亜鉛の群から選択した
少なくとも1つの金属の酸化物もしくは水酸化物(ただ
し、亜鉛の酸化物単独もしくは水酸化物単独を除く)
の混合物を耐アルカリ性導電性支持体に保持してなる正
極と、水素吸蔵合金を主体とする負極とを備えるニッケ
ル−金属水素化物蓄電池を提供する。また、水酸化コバ
ルトが共沈された粉末である水酸化ニッケルを主体とす
る活物質と、カルシウム、マグネシウム、亜鉛の群から
選択した少なくとも1つの金属の酸化物もしくは水酸化
(ただし、亜鉛の酸化物単独もしくは水酸化物単独を
除く)との混合物を耐アルカリ性導電性支持体に保持し
てなる正極と、水素吸蔵合金を主体とする負極とを備え
ることを特徴とするニッケル−金属水素化物蓄電池を提
供する。さらに、このような水酸化コバルトが共沈され
た水酸化ニッケルを主体とする活物質を正極に用いる場
合にあって、共沈された水酸化コバルトが、水酸化ニッ
ケルと水酸化コバルトとの合計に対して1モル%以上2
0モル%以下であることを特徴とするニッケル−金属水
素化物蓄電池を提供する。
In order to solve the above problems, the present invention provides an active material mainly containing nickel hydroxide and an oxide of at least one metal selected from the group consisting of calcium, magnesium and zinc. Or hydroxide (only
And a mixture of zinc oxide alone or hydroxide alone) is held on an alkali-resistant conductive support, and a nickel-metal hydride storage battery comprising a negative electrode mainly composed of a hydrogen storage alloy. I will provide a. Further, an active material mainly composed of nickel hydroxide, which is a powder in which cobalt hydroxide is coprecipitated, and an oxide or hydroxide of at least one metal selected from the group of calcium, magnesium, and zinc (provided that zinc Oxide alone or hydroxide alone
To provide a metal hydride storage batteries - a positive electrode a mixture of excluding) formed by holding the alkali resistance conductive support, nickel, characterized in that it comprises a negative electrode mainly comprising hydrogen absorbing alloy. Furthermore, when an active material mainly composed of nickel hydroxide co-precipitated with cobalt hydroxide is used for the positive electrode, the co-precipitated cobalt hydroxide is the sum of nickel hydroxide and cobalt hydroxide. To 1 mol% or more 2
There is provided a nickel-metal hydride storage battery characterized by being 0 mol% or less.

【0017】[0017]

【作用】本発明の手段を採用すると、カドミウムまたは
亜鉛を水酸化ニッケルに共沈したり、酸化カドミウムや
水酸化カドミウムの粉末を水酸化ニッケル粉末と混合し
なくても、ニッケル・金属水素化物蓄電池を充電して、
正極のγ相の生成が抑制される。その結果、セパレータ
中の電解液が正極に吸収されることが効果的に抑制され
て、ニッケル−金属水素化物蓄電池の充放電サイクル寿
命が長くなる。
When the means of the present invention is adopted, a nickel-metal hydride storage battery can be obtained without coprecipitating cadmium or zinc in nickel hydroxide or mixing cadmium oxide or cadmium hydroxide powder with nickel hydroxide powder. Charge the
Generation of the γ phase of the positive electrode is suppressed. As a result, absorption of the electrolytic solution in the separator by the positive electrode is effectively suppressed, and the charge / discharge cycle life of the nickel-metal hydride storage battery is extended.

【0018】さらに、本発明の手段を採用すると、カド
ミウムまたは亜鉛を水酸化ニッケルに共沈したり、酸化
カドミウムや水酸化カドミウムの粉末を水酸化ニッケル
粉末と混合しなくても、正極の充電効率が高くなって、
ニッケル−金属水素化物蓄電池を高温下で低率で充電し
て、充電効率が低下しないという作用も併せ持つ。
Further, by adopting the means of the present invention, the charging efficiency of the positive electrode can be achieved without coprecipitating cadmium or zinc with nickel hydroxide or mixing powders of cadmium oxide or cadmium hydroxide with nickel hydroxide powder. Is getting higher,
It also has a function of charging the nickel-metal hydride storage battery at a low rate at a high temperature so that the charging efficiency does not decrease.

【0019】この本発明の作用は、従来の共沈法による
水酸化ニッケル粉末への亜鉛の添加の有無にかかわりな
く、発揮されるものである。
The effect of the present invention is exhibited regardless of whether or not zinc is added to nickel hydroxide powder by the conventional coprecipitation method.

【0020】そして、酸化亜鉛や水酸化亜鉛を添加する
場合には、定めた量の水酸化ニッケル粉末と酸化亜鉛も
しくは水酸化亜鉛の粉末とを混合するだけで正極への亜
鉛の添加率を制御できるので、従来の共沈法のように亜
鉛の添加率が不安定になることがなく、品質管理が著し
く容易になる点で有利である。
When zinc oxide or zinc hydroxide is added, the ratio of zinc added to the positive electrode can be controlled simply by mixing a predetermined amount of nickel hydroxide powder and zinc oxide or zinc hydroxide powder. Therefore, unlike the conventional coprecipitation method, the addition rate of zinc does not become unstable, which is advantageous in that the quality control is significantly facilitated.

【0021】なお、本発明の手段で、水酸化ニッケル粉
末と混合したカルシウムやマグネシウムの酸化物もしく
は水酸化物は、その一部がアルカリ電解液に溶解する。
この水酸化ニッケル電極をカドミウム電極と組み合わせ
て、ニッケル・カドミウム蓄電池を構成する場合には、
電解液に溶出したカルシウムやマグネシウムがカドミウ
ム電極に移動して、カドミウム電極の充電が著しく困難
になるという不都合が発生する。
By the means of the present invention, a part of the oxide or hydroxide of calcium or magnesium mixed with the nickel hydroxide powder is dissolved in the alkaline electrolyte.
When this nickel hydroxide electrode is combined with a cadmium electrode to form a nickel-cadmium storage battery,
Calcium and magnesium eluted in the electrolytic solution move to the cadmium electrode, which causes a problem that charging of the cadmium electrode becomes extremely difficult.

【0022】しかし、このような水酸化ニッケル電極を
水素吸蔵電極と組み合わせてニッケル・金属水素化物蓄
電池を構成する場合には、水素吸蔵電極にこのような不
都合をもたらさない。
However, when such a nickel hydroxide electrode is combined with a hydrogen storage electrode to form a nickel metal hydride storage battery, such a disadvantage does not occur in the hydrogen storage electrode.

【0023】また、本発明の手段で、水酸化ニッケル粉
末と混合した亜鉛の酸化物もしくは水酸化物も、その一
部がアルカリ電解液に溶出する。そして、この水酸化ニ
ッケル電極をカドミウム電極と組み合わせてニッケル・
カドミウム蓄電池を構成する場合には、カドミウム電極
の水素過電圧が著しく高いので、ニッケル・カドミウム
蓄電池の充電末期に負極が著しく卑に分極し、その電位
が亜鉛の電析する値に到達することがある。このような
場合には、カドミウム電極に金属亜鉛のデンドライトが
生成して、電池の内部短絡が起こる。
Also, by the means of the present invention, a part of zinc oxide or hydroxide mixed with nickel hydroxide powder is also eluted in the alkaline electrolyte. Then, combining this nickel hydroxide electrode with a cadmium electrode,
When constructing a cadmium storage battery, the hydrogen overvoltage of the cadmium electrode is extremely high, so at the end of charging of the nickel-cadmium storage battery, the negative electrode may become extremely base polarized and its potential may reach the value at which zinc is deposited. . In such a case, a metallic zinc dendrite is generated at the cadmium electrode, and an internal short circuit of the battery occurs.

【0024】しかし、このような水酸化ニッケル電極を
水素吸蔵電極と組み合わせてニッケル・金属水素化物蓄
電池を構成する場合には、負極の水素吸蔵合金の水素過
電圧が著しく低いので、電池の充電末期に負極が分極し
ても、その電位は金属亜鉛が電析する値に到達すること
がない。
However, when such a nickel hydroxide electrode is combined with a hydrogen storage electrode to form a nickel-metal hydride storage battery, the hydrogen overvoltage of the hydrogen storage alloy of the negative electrode is extremely low, and therefore, at the end of charging of the battery. Even if the negative electrode is polarized, its potential does not reach the value at which metallic zinc is electrodeposited.

【0025】すなわち、本発明を構成する水酸化ニッケ
ル電極は、ニッケル・カドミウム蓄電池の正極に適用し
た場合に不都合が発生するのであるが、本発明のように
ニッケル・金属水素化物蓄電池の正極に適用する場合に
は、そのような不都合を発生することなく、上述のよう
に充放電サイクル寿命が長くなるという作用効果を奏す
るものである。
That is, although the nickel hydroxide electrode constituting the present invention causes inconvenience when it is applied to the positive electrode of a nickel-cadmium storage battery, it is applied to the positive electrode of a nickel-metal hydride storage battery as in the present invention. In such a case, such an inconvenience does not occur and, as described above, there is an effect that the charge / discharge cycle life becomes long.

【0026】[0026]

【実施例】<実験1> [蓄電池(A1)](本発明実施例) 電池(A1)は、次のように構成した。Example <Experiment 1> [Battery (A1)] (Example of the present invention) The battery (A1) was constructed as follows.

