JP3200822B2 - Nickel-metal hydride storage battery - Google Patents

Nickel-metal hydride storage battery

Info

Publication number
JP3200822B2
JP3200822B2 JP30667591A JP30667591A JP3200822B2 JP 3200822 B2 JP3200822 B2 JP 3200822B2 JP 30667591 A JP30667591 A JP 30667591A JP 30667591 A JP30667591 A JP 30667591A JP 3200822 B2 JP3200822 B2 JP 3200822B2
Authority
JP
Japan
Prior art keywords
nickel
storage battery
battery
metal hydride
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30667591A
Other languages
Japanese (ja)
Other versions
JPH05121073A (en
Inventor
利雄 村田
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP30667591A priority Critical patent/JP3200822B2/en
Publication of JPH05121073A publication Critical patent/JPH05121073A/en
Application granted granted Critical
Publication of JP3200822B2 publication Critical patent/JP3200822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、正極の主活物質が水酸
化ニッケルであり、負極の主体が水素吸蔵合金からなる
ニッケル−金属水素化物蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-metal hydride storage battery in which the main active material of a positive electrode is nickel hydroxide and the main body of a negative electrode is a hydrogen storage alloy.

【0002】[0002]

【従来の技術】ニッケル−金属水素化物蓄電池の負極に
用いる水素吸蔵電極は、水素吸蔵合金を備えている。こ
の水素吸蔵合金には、LaNi5 やZiNi2 などの金属間化合
物があり、これらの合金の成分元素の一部を、そのほか
の元素で置換することや、化学量論数を変化させること
によって、これらの合金の水素吸蔵量を変化させたり、
これらの金属水素化物の平衡水素圧を変化させたり、ア
ルカリ電解液中における合金の耐食性を向上させて、電
極に用いられている。
2. Description of the Related Art A hydrogen storage electrode used as a negative electrode of a nickel-metal hydride storage battery includes a hydrogen storage alloy. In this hydrogen storage alloy, there are intermetallic compounds such as LaNi 5 and ZiNi 2, and by substituting some of the constituent elements of these alloys with other elements, or by changing the stoichiometry, Change the hydrogen storage capacity of these alloys,
These metal hydrides are used for electrodes by changing the equilibrium hydrogen pressure or improving the corrosion resistance of alloys in alkaline electrolytes.

【0003】この水素吸蔵電極には、上記の水素吸蔵合
金の粉末を、パンチングメタルや発泡ニッケルなどの導
電性支持体に保持させ、ポリビニルアルコール、フッ素
樹脂、アクリル−スチレン樹脂などの耐アルカリ性高分
子で結合するものや、水素吸蔵合金を焼結したものなど
がある。
[0003] In this hydrogen storage electrode, a powder of the above-mentioned hydrogen storage alloy is held on a conductive support such as punched metal or foamed nickel, and an alkali-resistant polymer such as polyvinyl alcohol, fluororesin, or acryl-styrene resin is used. And those obtained by sintering a hydrogen storage alloy.

【0004】この負極と組み合わせる正極には、ニッケ
ル・カドミウム電池などのアルカリ電池と同様の焼結式
や発泡メタル式の水酸化ニッケル電極が用いられる。
As the positive electrode combined with the negative electrode, a nickel hydroxide electrode of a sintered type or a foamed metal type similar to an alkaline battery such as a nickel-cadmium battery is used.

【0005】電解液には、水酸化カリウムや水酸化ナト
リウムを主体とする水溶液が用いられる。
[0005] As the electrolytic solution, an aqueous solution mainly composed of potassium hydroxide or sodium hydroxide is used.

【0006】[0006]

【発明が解決しようとする課題】このようなニッケル−
金属水素化物蓄電池は、ニッケル・カドミウム電池と比
較して、自己放電速度が大きいという欠点があった。こ
の著しく大きい自己放電は、負極に水素吸蔵合金を用い
る場合に、この合金の吸蔵水素が放出されて、正極に到
達し、正極の充電生成物を還元して放電させるという自
己放電反応に起因するものと推察される。
SUMMARY OF THE INVENTION
The metal hydride storage battery has a disadvantage that the self-discharge rate is higher than that of the nickel-cadmium battery. This remarkably large self-discharge is caused by a self-discharge reaction in which, when a hydrogen storage alloy is used for the negative electrode, the stored hydrogen of the alloy is released, reaches the positive electrode, and reduces and discharges the charge product of the positive electrode. It is assumed that

【0007】この自己放電は、特に、CaCu5 形の結晶構
造を有する金属間化合物であるLaNi5 の成分元素を、ほ
かの元素で置き換えた水素吸蔵合金の場合に、合金中の
マンガンの含有率が高いほど効果的に抑制されることが
知られていた。
[0007] The self-discharge, particularly, the component elements of the LaNi 5 is an intermetallic compound having a crystal structure of CaCu 5 forms, in the case of the hydrogen storage alloy was replaced with another element, the content of manganese in the alloy It was known that the higher the value, the more effectively it was suppressed.