【0027】正極は、次のようにして製作した。すなわ
ち、主として水酸化ニッケルからなる活物質粉末90重
量部、水酸化コバルト粉末5重量部および水酸化カルシ
ウム粉末5重量部を添加して混合し、これに精製水を加
えて混練しペースト状混合物を調製した。次に、多孔
度が約98%で厚さが約0.7mmの発泡状ニッケル多
孔体に、このペースト状混合物を充填し、乾燥し、加圧
し、切断して、活物質充填部の厚さが0.55mm、巾
が14mm、長さが57mmの水酸化ニッケル電極を得
た。主として水酸化ニッケルからなるこの活物質粉末に
は、水酸化ニッケルと水酸化コバルトとの合計に対し
て、0.7モル%の水酸化コバルトが共沈してある。こ
の共沈された水酸化コバルトは、水酸化ニッケルと同様
に充放電反応に関与するものと考えられるので、この共
沈された水酸化コバルトは、水酸化ニッケルと区別しな
いで取り扱うことにする。
The positive electrode was manufactured as follows. That is, 90 parts by weight of an active material powder mainly consisting of nickel hydroxide, 5 parts by weight of cobalt hydroxide powder and 5 parts by weight of calcium hydroxide powder were added and mixed, and purified water was added thereto and kneaded to obtain a paste-like mixture. Was prepared. Next, a foamed nickel porous body having a porosity of about 98% and a thickness of about 0.7 mm was filled with this paste-like mixture, dried, pressed, and cut to obtain the thickness of the active material filled portion. Was 0.55 mm, the width was 14 mm, and the length was 57 mm to obtain a nickel hydroxide electrode. In this active material powder mainly consisting of nickel hydroxide, 0.7 mol% of cobalt hydroxide was coprecipitated with respect to the total of nickel hydroxide and cobalt hydroxide. Since this coprecipitated cobalt hydroxide is considered to be involved in the charge / discharge reaction like nickel hydroxide, the coprecipitated cobalt hydroxide will be treated without distinguishing it from nickel hydroxide.

【0028】負極は、次のようにして製作した。すなわ
ち、合金の組成がLmNi3.8Co0.7Al0.5
(ここにLmは、約90重量%のLaを含有する稀土類
金属混合物たるランタンリッチミッシュメタルであ
る。)になるように、各成分元素を真空にした高周波誘
導加熱炉で融解し、これを鋳造して得た鋳塊を粉砕し、
平均粒径が約30μmの水素吸蔵合金粉末を得た。次
に、この合金粉末100重量部、およびカーボンブラッ
ク3重量部を混合し、これに3重量%のポリビニルアル
コール水溶液40重量部を加えてペースト状混合物を調
製した。そして、鉄板にニッケルメッキを施した厚さが
約0.08mmの穿孔鋼板(開口率は約50%)に、こ
のペースト状混合物(あ)を塗着し、ドクターブレード
で厚さを調節してから、乾燥し、加圧し、切断して、活
物質坦持部の厚さが0.30mm、巾が15mm、長さ
が58mmの水素吸蔵電極を得た。
The negative electrode was manufactured as follows. That is, the composition of the alloy is LmNi 3.8 Co 0.7 Al 0.5.
(Where Lm is a lanthanum-rich misch metal, which is a rare earth metal mixture containing about 90% by weight of La). Each component element is melted in a high-frequency induction heating furnace in a vacuum, and this is melted. Crush the ingot obtained by casting,
A hydrogen storage alloy powder having an average particle size of about 30 μm was obtained. Next, 100 parts by weight of this alloy powder and 3 parts by weight of carbon black were mixed, and 40 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol were added thereto to prepare a paste-like mixture. Then, this paste mixture (a) is applied to a perforated steel plate (having an aperture ratio of about 50%) having a thickness of about 0.08 mm obtained by plating an iron plate with nickel, and the thickness is adjusted with a doctor blade. From the above, it was dried, pressurized and cut to obtain a hydrogen storage electrode having an active material supporting portion with a thickness of 0.30 mm, a width of 15 mm and a length of 58 mm.

【0029】電池1個には、上記の正極板4枚と負極板
5枚とを、界面活性剤で親水性を賦与した厚さが0.1
0mmのポリプロピレン製のセパレータ1枚を介して積
層して用いた。この積層体を、ニッケルメッキを施した
厚さが約0.4mmの鉄製の角形電池ケースに収納し、
7Mの水酸化カリウム水溶液に10g/lの水酸化リチ
ウムを溶解した電解液を注入し、電極の端子を兼ねる安
全弁を備えた金属製蓋体の周縁部を、この電池ケースの
周縁部と溶接して、電池を封口した。このようにして、
本発明の密閉形ニッケル−金属水素化物蓄電池を製作し
た。
In one battery, 4 sheets of the above positive electrode plate and 5 sheets of the above negative electrode plate are provided with hydrophilicity by a surfactant to have a thickness of 0.1.
It was used by stacking one 0 mm polypropylene separator. The laminated body is housed in a nickel-plated iron prismatic battery case with a thickness of about 0.4 mm,
An electrolytic solution prepared by dissolving 10 g / l of lithium hydroxide in a 7 M aqueous potassium hydroxide solution was injected, and the peripheral portion of the metal lid body provided with the safety valve which also serves as the terminal of the electrode was welded to the peripheral portion of the battery case. And sealed the battery. In this way
The sealed nickel-metal hydride storage battery of the present invention was manufactured.

【0030】この電池1個の正極には、約3.0gの水
酸化ニッケル、約0.167gの水酸化コバルト、およ
び約0.167gの水酸化カルシウムが充填されてい
る。水酸化ニッケルが1電子反応に従うことを仮定する
と、この電池1個の正極に含まれる水酸化ニッケルの理
論容量は、約870mAh(=289×3.0)であ
る。
The positive electrode of one battery was filled with about 3.0 g of nickel hydroxide, about 0.167 g of cobalt hydroxide, and about 0.167 g of calcium hydroxide . Assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of nickel hydroxide contained in the positive electrode of one battery is about 870 mAh (= 289 × 3.0).