【0008】しかし、CaCu5 形だけではなく、ZrNi2
TiNiなどの水素吸蔵合金でも、水素吸蔵合金中のマンガ
ンの含有率が高いほど、充放電サイクルの進行にともな
う水素吸蔵合金の劣化速度が大きくなり、電池の充放電
サイクル寿命が短くなるという問題点がある。
However, not only the CaCu 5 type but also ZrNi 2
Even with hydrogen storage alloys such as TiNi, the higher the manganese content in the hydrogen storage alloy, the greater the rate of deterioration of the hydrogen storage alloy as the charge / discharge cycle progresses, and the shorter the charge / discharge cycle life of the battery. There is.

【0009】そこで、負極の水素吸蔵合金中のマンガン
の含有率が低くて充放電サイクル寿命が長く、しかも、
自己放電速度が小さいニッケル−金属水素化物蓄電池が
望まれていた。
Therefore, the manganese content in the hydrogen storage alloy of the negative electrode is low, the charge / discharge cycle life is long, and
A nickel-metal hydride storage battery with a low self-discharge rate has been desired.

【0010】[0010]

【課題を解決するための手段】本発明は,上記の課題を
解決するために,正極の主活物質の主体が水酸化ニッケ
ルであり,負極の主体がCaCu 形の水素吸蔵合金からな
り,該正極が水酸化ニッケルとともにマンガン化合物を
含有することを特徴とするニッケル−金属水素化物蓄電
池を提供する。
The present invention SUMMARY OF], in order to solve the above problems, the subject of the main active material of the positive electrode is nickel hydroxide, the subject of the negative electrode is made of CaCu 5 form of the hydrogen storage alloy, A nickel-metal hydride storage battery characterized in that the positive electrode contains a manganese compound together with nickel hydroxide .

【0011】[0011]

【作用】本発明では、上記の構成を採用することによっ
て、金属水素化物蓄電池の負極の水素吸蔵合金のマンガ
ンの含有率が小さい場合においても、ニッケル−金属水
素化物蓄電池の自己放電が抑制される。従って、充放電
サイクルの進行にともなう負極の水素吸蔵合金の寿命の
低下が抑制されて、しかも自己放電速度が小さいニッケ
ル−金属水素化物蓄電池が得られる。
According to the present invention, self-discharge of the nickel-metal hydride storage battery is suppressed by employing the above configuration even when the manganese content of the hydrogen storage alloy of the negative electrode of the metal hydride storage battery is small. . Therefore, a decrease in the life of the hydrogen storage alloy of the negative electrode due to the progress of the charge / discharge cycle is suppressed, and a nickel-metal hydride storage battery having a low self-discharge rate can be obtained.

【0012】なお、本発明の構成を採用することによっ
て、電池の自己放電速度が小さくなる原因は定かでない
ものの、あえて推論を述べるならば、次の仮説によっ
て、その機構を説明することができるかもしれない。
Although the cause of the decrease in the self-discharge rate of the battery by adopting the configuration of the present invention is not clear, if the inference is dared, the mechanism may be explained by the following hypothesis. unknown.

【0013】すなわち、ニッケル−金属水素化物蓄電池
に特有の自己放電の機構には、上述のように、負極から
発生する微量の水素が正極で酸化されるというものがあ
る。そして、本発明の手段を採用すると、正極に添加し
たマンガン化合物が、電解液への溶解析出過程などを経
由して、次第に正極活物質やその集電体の表面に移動
し、正極活物質や集電体の表面における水素の酸化反応
速度を低下させる結果、自己放電速度が低下するように
思われる。
That is, a self-discharge mechanism peculiar to a nickel-metal hydride storage battery is, as described above, that a small amount of hydrogen generated from a negative electrode is oxidized at a positive electrode. Then, when the means of the present invention is adopted, the manganese compound added to the positive electrode gradually moves to the surface of the positive electrode active material or its current collector via a process of dissolution and precipitation in the electrolytic solution, and the positive electrode active material and It appears that reducing the rate of hydrogen oxidation at the surface of the current collector results in a reduction in the rate of self-discharge.

【0014】[0014]

【実施例】本発明を好適な実施例によって説明する。 [蓄電池A](本発明実施例) 負極が水素吸蔵合金を主体とし、アルカリ電解液を有す
る外形が角形の密閉式ニッケル−金属水素化物蓄電池を
次のようにして製作した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described by way of preferred embodiments. [Storage Battery A] (Example of the Present Invention) A sealed nickel-metal hydride storage battery having a negative electrode mainly composed of a hydrogen storage alloy and having a square outer shape and having an alkaline electrolyte was manufactured as follows.

【0015】負極板は、寸法が15mm×55mm×0.4mm のペ
ースト式のものを5枚用いた。この電極は次のようにし
て製作した。
As the negative electrode plate, five paste-type negative electrodes measuring 15 mm × 55 mm × 0.4 mm were used. This electrode was manufactured as follows.