【0031】一方、この電池1個の負極には、約4.6
gの水素吸蔵合金が含有されている。この水素吸蔵合金
を充放電する場合に、水素ガスを放出することなく充電
される電気量は、この水素吸蔵合金1g当たり約270
mAhであり、この充電電気量は、ほぼそのまま放電さ
れる。 [蓄電池(A2)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末の
代わりに酸化カルシウム粉末を備え、そのほかの構成は
蓄電池(A1)と同じにして、本発明の蓄電池(A2)
を製作した。 [蓄電池(A3)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末の
代わりに水酸化マグネシウム粉末を備え、そのほかの構
成は蓄電池(A1)と同じにして、本発明の蓄電池(A
3)を製作した。 [蓄電池(A4)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末の
代わりに酸化マグネシウム粉末を備え、そのほかの構成
は蓄電池(A1)と同じにして、本発明の蓄電池(A
4)を製作した。 [蓄電池(B1)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2.5重量部
と酸化カルシウム粉末2.5重量部とを共に備え、その
ほかの構成は蓄電池(A)と同じにして、本発明の蓄電
池(B1)を製作した。 [蓄電池(B2)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2.5重量部
と水酸化マグネシウム粉末2.5重量部とを共に備え、
そのほかの構成は蓄電池(A1)と同じにして、本発明
の蓄電池(B2)を製作した。 [蓄電池(B3)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2.5重量部
と酸化マグネシウム粉末2.5重量部とを共に備え、そ
のほかの構成は蓄電池(A1)と同じにして、本発明の
蓄電池(B3)を製作した。 [蓄電池(B4)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2.5重量部
と水酸化亜鉛粉末2.5重量部とを共に備え、そのほか
の構成は蓄電池(A1)と同じにして、本発明の蓄電池
(B4)を製作した。 [蓄電池(B5)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2.5重量部
と酸化亜鉛粉末2.5重量部とを共に備え、そのほかの
構成は蓄電池(A1)と同じにして、本発明の蓄電池
(B5)を製作した。 [蓄電池(B6)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2.5重量部と
水酸化マグネシウム粉末2.5重量部とを共に備え、そ
のほかの構成は蓄電池(A1)と同じにして、本発明の
蓄電池(B6)を製作した。 [蓄電池(B7)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2.5重量部と
酸化マグネシウム粉末2.5重量部とを共に備え、その
ほかの構成は蓄電池(A1)と同じにして、本発明の蓄
電池(B7)を製作した。 [蓄電池(B8)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2.5重量部と
水酸化亜鉛粉末2.5重量部とを共に備え、そのほかの
構成は蓄電池(A1)と同じにして、本発明の蓄電池
(B8)を製作した。 [蓄電池(B9)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2.5重量部と
酸化亜鉛粉末2.5重量部とを共に備え、そのほかの構
成は蓄電池(A1)と同じにして、本発明の蓄電池(B
9)を製作した。 [蓄電池(B10)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化マグネシウム粉末2.5重量
部と酸化マグネシウム粉末2.5重量部とを共に備え、
そのほかの構成は蓄電池(A1)と同じにして、本発明
の蓄電池(B10)を製作した。 [蓄電池(B11)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化マグネシウム粉末2.5重量
部と水酸化亜鉛粉末2.5重量部とを共に備え、そのほ
かの構成は蓄電池(A1)と同じにして、本発明の蓄電
池(B11)を製作した。 [蓄電池(B12)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化マグネシウム粉末2.5重量
部と酸化亜鉛粉末2.5重量部とを共に備え、そのほか
の構成は蓄電池(A1)と同じにして、本発明の蓄電池
(B12)を製作した。 [蓄電池(B13)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化マグネシウム粉末2.5重量部
と水酸化亜鉛粉末2.5重量部とを共に備え、そのほか
の構成は蓄電池(A1)と同じにして、本発明の蓄電池
(B13)を製作した。 [蓄電池(B14)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化マグネシウム粉末2.5重量部
と酸化亜鉛粉末2.5重量部とを共に備え、そのほかの
構成は蓄電池(A1)と同じにして、本発明の蓄電池
(B14)を製作した。 [蓄電池(B15)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化亜鉛粉末2.5重量部と、酸
化亜鉛粉末2.5重量部とを共に備え、そのほかの構成
は蓄電池(A1)と同じにして、本発明の蓄電池(B1
5)を製作した。 [蓄電池(C1)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末2重量部と、水酸化マグネシウム粉
末1重量部とを共に備え、そのほかの構成は蓄電池(A
1)と同じにして、本発明の蓄電池(C1)を製作し
た。 [蓄電池(C2)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末2重量部と、酸化マグネシウム粉末
1重量部とを共に備え、そのほかの構成は蓄電池(A
1)と同じにして、本発明の蓄電池(C2)を製作し
た。 [蓄電池(C3)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末2重量部と、水酸化亜鉛粉末1重量
部とを共に備え、そのほかの構成は蓄電池(A1)と同
じにして、本発明の蓄電池(C3)を製作した。 [蓄電池(C4)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末2重量部と、酸化亜鉛粉末1重量部
とを共に備え、そのほかの構成は蓄電池(A1)と同じ
にして、本発明の蓄電池(C4)を製作した。 [蓄電池(C5)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
水酸化マグネシウム粉末2重量部と、酸化マグネシウム
粉末1重量部とを共に備え、そのほかの構成は蓄電池
(A1)と同じにして、本発明の蓄電池(C5)を製作
した。 [蓄電池(C6)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
水酸化マグネシウム粉末2重量部と、水酸化亜鉛粉末1
重量部とを共に備え、そのほかの構成は蓄電池(A1)
と同じにして、本発明の蓄電池(C6)を製作した。 [蓄電池(C7)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
水酸化マグネシウム粉末2重量部と、酸化亜鉛粉末1重
量部とを共に備え、そのほかの構成は蓄電池(A1)と
同じにして、本発明の蓄電池(C7)を製作した。 [蓄電池(C8)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化マグネシウム粉末2重量部と、水酸化亜鉛粉末1重
量部とを共に備え、そのほかの構成は蓄電池(A1)と
同じにして、本発明の蓄電池(C8)を製作した。 [蓄電池(C9)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化マグネシウム粉末2重量部と、酸化亜鉛粉末1重量
部とを共に備え、そのほかの構成は蓄電池(A1)と同
じにして、本発明の蓄電池(C9)を製作した。 [蓄電池(C10)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
水酸化亜鉛粉末2重量部と、酸化亜鉛粉末1重量部とを
共に備え、そのほかの構成は蓄電池(A1)と同じにし
て、本発明の蓄電池(C10)を製作した。 [蓄電池(C11)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、水
酸化マグネシウム粉末2重量部と、酸化マグネシウム粉
末1重量部とを共に備え、そのほかの構成は蓄電池(A
1)と同じにして、本発明の蓄電池(C11)を製作し
た。 [蓄電池(C12)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、水
酸化マグネシウム粉末2重量部と、水酸化亜鉛粉末1重
量部とを共に備え、そのほかの構成は蓄電池(A1)と
同じにして、本発明の蓄電池(C12)を製作した。 [蓄電池(C13)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、水
酸化マグネシウム粉末2重量部と、酸化亜鉛粉末1重量
部とを共に備え、そのほかの構成は蓄電池(A1)と同
じにして、本発明の蓄電池(C13)を製作した。 [蓄電池(C14)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、酸
化マグネシウム粉末2重量部と、水酸化亜鉛粉末1重量
部とを共に備え、そのほかの構成は蓄電池(A1)と同
じにして、本発明の蓄電池(C14)を製作した。 [蓄電池(C15)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、酸
化マグネシウム粉末2重量部と、酸化亜鉛粉末1重量部
とを共に備え、そのほかの構成は蓄電池(A1)と同じ
にして、本発明の蓄電池(C15)を製作した。 [蓄電池(C16)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、水
酸化亜鉛粉末2重量部と、酸化亜鉛粉末1重量部とを共
に備え、そのほかの構成は蓄電池(A1)と同じにし
て、本発明の蓄電池(C16)を製作した。 [蓄電池(C17)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化マグネシウム粉末2重量部
と、酸化マグネシウム粉末2重量部と、水酸化亜鉛粉末
1重量部とを共に備え、そのほかの構成は蓄電池(A
1)と同じにして、本発明の蓄電池(C17)を製作し
た。 [蓄電池(C18)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化マグネシウム粉末2重量部
と、酸化マグネシウム粉末2重量部と、酸化亜鉛粉末1
重量部とを共に備え、そのほかの構成は蓄電池(A1)
と同じにして、本発明の蓄電池(C18)を製作した。 [蓄電池(C19)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化マグネシウム粉末2重量部
と、水酸化亜鉛粉末2重量部と、酸化亜鉛粉末1重量部
とを共に備え、そのほかの構成は蓄電池(A1)と同じ
にして、本発明の蓄電池(C19)を製作した。 [蓄電池(C20)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化マグネシウム粉末2重量部と、
水酸化亜鉛粉末2重量部と、酸化亜鉛粉末1重量部とを
共に備え、そのほかの構成は蓄電池(A1)と同じにし
て、本発明の蓄電池(C20)を製作した。 [蓄電池(D1)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末1重量部と、水酸化マグネシウム粉
末1重量部と、酸化マグネシウム粉末1重量部とを共に
備え、そのほかの構成は蓄電池(A1)と同じにして、
本発明の蓄電池(D1)を製作した。 [蓄電池(D2)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末1重量部と、水酸化マグネシウム粉
末1重量部と、水酸化亜鉛粉末1重量部とを共に備え、
そのほかの構成は蓄電池(A1)と同じにして、本発明
の蓄電池(D2)を製作した。 [蓄電池(D3)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末1重量部と、水酸化マグネシウム粉
末1重量部と、酸化亜鉛粉末1重量部とを共に備え、そ
のほかの構成は蓄電池(A1)と同じにして、本発明の
蓄電池(D3)を製作した。 [蓄電池(D4)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末1重量部と、酸化マグネシウム粉末
1重量部と、水酸化亜鉛粉末1重量部とを共に備え、そ
のほかの構成は蓄電池(A1)と同じにして、本発明の
蓄電池(D4)を製作した。 [蓄電池(D5)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末1重量部と、酸化マグネシウム粉末
1重量部と、酸化亜鉛粉末1重量部とを共に備え、その
ほかの構成は蓄電池(A1)と同じにして、本発明の蓄
電池(D5)を製作した。 [蓄電池(D6)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化カルシウム粉末1重量部と、水酸化亜鉛粉末1重量
部と、酸化亜鉛粉末1重量部とを共に備え、そのほかの
構成は蓄電池(A1)と同じにして、本発明の蓄電池
(D6)を製作した。 [蓄電池(D7)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
水酸化マグネシウム粉末1重量部と、酸化マグネシウム
粉末1重量部と、水酸化亜鉛粉末1重量部とを共に備
え、そのほかの構成は蓄電池(A1)と同じにして、本
発明の蓄電池(D7)を製作した。 [蓄電池(D8)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
水酸化マグネシウム粉末1重量部と、酸化マグネシウム
粉末1重量部と、酸化亜鉛粉末1重量部とを共に備え、
そのほかの構成は蓄電池(A1)と同じにして、本発明
の蓄電池(D8)を製作した。 [蓄電池(D9)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
水酸化マグネシウム粉末1重量部と、水酸化亜鉛粉末1
重量部と、酸化亜鉛粉末1重量部とを共に備え、そのほ
かの構成は蓄電池(A1)と同じにして、本発明の蓄電
池(D9)を製作した。 [蓄電池(D10)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末2重量部と、
酸化マグネシウム粉末1重量部と、水酸化亜鉛粉末1重
量部と、酸化亜鉛粉末1重量部とを共に備え、そのほか
の構成は蓄電池(A1)と同じにして、本発明の蓄電池
(D10)を製作した。 [蓄電池(D11)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、水
酸化マグネシウム粉末1重量部と、酸化マグネシウム粉
末1重量部と、水酸化鉛粉末1重量部とを共に備え、そ
のほかの構成は蓄電池(A1)と同じにして、本発明の
蓄電池(D11)を製作した。 [蓄電池(D12)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、水
酸化マグネシウム粉末1重量部と、酸化マグネシウム粉
末1重量部と、酸化亜鉛粉末1重量部とを共に備え、そ
のほかの構成は蓄電池(A1)と同じにして、本発明の
蓄電池(D12)を製作した。 [蓄電池(D13)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、水
酸化マグネシウム粉末1重量部と、水酸化亜鉛粉末1重
量部と、酸化亜鉛粉末1重量部とを共に備え、そのほか
の構成は蓄電池(A1)と同じにして、本発明の蓄電池
(D13)を製作した。 [蓄電池(D14)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末2重量部と、酸
化マグネシウム粉末1重量部と、水酸化亜鉛粉末1重量
部と、酸化亜鉛粉末1重量部とを共に備え、そのほかの
構成は蓄電池(A1)と同じにして、本発明の蓄電池
(D14)を製作した。 [蓄電池(D15)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化マグネシウム粉末2重量部
と、酸化マグネシウム粉末1重量部と、水酸化亜鉛粉末
1重量部と、酸化亜鉛粉末1重量部とを共に備え、その
ほかの構成は蓄電池(A1)と同じにして、本発明の蓄
電池(D15)を製作した。 [蓄電池(E1)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末1重量部と、
酸化カルシウム粉末1重量部と、水酸化マグネシウム粉
末1重量部と、酸化マグネシウム粉末1重量部と、水酸
化亜鉛粉末1重量部とを共に備え、そのほかの構成は蓄
電池(A1)と同じにして、本発明の蓄電池(E1)を
製作した。 [蓄電池(E2)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末1重量部と、
酸化カルシウム粉末1重量部と、水酸化マグネシウム粉
末1重量部と、酸化マグネシウム粉末1重量部と、酸化
亜鉛粉末1重量部とを共に備え、そのほかの構成は蓄電
池(A1)と同じにして、本発明の蓄電池(E2)を製
作した。 [蓄電池(E3)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末1重量部と、
酸化カルシウム粉末1重量部と、水酸化マグネシウム粉
末1重量部と、水酸化亜鉛粉末1重量部と、酸化亜鉛粉
末1重量部とを共に備え、そのほかの構成は蓄電池(A
1)と同じにして、本発明の蓄電池(E3)を製作し
た。 [蓄電池(E4)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末1重量部と、
酸化カルシウム粉末1重量部と、酸化マグネシウム粉末
1重量部と、水酸化亜鉛粉末1重量部と、酸化亜鉛粉末
1重量部とを共に備え、そのほかの構成は蓄電池(A
1)と同じにして、本発明の蓄電池(E4)を製作し
た。 [蓄電池(E5)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末1重量部と、
水酸化マグネシウム粉末1重量部と、酸化マグネシウム
粉末1重量部と、水酸化亜鉛粉末1重量部と、酸化亜鉛
粉末1重量部とを共に備え、そのほかの構成は蓄電池
(A1)と同じにして、本発明の蓄電池(E5)を製作
した。 [蓄電池(E6)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、酸化カルシウム粉末1重量部と、水
酸化マグネシウム粉末1重量部と、酸化マグネシウム粉
末1重量部と、水酸化亜鉛粉末1重量部と、酸化亜鉛粉
末1重量部とを共に備え、そのほかの構成は蓄電池(A
1)と同じにして、本発明の蓄電池(E6)を製作し
た。 [蓄電池(F)](本発明実施例) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部の代わりに、水酸化カルシウム粉末1重量部、酸
化カルシウム粉末1重量部と、水酸化マグネシウム粉末
1重量部と、酸化マグネシウム粉末1重量部と、水酸化
亜鉛粉末0.5重量部と、酸化亜鉛粉末0.5重量部と
を共に備え、そのほかの構成は蓄電池(A1)と同じに
して、本発明の蓄電池(F)を製作した。 [蓄電池(G)](従来品) 蓄電池(A1)の正極添加物の水酸化カルシウム粉末5
重量部を添加することなく、そのほかの構成は蓄電池
(A1)と同じにして、従来の蓄電池(G)を製作し
た。 [蓄電池(H1)](比較例) 蓄電池(A1)の負極として水素吸蔵合金を備えること
なく、その代わりに、次のものを用いた。そして、負極
板の厚さの増加分だけ電池の厚さを大きくした。そのほ
かの構成は蓄電池(A1)と同じにして、比較例の密閉
形ニッケル−カドミウム蓄電池(H1)を製作した。
On the other hand, the negative electrode of one battery has about 4.6.
g hydrogen storage alloy is contained. When charging and discharging this hydrogen storage alloy, the amount of electricity charged without releasing hydrogen gas is about 270 per 1 g of this hydrogen storage alloy.
It is mAh, and this charge amount of electricity is discharged almost as it is. [Battery (A2)] (Example of the present invention) A calcium oxide powder is provided in place of the calcium hydroxide powder of the positive electrode additive of the storage battery (A1), and other configurations are the same as those of the storage battery (A1). Storage battery (A2)
Was produced. [Storage Battery (A3)] (Examples of the Present Invention) The present invention is the same as the storage battery (A1) except that the storage battery (A1) is provided with magnesium hydroxide powder instead of the calcium hydroxide powder as the positive electrode additive. Storage battery (A
3) was manufactured. [Storage Battery (A4)] (Examples of the Present Invention) The storage battery (A1) was provided with magnesium oxide powder instead of the calcium hydroxide powder as the positive electrode additive, and other configurations were the same as those of the storage battery (A1). Storage battery (A
4) was manufactured. [Battery (B1)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of parts by weight, 2.5 parts by weight of calcium hydroxide powder and 2.5 parts by weight of calcium oxide powder are both provided, and the other configuration is the same as the storage battery (A), and the storage battery (B1) of the present invention is used. I made it. [Battery (B2)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of storage battery (A1)
Instead of 2.5 parts by weight, 2.5 parts by weight of calcium hydroxide powder and 2.5 parts by weight of magnesium hydroxide powder are both provided,
A storage battery (B2) of the present invention was manufactured by making the other configurations the same as the storage battery (A1). [Battery (B3)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of storage battery (A1)
Instead of the weight part, 2.5 parts by weight of calcium hydroxide powder and 2.5 parts by weight of magnesium oxide powder are both provided, and other configurations are the same as the storage battery (A1), and the storage battery (B3) of the present invention is used. I made it. [Battery (B4)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of storage battery (A1)
The storage battery (B4) of the present invention is provided with 2.5 parts by weight of calcium hydroxide powder and 2.5 parts by weight of zinc hydroxide powder, instead of parts by weight, and the other configurations are the same as those of the storage battery (A1). Was produced. [Battery (B5)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2.5 parts by weight, 2.5 parts by weight of calcium hydroxide powder and 2.5 parts by weight of zinc oxide powder were both provided, and the other configuration was the same as the storage battery (A1), and the storage battery (B5) of the present invention was used. I made it. [Battery (B6)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of the weight part, 2.5 parts by weight of calcium oxide powder and 2.5 parts by weight of magnesium hydroxide powder were both provided, and the other configuration was the same as the storage battery (A1), and the storage battery (B6) of the present invention was used. I made it. [Battery (B7)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
A storage battery (B7) of the present invention was manufactured by using 2.5 parts by weight of calcium oxide powder and 2.5 parts by weight of magnesium oxide powder instead of parts by weight, and making the other configurations the same as the storage battery (A1). did. [Battery (B8)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of the weight part, 2.5 parts by weight of calcium oxide powder and 2.5 parts by weight of zinc hydroxide powder are both provided, and other configurations are the same as the storage battery (A1), and the storage battery (B8) of the present invention is used. I made it. [Battery (B9)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of the weight part, 2.5 parts by weight of calcium oxide powder and 2.5 parts by weight of zinc oxide powder are both provided, and the other structure is the same as that of the storage battery (A1).
9) was manufactured. [Battery (B10)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2.5 parts by weight, 2.5 parts by weight of magnesium hydroxide powder and 2.5 parts by weight of magnesium oxide powder are both provided,
A storage battery (B10) of the present invention was manufactured by making the other configurations the same as the storage battery (A1). [Battery (B11)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of the weight parts, 2.5 parts by weight of magnesium hydroxide powder and 2.5 parts by weight of zinc hydroxide powder were both provided, and the other configuration was the same as the storage battery (A1), and the storage battery (B11) of the present invention was used. Was produced. [Battery (B12)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of the weight parts, 2.5 parts by weight of magnesium hydroxide powder and 2.5 parts by weight of zinc oxide powder were both provided, and the other configuration was the same as the storage battery (A1), and the storage battery (B12) of the present invention was used. I made it. [Battery (B13)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of the weight parts, 2.5 parts by weight of magnesium oxide powder and 2.5 parts by weight of zinc hydroxide powder were both provided, and the other configuration was the same as the storage battery (A1), and the storage battery (B13) of the present invention was used. I made it. [Battery (B14)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
A storage battery (B14) of the present invention was manufactured by using 2.5 parts by weight of magnesium oxide powder and 2.5 parts by weight of zinc oxide powder instead of parts by weight, and making the other configurations the same as the storage battery (A1). did. [Battery (B15)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2.5 parts by weight of zinc hydroxide powder and 2.5 parts by weight of zinc oxide powder were both provided instead of parts by weight, and the other configurations were the same as those of the storage battery (A1).
5) was manufactured. [Battery (C1)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
2 parts by weight of calcium oxide powder and 1 part by weight of magnesium hydroxide powder are provided together, and the other structure is a storage battery (A
A storage battery (C1) of the present invention was produced in the same manner as 1). [Storage Battery (C2)] (Examples of the Present Invention) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
It has both 2 parts by weight of calcium oxide powder and 1 part by weight of magnesium oxide powder, and the other structure is a storage battery (A
A storage battery (C2) of the present invention was manufactured in the same manner as 1). [Battery (C3)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (C3) of the present invention was manufactured by providing both 2 parts by weight of calcium oxide powder and 1 part by weight of zinc hydroxide powder, and making the other configurations the same as the storage battery (A1). [Battery (C4)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (C4) of the present invention was manufactured by including both 2 parts by weight of calcium oxide powder and 1 part by weight of zinc oxide powder, and making the other configurations the same as the storage battery (A1). [Battery (C5)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (C5) of the present invention was manufactured by including both 2 parts by weight of magnesium hydroxide powder and 1 part by weight of magnesium oxide powder and making the other configurations the same as the storage battery (A1). [Battery (C6)] (Example of the present invention) Calcium hydroxide powder 5 as the positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
2 parts by weight of magnesium hydroxide powder and 1 part of zinc hydroxide powder
It is equipped with both parts by weight, and other configurations are storage batteries (A1)
A storage battery (C6) of the present invention was manufactured in the same manner as in. [Battery (C7)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (C7) of the present invention was manufactured by including both 2 parts by weight of magnesium hydroxide powder and 1 part by weight of zinc oxide powder, and making the other configurations the same as the storage battery (A1). [Battery (C8)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (C8) of the present invention was manufactured by including both 2 parts by weight of magnesium oxide powder and 1 part by weight of zinc hydroxide powder, and making the other configurations the same as the storage battery (A1). [Battery (C9)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (C9) of the present invention was manufactured by including both 2 parts by weight of magnesium oxide powder and 1 part by weight of zinc oxide powder, and making the other configurations the same as the storage battery (A1). [Battery (C10)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (C10) of the present invention was manufactured by including both 2 parts by weight of zinc hydroxide powder and 1 part by weight of zinc oxide powder, and making the other configurations the same as the storage battery (A1). [Battery (C11)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 2 parts by weight of magnesium hydroxide powder, and 1 part by weight of magnesium oxide powder are provided together, and the other structure is a storage battery (A
A storage battery (C11) of the present invention was manufactured in the same manner as 1). [Battery (C12)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 2 parts by weight of magnesium hydroxide powder, and 1 part by weight of zinc hydroxide powder are provided together, and other configurations are the same as those of the storage battery (A1). The storage battery (C12) was manufactured. [Battery (C13)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 2 parts by weight of magnesium hydroxide powder, and 1 part by weight of zinc oxide powder are provided together, and other configurations are the same as those of the storage battery (A1). A storage battery (C13) was manufactured. [Battery (C14)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 2 parts by weight of magnesium oxide powder, and 1 part by weight of zinc hydroxide powder are provided together, and other configurations are the same as those of the storage battery (A1). A storage battery (C14) was manufactured. [Battery (C15)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 2 parts by weight of magnesium oxide powder, and 1 part by weight of zinc oxide powder are provided together, and the other configurations are the same as the storage battery (A1), and the storage battery of the present invention. (C15) was manufactured. [Battery (C16)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 2 parts by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder are provided together, and other configurations are the same as those of the storage battery (A1). A storage battery (C16) was manufactured. [Battery (C17)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of magnesium hydroxide powder, 2 parts by weight of magnesium oxide powder, and 1 part by weight of zinc hydroxide powder are provided together, and the other structure is a storage battery (A
A storage battery (C17) of the present invention was produced in the same manner as 1). [Battery (C18)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of magnesium hydroxide powder, 2 parts by weight of magnesium oxide powder, and 1 part of zinc oxide powder instead of parts by weight.
It is equipped with both parts by weight, and other configurations are storage batteries (A1)
A storage battery (C18) of the present invention was manufactured in the same manner as in. [Battery (C19)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of magnesium hydroxide powder, 2 parts by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder are provided together, and other configurations are the same as those of the storage battery (A1). The storage battery (C19) was manufactured. [Battery (C20)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of magnesium oxide powder instead of parts by weight,
A storage battery (C20) of the present invention was manufactured by including both 2 parts by weight of zinc hydroxide powder and 1 part by weight of zinc oxide powder, and making the other configurations the same as the storage battery (A1). [Battery (D1)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
1 part by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, and 1 part by weight of magnesium oxide powder are provided together, and other configurations are the same as those of the storage battery (A1),
The storage battery (D1) of the present invention was manufactured. [Battery (D2)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
1 parts by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, and 1 part by weight of zinc hydroxide powder,
A storage battery (D2) of the present invention was manufactured by making the other configurations the same as the storage battery (A1). [Battery (D3)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (D3) of the present invention is manufactured by including 1 part by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, and 1 part by weight of zinc oxide powder, and the other configurations are the same as those of the storage battery (A1). did. [Battery (D4)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (D4) of the present invention is manufactured by including 1 part by weight of calcium oxide powder, 1 part by weight of magnesium oxide powder, and 1 part by weight of zinc hydroxide powder, with the other configurations being the same as the storage battery (A1). did. [Battery (D5)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (D5) of the present invention was manufactured by including 1 part by weight of calcium oxide powder, 1 part by weight of magnesium oxide powder, and 1 part by weight of zinc oxide powder, and the other configurations were the same as the storage battery (A1). . [Battery (D6)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (D6) of the present invention is manufactured by including 1 part by weight of calcium oxide powder, 1 part by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder, with the other configurations being the same as the storage battery (A1). did. [Storage Battery (D7)] (Examples of the Present Invention) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
The storage battery (D7) of the present invention is provided with 1 part by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, and 1 part by weight of zinc hydroxide powder, and other configurations are the same as the storage battery (A1). I made it. [Battery (D8)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
1 part by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, and 1 part by weight of zinc oxide powder are provided together,
A storage battery (D8) of the present invention was manufactured by making the other configurations the same as the storage battery (A1). [Battery (D9)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
1 part by weight of magnesium hydroxide powder and 1 part of zinc hydroxide powder
A storage battery (D9) of the present invention was manufactured by including both parts by weight and 1 part by weight of zinc oxide powder, and making the other configurations the same as the storage battery (A1). [Storage Battery (D10)] (Examples of the Present Invention) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
2 parts by weight of calcium hydroxide powder instead of parts by weight,
A storage battery (D10) of the present invention is manufactured by including 1 part by weight of magnesium oxide powder, 1 part by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder, and the other configurations are the same as those of the storage battery (A1). did. [Battery (D11)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, and 1 part by weight of lead hydroxide powder are provided together, and the other structure is a storage battery (A1). The storage battery (D11) of the present invention was manufactured in the same manner as in (1). [Storage Battery (D12)] (Examples of the Present Invention) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, and 1 part by weight of zinc oxide powder are provided together, and the other configurations are the storage battery (A1). A storage battery (D12) of the present invention was manufactured in the same manner as in. [Battery (D13)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, 1 part by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder are provided together, and the other components are the storage battery (A1). The storage battery (D13) of the present invention was manufactured in the same manner as in (1). [Storage Battery (D14)] (Examples of the Present Invention) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of calcium oxide powder, 1 part by weight of magnesium oxide powder, 1 part by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder are provided together, and the other configurations are the storage battery (A1). The storage battery (D14) of the present invention was manufactured in the same manner as in (1). [Battery (D15)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 2 parts by weight, 2 parts by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, 1 part by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder are provided together, and the other structure is the storage battery (A1). The storage battery (D15) of the present invention was manufactured in the same manner as in (1). [Storage Battery (E1)] (Examples of the Present Invention) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
Instead of 1 part by weight, 1 part by weight of calcium hydroxide powder,
1 part by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, and 1 part by weight of zinc hydroxide powder are provided together, and other configurations are the same as those of the storage battery (A1), The storage battery (E1) of the present invention was manufactured. [Battery (E2)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 1 part by weight, 1 part by weight of calcium hydroxide powder,
1 part by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, and 1 part by weight of zinc oxide powder are provided together, and other configurations are the same as those of the storage battery (A1). The storage battery (E2) of the invention was produced. [Storage Battery (E3)] (Examples of the Present Invention) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
Instead of 1 part by weight, 1 part by weight of calcium hydroxide powder,
1 part by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, 1 part by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder are provided together, and the other structure is a storage battery (A
A storage battery (E3) of the present invention was manufactured in the same manner as 1). [Battery (E4)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of 1 part by weight, 1 part by weight of calcium hydroxide powder,
1 part by weight of calcium oxide powder, 1 part by weight of magnesium oxide powder, 1 part by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder are provided together, and the other structure is a storage battery (A
A storage battery (E4) of the present invention was manufactured in the same manner as 1). [Storage Battery (E5)] (Examples of the Present Invention) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
Instead of 1 part by weight, 1 part by weight of calcium hydroxide powder,
1 part by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, 1 part by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder are provided together, and other configurations are the same as those of the storage battery (A1), The storage battery (E5) of the present invention was manufactured. [Battery (E6)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of parts by weight, 1 part by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, 1 part by weight of zinc hydroxide powder, and 1 part by weight of zinc oxide powder are both provided. , Other configurations are storage batteries (A
A storage battery (E6) of the present invention was produced in the same manner as 1). [Battery (F)] (Example of the present invention) Calcium hydroxide powder 5 as a positive electrode additive of the storage battery (A1)
Instead of parts by weight, 1 part by weight of calcium hydroxide powder, 1 part by weight of calcium oxide powder, 1 part by weight of magnesium hydroxide powder, 1 part by weight of magnesium oxide powder, and 0.5 part by weight of zinc hydroxide powder, A storage battery (F) of the present invention was manufactured by using the same content as that of the storage battery (A1) except that 0.5 parts by weight of zinc oxide powder was included. [Battery (G)] (conventional product) Calcium hydroxide powder 5 as a positive electrode additive for storage battery (A1)
A conventional storage battery (G) was manufactured in the same manner as the storage battery (A1) except that the weight part was not added. [Storage Battery (H1)] (Comparative Example) The following was used instead of the storage battery (A1) without the hydrogen storage alloy as the negative electrode. Then, the thickness of the battery was increased by the increase in the thickness of the negative electrode plate. A sealed nickel-cadmium storage battery (H1) of a comparative example was manufactured by making the other configurations the same as the storage battery (A1).

【0032】負極は、次のようにして製作した。すなわ
ち、酸化カドミウム粉末100重量部、および金属カド
ミウム粉末30重量部を混合し、これに3重量%のポリ
ビニルアルコール水溶液40重量部を加えてペースト状
混合物を調製した。そして、鉄板にニッケルメッキを施
した厚さが約0.08mmの穿孔鋼板(開口率は約50
%)に、このペースト状混合物を塗着し、ドクターブレ
ードで厚さを調節してから、乾燥し、加圧し、切断し
て、活物質坦持部の厚さが0.6mm、巾が15mm、
長さが58mmのカドミウム電極を得た。カドミウム電
極では、充電生成物である金属カドミウムのうちで、放
電が困難になる量が水素吸蔵電極と比較して著しく大き
いので、電池の放電を正極で制限するように、充電生成
物として作用する金属カドミウム粉末をあらかじめ供え
させている。
The negative electrode was manufactured as follows. That is, 100 parts by weight of cadmium oxide powder and 30 parts by weight of metal cadmium powder were mixed, and 40 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol were added to prepare a paste-like mixture. Then, a perforated steel plate having a thickness of about 0.08 mm (aperture ratio of about 50
%), This paste-like mixture is applied, and the thickness is adjusted with a doctor blade, followed by drying, pressing, and cutting, and the thickness of the active material carrying part is 0.6 mm and the width is 15 mm. ,
A cadmium electrode having a length of 58 mm was obtained. In the cadmium electrode, among the metal cadmium that is the charge product, the amount that makes discharge difficult is significantly larger than that in the hydrogen storage electrode, so it acts as a charge product so as to limit the discharge of the battery at the positive electrode. Metal cadmium powder is provided in advance.

【0033】それゆえ、この電池を充電した場合に、上
述のように、正極の水酸化コバルトが3価に酸化され、
水酸化ニッケルが3.2価に酸化されるまでに、約10
90mAh(=50+1040)の電気量が充電され
る。
Therefore, when this battery is charged, as described above, the cobalt hydroxide of the positive electrode is oxidized to trivalent,
It takes about 10 days before nickel hydroxide is oxidized to 3.2 valence.
A quantity of electricity of 90 mAh (= 50 + 1040) is charged.

【0034】一方、この電池1個の負極には、約3.1
gの酸化カドミウムおよび約0.93g(理論容量:約
440mAh)の金属カドミウムが含有されている。こ
ドミウムを充放電する場合に、水素ガスを放出する
ことなく充電される電気量は、酸化カドミウム1g当た
り約400mAhである。従って、この電池1個の負極
の酸化カドミウムは、充電電気量が約1240mAh
(=400×3.1)になるまで水素ガスを発生するこ
となく充電される。
On the other hand, about 3.1 is contained in the negative electrode of this battery.
g of cadmium oxide and about 0.93 g (theoretical capacity: about 440 mAh) of metallic cadmium. The cadmium when charging and discharging, the quantity of electricity to be charged without releasing hydrogen gas is about 400mAh per cadmium oxide 1g. Therefore, cadmium oxide of the negative electrode of this battery has a charging electricity of about 1240 mAh.
It is charged without generating hydrogen gas until it reaches (= 400 × 3.1).

【0035】すなわち、この電池を充電すると、負極が
満充電になって水素ガスが発生する充電電気量(124
0mAh)に到達する前に、正極が満充電になる充電電
気量(1090mAh)に到達して、正極から酸素ガス
が発生する。そして、この電池は密閉形であるから、正
極が満充電になってから過充電して発生する酸素ガス
は、負極において電解還元されて消費される。従って、
電池の密閉性が損なわれることがない。
That is, when the battery is charged, the negative electrode is fully charged and hydrogen gas is generated.
Before reaching 0 mAh), the amount of charge electricity (1090 mAh) at which the positive electrode is fully charged reaches, and oxygen gas is generated from the positive electrode. Since this battery is a sealed type, oxygen gas generated by overcharging after the positive electrode is fully charged is electrolytically reduced and consumed in the negative electrode. Therefore,
The airtightness of the battery is not impaired.

【0036】また、電池を放電する際には、正極の放電
可能な容量820mAhは、負極の充電電気量1530
mAh(=1090+440)よりも著しく小さいの
で、電池の放電が正極の放電容量で制限されることもわ
かる。 [蓄電池(H2)](比較例) 蓄電池(H1)における水酸化カルシウムを備える正極
を用いることなく、その代わりに、蓄電池(A2)に用
いたものと同じ酸化カルシウムを備える正極を用い、そ
のほかの構成は蓄電池(H1)と同じにして、比較例の
密閉形ニッケル−カドミウム蓄電池(H2)を製作し
た。 [蓄電池(H3)(比較例) 蓄電池(H1)における水酸化カルシウムを備える正極
を用いることなく、その代わりに、蓄電池(A3)に用
いたものと同じ水酸化マグネシウムを備える正極を用
い、そのほかの構成は蓄電池(H1)と同じにして、比
較例の密閉形ニッケル−カドミウム蓄電池(H3)を製
作した。 [蓄電池(H4)](比較例) 蓄電池(H1)における水酸化カルシウムを備える正極
を用いることなく、その代わりに、蓄電池(A4)に用
いたものと同じ酸化マグネシウムを備える正極を用い、
そのほかの構成は蓄電池(H1)と同じにして、比較例
の密閉形ニッケル−カドミウム蓄電池(H4)を製作し
た。
When the battery is discharged, the dischargeable capacity of the positive electrode is 820 mAh, and the chargeable quantity of the negative electrode is 1530.
Since it is significantly smaller than mAh (= 1090 + 440), it can be seen that the discharge of the battery is limited by the discharge capacity of the positive electrode. [Storage Battery (H2)] (Comparative Example) Without using the positive electrode provided with calcium hydroxide in the storage battery (H1), a positive electrode provided with the same calcium oxide as that used for the storage battery (A2) was used instead, and other A sealed nickel-cadmium storage battery (H2) of a comparative example was manufactured with the same structure as the storage battery (H1). [Rechargeable Battery (H3) (Comparative Example) Without using the positive electrode provided with calcium hydroxide in the storage battery (H1), a positive electrode provided with the same magnesium hydroxide as that used for the storage battery (A3) was used instead, and other A sealed nickel-cadmium storage battery (H3) of a comparative example was manufactured with the same structure as the storage battery (H1). [Storage Battery (H4)] (Comparative Example) Without using the positive electrode provided with calcium hydroxide in the storage battery (H1), a positive electrode provided with the same magnesium oxide as that used for the storage battery (A4) was used instead.
A sealed nickel-cadmium storage battery (H4) of a comparative example was manufactured by making the other configurations the same as the storage battery (H1).

【0037】以上に述べた66種類の蓄電池の化成のた
めに、充放電サイクルの前に、次の条件で2回の充放電
をおこなった。
For the formation of the 66 kinds of storage batteries described above, charging / discharging was performed twice under the following conditions before the charging / discharging cycle.

【0038】充電:電流80mAで16時間通電し、1
時間放置する。
Charging: 1 hour at 80 mA for 16 hours
Leave for hours.

【0039】放電:電流160mAで端子電圧1.0V
まで放電し、1時間放置する。
Discharge: Current of 160 mA and terminal voltage of 1.0 V
Discharge for 1 hour.

【0040】これらの蓄電池の充放電サイクル寿命試験
を、次の条件でおこなった。電池の充放電は、20℃で
おこなった。
The charging / discharging cycle life test of these storage batteries was carried out under the following conditions. The battery was charged / discharged at 20 ° C.

【0041】充電:電流800mAで1.2時間通電
し、30分間放置する。
Charging: A current of 800 mA is applied for 1.2 hours, and the battery is left for 30 minutes.

【0042】放電:電流800mAで端子電圧1.0V
まで通電し、30分間放置する。
Discharge: Current of 800 mA, terminal voltage of 1.0 V
Energize for up to 30 minutes.

【0043】この試験の間の電池の内部抵抗を1KHz
の交流法で測定し、その値が初期の化成の充放電の後の
内部抵抗の値の5倍に到達するまでの充放電サイクル数
を、その電池の充放電サイクル寿命と判定した。また、
この充放電サイクル寿命に到達するまでに、充電後の放
置中の電池の開回路電圧が1.1V未満に到達した場合
には、その電池に内部短絡が発生したものと判定した。
また、電池の安全弁を観察して、充電中の電解液の漏出
を観察した。
The internal resistance of the battery during this test was 1 kHz.
The alternating current method was used to measure the number of charge / discharge cycles until the value reached 5 times the internal resistance value after the initial formation charge / discharge, and was determined as the charge / discharge cycle life of the battery. Also,
If the open circuit voltage of the battery left to stand after charging reached less than 1.1 V before reaching the charge / discharge cycle life, it was determined that an internal short circuit had occurred in the battery.
Also, the safety valve of the battery was observed to observe leakage of the electrolytic solution during charging.

【0044】この試験における上記の電池の充放電サイ
クル寿命、電池の内部短絡の発生の有無、および電解液
の漏出の有無を表1および表2に示す。
Tables 1 and 2 show the charge / discharge cycle life of the above-mentioned battery in this test, whether or not an internal short circuit occurred in the battery, and whether or not the electrolyte solution leaked out.

【0045】[0045]

【表1】 [Table 1]

【表2】 表1および表2から次のことがわかる。[Table 2] The following can be seen from Tables 1 and 2.

【0046】すなわち、比較例の密閉形のニッケル−カ
ドミウム蓄電池(H1)、(H2)、(H3)、(Hお
よび4)は、電解液の漏出が起こって、電池の内部抵抗
が増加し、充放電サイクル寿命が著しく短くなってい
る。これは、正極に添加されているカルシウムやマグネ
シウムが負極に移動して、カドミウムの充電反応が阻害
され、電池の充電の途中で水素ガスが負極から多量に発
生し、その結果、電池の内圧が著しく増加し、安全弁が
開いて、電解液が溢出し、電池の内部抵抗が増加したも
のである。
That is, in the sealed nickel-cadmium storage batteries (H1), (H2), (H3), (H and 4) of the comparative example, leakage of the electrolytic solution occurred and the internal resistance of the battery increased, The charge / discharge cycle life is significantly shortened. This is because the calcium and magnesium added to the positive electrode move to the negative electrode, the charging reaction of cadmium is hindered, and a large amount of hydrogen gas is generated from the negative electrode during the charging of the battery. This is due to a significant increase, the safety valve opening, the electrolyte overflowing, and the internal resistance of the battery increasing.

【0047】[0047]

【0048】従来例の正極にカルシウム、マグネシウ
ム、および亜鉛の水酸化物や酸化物を備えていない密閉
形ニッケル−金属水素化物蓄電池(G)では、密閉形ニ
ッケル−カドミウム蓄電池のような内部短絡や電解液の
漏出は起こっていないものの、内部抵抗の増加を伴う充
放電サイクル寿命は約600サイクルである。
In the sealed nickel-metal hydride storage battery (G) in which the positive electrode of the conventional example does not include hydroxides or oxides of calcium, magnesium, and zinc, an internal short circuit such as a sealed nickel-cadmium storage battery or Although no electrolyte leakage has occurred, the charge / discharge cycle life with an increase in internal resistance is about 600 cycles.

【0049】一方、本発明の密閉形ニッケル−金属水素
化物蓄電池(A1)〜(A4)、(B1)〜(B1
5)、(C1)〜(C20)、(D1)〜(D15)、
(E1)〜(E6)、および(F)は、いずれも電池の
内部短絡や電解液の漏出を引き起こすことなく、100
0サイクル以上の充放電をおこなっても内部抵抗の増加
を伴わない。これは、カルシウム、マグネシウム、亜鉛
の群から選択した少なくとも1つの金属の酸化物もしく
は水酸化物(ただし、亜鉛の酸化物単独もしくは水酸化
物単独を除く)を正極に備える構成によって、正極にお
けるγ相の生成が効果的に抑制されたことに起因する。 <実験2>実験1における本発明の密閉形ニッケル−金
属水素化物蓄電池(A1)、(A2)、(A3)、およ
び(A4)のどの正極においても、水酸化ニッケルと水
酸化コバルトとの合計に対する水酸化コバルトの含有率
が、0、0.4、0.7、1、2、5、10、15、2
0、25、および30mol%の値になるように水酸化
コバルトを共沈した水酸化ニッケル粉末を用いて正極板
を製作し、その水酸化ニッケル電極を用いることのほか
は、それぞれの電池と同じ構成にして、試験用の電池を
製作した。水酸化ニッケルに共沈する水酸化コバルトの
含有率が変わる場合にも、そのほかの構成が、それぞれ
(A1)、(A2)、(A3)、および(A4)と同じ
電池を、それぞれ系列{A1}、{A2}、{A3}、
および{A4}と呼ぶ。
On the other hand, the sealed nickel-metal hydride storage batteries (A1) to ( A4 ), (B1) to (B1) of the present invention.
5), (C1) to (C20), (D1) to (D15),
All of (E1) to (E6) and (F) are 100% without causing an internal short circuit of the battery or leakage of the electrolytic solution.
Even if charging and discharging are performed for 0 cycles or more, the internal resistance does not increase. This is an oxide or hydroxide of at least one metal selected from the group of calcium, magnesium and zinc (provided that zinc oxide alone or hydroxide is used.
This is due to the fact that the production of the γ phase in the positive electrode is effectively suppressed by the configuration in which the positive electrode ( excluding the single substance) is provided in the positive electrode. <Experiment 2> The sealed nickel-metal hydride storage batteries (A1), (A2), (A3) of the present invention in Experiment 1, and
(A4), the content ratio of cobalt hydroxide to the total of nickel hydroxide and cobalt hydroxide was 0, 0.4, 0.7, 1, 2, 5, 10, 15, 2
Same as each battery except that nickel hydroxide powder was used to co-precipitate cobalt hydroxide to a value of 0, 25, and 30 mol% to produce a positive electrode plate and the nickel hydroxide electrode was used. A battery for testing was manufactured in the configuration. Even when the content rate of cobalt hydroxide coprecipitated in nickel hydroxide changes, the other batteries having the same other configurations as those of (A1), (A2), (A3), and (A4) , respectively, are in series {A1. }, {A2}, {A3},
And {A4}.

【0050】これらの電池を、実験1と同じ条件で化成
の充放電を5サイクルおこなった後で、次のような高温
における低率充電試験をおこなって、その後の放電容量
を調べた。
After subjecting these batteries to charge and discharge for 5 cycles of formation under the same conditions as in Experiment 1, a low rate charge test at a high temperature as described below was conducted to examine the discharge capacity thereafter.

【0051】充電:45℃にて、電流80mA(10時
間率)で16時間通電し、1時間放置する。
Charging: At 45 ° C., a current of 80 mA (10-hour rate) is applied for 16 hours, and left for 1 hour.

【0052】放電:25℃にて、電流160mAで端子
電圧1.0Vまで放電して放電容量を調べる。そして、
45℃で低率充電した後の放電容量と、25℃における
化成の5回目の充放電のちの放電容量との比を調べた。
この容量比を高温下における充電効率と呼んで、正極の
ニッケル粉末に共沈した水酸化コバルトの含有率に対し
てプロットした結果を図1に示す。
Discharge: Discharge at 25 ° C. with a current of 160 mA to a terminal voltage of 1.0 V and check the discharge capacity. And
The ratio between the discharge capacity after low-rate charging at 45 ° C. and the discharge capacity after the fifth charge / discharge of formation at 25 ° C. was examined.
This capacity ratio is called the charging efficiency at high temperature, and the results plotted against the content of cobalt hydroxide coprecipitated in the nickel powder of the positive electrode are shown in FIG.

【0053】図1から次のことがわかる。すなわち、
{A1}、{A2}、{A3}、および{A4}のどの
系列においても、高温下での充電効率が改善されてお
り、特にコバルトの含有率が1mol%以上では、高温
下の充電効率の低下が顕著に抑制されていることがわか
る。
The following can be seen from FIG. That is,
In any of the {A1}, {A2}, {A3}, and {A4} series, the charging efficiency at high temperature is improved, and especially when the cobalt content is 1 mol% or more, the charging efficiency at high temperature is improved. It can be seen that the decrease in is significantly suppressed.

【0054】次に、化成の5回目の充放電ののちの放電
容量と、正極の水酸化ニッケルに共沈した水酸化コバル
トの含有率との関係を図2に示す。
FIG. 2 shows the relationship between the discharge capacity after the fifth charge and discharge of formation and the content of cobalt hydroxide coprecipitated in nickel hydroxide of the positive electrode.

【0055】図2から、25℃においては、コバルトの
含有率が20mol%を越えると、放電容量が著しく減
少することがわかる。これは、コバルトの含有率が20
mol%を越えると、共沈したコバルトが水酸化ニッケ
ルと遊離して、充放電反応に関与しなくなることに起因
するものと推察される。
From FIG. 2, it is understood that at 25 ° C., when the cobalt content exceeds 20 mol%, the discharge capacity is remarkably reduced. This has a cobalt content of 20.
When it exceeds mol%, it is presumed that this is because the co-precipitated cobalt is released from nickel hydroxide and does not participate in the charge / discharge reaction.

【0056】なお、実験1では、コバルトの含有率が
0.7mol%の水酸化ニッケル粉末を用いたが、1m
ol%以上の範囲の添加率のコバルトを共沈した水酸化
ニッケルを用いる場合にも、カルシウム、マグネシウ
ム、もしくは亜鉛の酸化物もしくは水酸化物(ただし、
亜鉛の酸化物単独もしくは水酸化物単独を除く)を添加
する場合には、実験1と同様の作用効果が得られること
を確かめた。
In Experiment 1, nickel hydroxide powder having a cobalt content of 0.7 mol% was used.
Even when nickel hydroxide co-precipitating cobalt with an addition rate in the range of ol% or more is used, an oxide or hydroxide of calcium, magnesium, or zinc (however,
It was confirmed that the same effects as in Experiment 1 were obtained when zinc oxide alone or hydroxide alone) was added.

【0057】また、コバルトの含有率が1mol%以上
の範囲の添加率のコバルトを共沈した水酸化ニッケルを
用いる場合であっても、カルシウム、マグネシウム、も
しくは亜鉛の酸化物もしくは水酸化物(ただし、亜鉛の
酸化物単独もしくは水酸化物単独を除く)を添加しない
場合には、実験2と同じ条件で、高温下における充電効
率を調べると、高い充電効率が得られるが、実験1と同
じ条件で、率充電をともなう充放電サイクル試験をお
こなうと、γ相の生成を防ぐことが困難であり、電池の
充放電サイクル寿命は著しく短くなった。
Even when nickel hydroxide co-precipitated with a cobalt content of 1 mol% or more is used, calcium, magnesium, or zinc oxide or hydroxide (provided that , Of zinc
Without the addition of excluding oxide alone or hydroxide alone) in the same conditions as in Experiment 2, when examining the charge efficiency at high temperatures, but high charging efficiency can be obtained, under the same conditions as in Experiment 1, high When the charge / discharge cycle test with constant charge was performed, it was difficult to prevent the formation of the γ phase, and the charge / discharge cycle life of the battery was significantly shortened.

【0058】従って、以上の実験結果から、高率充電す
る条件で充放電サイクル寿命が長くなり、かつ高温下に
おける充電効率の低下が抑制され、しかも常温における
放電容量の低下を招かないという3つの作用効果を併せ
持つのは、水酸化ニッケルと水酸化コバルトとの合計に
対して1モル%以上20モル%以下の水酸化コバルトを
共沈してなる水酸化ニッケルを活物質と、カルシウム、
マグネシウム、亜鉛の群から選択した少なくとも1つの
金属の酸化物もしくは水酸化物(ただし、亜鉛の酸化物
単独もしくは水酸化物単独を除く)との混合物を、耐ア
ルカリ性導電性支持体に保持してなる正極と、水素吸蔵
合金を主体とする負極とを備えるニッケル−金属水素化
物蓄電池であるといえる。
Therefore, from the above experimental results, it is possible to increase the charge / discharge cycle life under the condition of high rate charging, suppress the decrease in charging efficiency at high temperature, and prevent the decrease in discharge capacity at room temperature. In addition to the action and effect, nickel hydroxide formed by coprecipitating 1 mol% or more and 20 mol% or less of cobalt hydroxide with respect to the total of nickel hydroxide and cobalt hydroxide is an active material and calcium,
At least one metal oxide or hydroxide selected from the group of magnesium and zinc (provided that zinc oxide
It can be said to be a nickel-metal hydride storage battery comprising a positive electrode in which a single substance or a mixture thereof ( excluding hydroxide alone) is held on an alkali-resistant conductive support, and a negative electrode mainly composed of a hydrogen storage alloy.

【0059】また、上記の実施例において、カルシウ
ム、マグネシウム、亜鉛の群から選択した少なくとも1
つの金属の酸化物もしくは水酸化物(ただし、亜鉛の酸
化物単独もしくは水酸化物単独を除く)の添加は、その
粉末を添加して混合することを記載しているが、これら
の酸化物もしくは水酸化物は、粉末としての混合だけで
はなく、主として水酸化ニッケルからなる活物質粉末の
表面に析出または付着させることによって混合したもの
であっても、同様の作用効果を奏することは言うまでも
ない。なぜなら、これは、本発明がこれらの酸化物もし
くは水酸化物を、水酸化ニッケルを主体とする活物質と
は別の酸化物もしくは水酸化物との混合物として添加す
ることによって構成していることに基づくからである。
In the above embodiment, at least one selected from the group consisting of calcium, magnesium and zinc.
Oxides or hydroxides of two metals (but zinc acid
Compound alone or hydroxide alone) is described as adding the powder and mixing, but these oxides or hydroxides are not only mixed as a powder, but are mainly mixed with water. It is needless to say that even if the active material powder made of nickel oxide is mixed by being deposited or adhered to the surface, the same action and effect can be obtained. This is because the present invention is constituted by adding these oxides or hydroxides as a mixture with an oxide or hydroxide other than the active material mainly containing nickel hydroxide. It is based on.

【0060】なお、以上の実施例では、正極に備えるカ
ルシウム、マグネシウム、亜鉛の群から選択した少なく
とも1つの金属の酸化物もしくは水酸化物(ただし、亜
鉛の 酸化物単独もしくは水酸化物単独を除く)の量を、
水酸化ニッケルを主体とする活物質粉末100重量部に
対して、5重量部に固定した場合について説明したが、
本発明の作用効果は、このような特定の添加率の場合に
限定して奏するのではなく、0.5重量部以上であれば
実質的な作用効果が得られる。ただし、その添加率が高
くなりすぎると、活物質の含有率が低下するので、正極
の体積当たりの放電容量が低下する。従って、これらの
添加物の添加率の上限は、当業者の設計上の理由によっ
て変動するものである。実質的には、活物質粉末100
重量部に対して、20重量部以下の範囲で添加すること
が望ましいであろう。
In the above examples, the oxide or hydroxide of at least one metal selected from the group consisting of calcium, magnesium and zinc (provided that
( Excluding lead oxide alone or hydroxide alone) ,
The case where the amount of the active material powder mainly composed of nickel hydroxide is fixed to 5 parts by weight has been described.
The operation and effect of the present invention is not limited to the case of such a specific addition rate, but substantially 0.5 or more parts by weight can provide substantial operation and effect. However, if the addition rate is too high, the content rate of the active material is reduced, so that the discharge capacity per volume of the positive electrode is reduced. Therefore, the upper limit of the addition rate of these additives varies depending on the design reasons of those skilled in the art. Substantially 100 active material powders
It may be desirable to add in an amount up to 20 parts by weight, based on parts by weight.

【0061】また、上記の実施例では、カルシウム、マ
グネシウム、亜鉛の群から選択した2つ以上の金属の酸
化物もしくは水酸化物(ただし、亜鉛の酸化物単独もし
くは水酸化物単独を除く)を選択して使用する場合に、
特定の比率で混合して用いた場合について説明したが、
本発明の作用効果は、このような特定の混合比率だけで
はなく、全ての混合比率において奏するものである。
In the above embodiment, the oxide or hydroxide of two or more metals selected from the group of calcium, magnesium and zinc (provided that zinc oxide alone is used.
(Excluding hydroxide alone) ,
I explained about the case of mixing at a specific ratio, but
The effects of the present invention are exhibited not only in such a specific mixing ratio but in all mixing ratios.

【0062】さらに、上記の実施例では、正極の耐アル
カリ性導電性支持体として、発泡状ニッケル多孔体を用
いる場合について説明したが、そのほかに、ニッケル繊
維の焼結体、パンチングメタル、エキスパンデッドメタ
ル、金属網などを用いる場合にも、同様の作用効果を奏
する。
Further, in the above-mentioned embodiment, the case where the foamed nickel porous body is used as the alkali resistant conductive support of the positive electrode has been described. However, in addition to this, a sintered body of nickel fiber, punching metal or expanded metal is also used. Similar effects can be obtained when using metal or metal net.

【0063】また、上記の実施例では、負極の水素吸蔵
合金として、特定の組成の稀土類系合金を用いる場合に
ついて説明したが、そのほかに、稀土類元素の配合比の
異なる合金、稀土類元素以外の金属元素の種類や配合比
の異なる合金、稀土類元素に少量のZr,Ti,Hfな
どを添加した合金、ZrNiに近い化学量論比であっ
てZrやNiを部分的にほかの金属で置換した合金、T
iNi合金やその一部を異種金属で置換した合金などを
用いる場合にも、同様の作用効果を奏する。
In the above embodiments, the case where a rare earth alloy having a specific composition is used as the hydrogen storage alloy for the negative electrode has been described. In addition to this, alloys having different mixing ratios of rare earth elements and rare earth elements are also used. Other than the above, alloys with different types and mixing ratios of metallic elements, alloys with small amounts of Zr, Ti, Hf, etc. added to rare earth elements, stoichiometric ratios close to ZrNi 2 and Zr and Ni partially Alloys replaced with metals, T
Similar effects are obtained when an iNi alloy or an alloy in which a part of the iNi alloy is replaced with a different metal is used.

【0064】そして、上記の実施例では、負極の水素吸
蔵電極として、プラスチック結合電極を用いる場合につ
いて説明したが、そのほかに、水素吸蔵合金を発泡状ニ
ッケル多孔体のような耐アルカリ性導電性多孔体に充填
した電極や、水素吸蔵合金の焼結体からなる電極を用い
る場合にも同様の作用効果を奏する。
In the above embodiment, the case where a plastic-bonded electrode is used as the hydrogen storage electrode of the negative electrode has been described. In addition to this, a hydrogen storage alloy is used as an alkali resistant conductive porous body such as a foamed nickel porous body. Similar effects can be obtained when using an electrode filled in the electrode or an electrode made of a sintered body of a hydrogen storage alloy.

【0065】さらに、上記の実施例では、矩形状の電極
を積層してなる外形が角形のニッケル−金属水素化物蓄
電池の場合について説明したが、そのほかに、帯状の電
極を捲回してなる外形が円筒状のものや、円板状の電極
を積層してなる外形が円筒状のものなど、形状が異なる
場合にも、同様の作用効果を奏するものである。
Further, in the above embodiment, the description has been given of the case where the rectangular-shaped nickel-metal hydride storage battery formed by stacking the rectangular electrodes is laminated. Even when the shape is different, such as a cylindrical shape or a cylindrical outer shape formed by stacking disk-shaped electrodes, the same operational effect is obtained.

【0066】また、上記の実施例では、密閉形の電池に
ついて説明したが、液量が多い開放形の電池の場合に
も、本発明の構成によれば、充放電サイクルの進行にと
もなう正極の厚さの増加が抑制されるので、電池の厚さ
の増加が抑制されるという作用効果も奏する。
Further, in the above-mentioned embodiment, the sealed type battery is explained. However, even in the case of an open type battery having a large amount of liquid, according to the constitution of the present invention, the positive electrode of the positive electrode as the charging / discharging cycle proceeds is advanced. Since the increase in the thickness is suppressed, there is an effect that the increase in the battery thickness is suppressed.

【0067】そして、上記の実施例では、正極に水酸化
コバルトを添加した場合について説明したが、そのほか
に、酸化コバルトや金属コバルトを単独で添加する場合
や、水酸化コバルト、酸化コバルト、及び金属コバルト
の群から選択した2つ以上を用いる場合にも同様の作用
効果を奏する。
In the above embodiment, the case where cobalt hydroxide is added to the positive electrode has been described. In addition to the above, cobalt oxide or metal cobalt is added alone, or cobalt hydroxide, cobalt oxide, and metal are added. Similar effects are obtained when two or more selected from the group of cobalt are used.

【0068】[0068]

【発明の効果】以上に述べたように、本発明の手段を採
用すると、カドミウムまたは亜鉛を水酸化ニッケルに共
沈したり、酸化カドミウムや水酸化カドミウムの粉末を
水酸化ニッケル粉末と混合することなく、充放電サイク
ルの進行にともなう電池の内部抵抗の増加を抑制したニ
ッケル−金属水素化物蓄電池が得られる。さらに、高温
下で低率充電した場合の充電効率の低下および常温下で
充放電する場合の放電容量の低下を抑制するという効果
をも併せ持つニッケル−金属水素化物蓄電池が得られ
る。
As described above, when the means of the present invention is adopted, it is possible to coprecipitate cadmium or zinc with nickel hydroxide or to mix powders of cadmium oxide or cadmium hydroxide with nickel hydroxide powder. Thus, a nickel-metal hydride storage battery in which an increase in internal resistance of the battery with the progress of charge / discharge cycles is suppressed can be obtained. Further, it is possible to obtain a nickel-metal hydride storage battery that also has an effect of suppressing a decrease in charging efficiency when charged at a low rate at a high temperature and a decrease in discharge capacity when charging / discharging at a normal temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】 正極のニッケル粉末に共沈した水酸化コバル
トの含有率と高温下における充電効率との関係を示した
図。
FIG. 1 is a graph showing the relationship between the content rate of cobalt hydroxide co-precipitated in nickel powder of a positive electrode and the charging efficiency at high temperature.

【図2】 化成の5回目の充放電ののちの放電容量と、
正極の水酸化ニッケルに共沈した水酸化コバルトの含有
率との関係を示した図。
FIG. 2 shows the discharge capacity after the fifth charge and discharge of formation,
The figure which showed the relationship with the content rate of the cobalt hydroxide coprecipitated in the nickel hydroxide of a positive electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−77273(JP,A) 特開 平4−322073(JP,A) 特公 昭54−3836(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/62 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-77273 (JP, A) JP-A-4-322073 (JP, A) JP-B-54-3836 (JP, B1) (58) Field (Int.Cl. 7 , DB name) H01M 4/24-4/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水酸化ニッケルを主体とする活物質と、
カルシウム、マグネシウム、亜鉛の群から選択した少な
くとも1つの金属の酸化物もしくは水酸化物(ただし、
亜鉛の酸化物単独もしくは水酸化物単独を除く)との混
合物を耐アルカリ性導電性支持体に保持してなる正極
と、水素吸蔵合金を主体とする負極とを備えることを特
徴とするニッケル−金属水素化物蓄電池。
1. An active material mainly composed of nickel hydroxide,
An oxide or hydroxide of at least one metal selected from the group of calcium, magnesium and zinc (provided that
Nickel-metal, characterized in that it comprises a positive electrode comprising a mixture of zinc oxide alone or hydroxide alone) on an alkali-resistant conductive support, and a negative electrode mainly composed of a hydrogen storage alloy. Hydride storage battery.
【請求項2】 水酸化コバルトが共沈された粉末である
水酸化ニッケルを主体とする活物質とと、カルシウム、
マグネシウム、亜鉛の群から選択した少なくとも1つの
金属の酸化物もしくは水酸化物(ただし、亜鉛の酸化物
単独もしくは水酸化物単独を除く)との混合物を耐アル
カリ性導電性支持体に保持してなる正極と、水素吸蔵合
金を主体とする負極とを備えることを特徴とするニッケ
ル−金属水素化物蓄電池。
2. An active material containing nickel hydroxide as a main component, which is a powder in which cobalt hydroxide is coprecipitated, and calcium.
At least one metal oxide or hydroxide selected from the group of magnesium and zinc (provided that zinc oxide
A nickel-metal hydride storage battery comprising: a positive electrode comprising a mixture of a single substance or a mixture of hydroxides) on an alkali-resistant conductive support, and a negative electrode mainly composed of a hydrogen storage alloy.
【請求項3】 共沈された水酸化コバルトが、水酸化ニ
ッケルと水酸化コバルトとの合計に対して1モル%以上
20モル%以下であることを特徴とする前記請求項2記
載のニッケル−金属水素化物蓄電池。
3. The nickel- according to claim 2, wherein the coprecipitated cobalt hydroxide is 1 mol% or more and 20 mol% or less with respect to the total of nickel hydroxide and cobalt hydroxide. Metal hydride storage battery.
JP29083891A 1991-10-09 1991-10-09 Nickel-metal hydride storage battery Expired - Lifetime JP3362400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29083891A JP3362400B2 (en) 1991-10-09 1991-10-09 Nickel-metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29083891A JP3362400B2 (en) 1991-10-09 1991-10-09 Nickel-metal hydride storage battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001307814A Division JP3482478B2 (en) 2001-10-03 2001-10-03 Nickel-metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH05101825A JPH05101825A (en) 1993-04-23
JP3362400B2 true JP3362400B2 (en) 2003-01-07

Family

ID=17761147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29083891A Expired - Lifetime JP3362400B2 (en) 1991-10-09 1991-10-09 Nickel-metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3362400B2 (en)

Also Published As

Publication number Publication date
JPH05101825A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3482606B2 (en) Sealed alkaline storage battery
JP2595967B2 (en) Hydrogen storage electrode
JP3079303B2 (en) Activation method of alkaline secondary battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH11111330A (en) Nickel-hydrogen storage battery
JPH09139230A (en) Alkaline secondary battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3082348B2 (en) Nickel-hydrogen battery
JP2001313069A (en) Nickel hydrogen storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3399265B2 (en) Alkaline battery with nickel positive electrode and method of activating the same
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP6951047B2 (en) Alkaline secondary battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3057737B2 (en) Sealed alkaline storage battery
JP2001223000A (en) Alkaline secondary battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP2680628B2 (en) Hydrogen storage alloy electrode and sealed alkaline storage battery including the electrode
JP3070081B2 (en) Sealed alkaline storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term