【0016】水素吸蔵合金は、その組成が原子比でLmNi
3.8 Co0.7 Al0.5 になるように、その構成元素を金属の
状態で真空にした高周波誘導炉中で溶解し、鋳造してか
ら粉砕した。ここでLmは、Laを約90重量% 含有する稀土
類金属の混合物であるランタンリッチミッシュメタルで
ある。この合金粉末を、増粘剤かつ結着剤の機能を果た
すポリビニルアルコールの水溶液に分散してペースト状
にした。そしてニッケルメッキを施した鉄製のパンチン
グメタルの両面にこのペーストを塗着し、乾燥し、プレ
スし、切断して水素吸蔵電極を製作した。
The composition of the hydrogen storage alloy is LmNi in atomic ratio.
The constituent elements were melted in a vacuum in a high-frequency induction furnace in a metal state so as to obtain 3.8 Co 0.7 Al 0.5 , cast, and then pulverized. Here, Lm is a lanthanum-rich misch metal which is a mixture of rare earth metals containing about 90% by weight of La. This alloy powder was dispersed in an aqueous solution of polyvinyl alcohol which functions as a thickener and a binder to form a paste. The paste was applied to both surfaces of a nickel-plated iron punching metal, dried, pressed, and cut to produce a hydrogen storage electrode.

【0017】この電池1個の負極板5枚に含まれる水素
吸蔵合金の重量は、約5.3gである。
The weight of the hydrogen storage alloy contained in the five negative plates of one battery is about 5.3 g.

【0018】正極には、公知の焼結式水酸化ニッケル電
極を、0.1Mの濃度の硫酸マンガン水溶液に浸漬して
から、アルカリ水溶液で中和して、水酸化ニッケル電極
の細孔中に水酸化マンガンを含有させ、そののちに水洗
を繰り返して硫酸イオンを除去し、乾燥したもの4枚を
用いた。
A known sintered nickel hydroxide electrode is immersed in an aqueous solution of manganese sulfate having a concentration of 0.1 M, neutralized with an aqueous alkali solution, and placed in the pores of the nickel hydroxide electrode. Manganese hydroxide was contained, and then washing with water was repeated to remove sulfate ions, and four dried ones were used.

【0019】正極の水酸化ニッケル電極の4枚(1枚の
寸法は、14mm×54mm×0.75mm)に含まれる水酸化ニッケ
ルの合計の重量は、1セル当たり3.9gである。従っ
て、水酸化ニッケルが1電子反応に従うことを仮定する
と、電池1個の正極の理論容量は約1.1Ahである。
この電極には、水酸化ニッケル1グラム当たり水酸化コ
バルト0.04グラムを添加してある。
The total weight of nickel hydroxide contained in the four nickel hydroxide electrodes of the positive electrode (one sheet measures 14 mm × 54 mm × 0.75 mm) is 3.9 g per cell. Therefore, assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of the positive electrode of one battery is about 1.1 Ah.
To this electrode was added 0.04 grams of cobalt hydroxide per gram of nickel hydroxide.

【0020】試験用の電池は、ポリプロピレンとポリス
チレンとの混合物の繊維からなる不織布のポリスチレン
をスルフォン化して親水性を賦与したセパレータを介し
て、これらの負極および正極を交互に積層し、この極板
群を角形の密閉式金属電槽に収納して製作した。
The test battery is constructed by alternately laminating these negative electrodes and positive electrodes through a separator provided with hydrophilicity by sulfonating non-woven polystyrene made of a fiber of a mixture of polypropylene and polystyrene. The group was housed in a square sealed metal battery case and manufactured.

【0021】電解液は、従来の電池Aには、20g/l
のLiOHを溶解した6MのKOH水溶液を用いた。 [蓄電池(B)](本発明実施例) 蓄電池(A)における正極の焼結式水酸化ニッケル電極
の代わりに、次のような非焼結式の水酸化ニッケル電極
を用いそのほかの構成は、蓄電池(A)と同じにして、
本発明のニッケル−金属水素化物蓄電池(B)を製作し
た。
The electrolytic solution is 20 g / l for the conventional battery A.
6M KOH aqueous solution in which LiOH was dissolved was used. [Storage Battery (B)] (Example of the Present Invention) Instead of the sintered nickel hydroxide electrode of the positive electrode in the storage battery (A), the following non-sintered nickel hydroxide electrode is used, and the other configuration is as follows. Same as the storage battery (A),
A nickel-metal hydride storage battery (B) of the present invention was manufactured.

【0022】非焼結式水酸化ニッケル電極は、水酸化ニ
ッケルを主体とする活物質粉末100重量部と、水酸化
マンガン(化学式:Mn(OH)2 )粉末2重量部と、活物質
利用率を高くする添加物たる水酸化コバルト粉末5重量
部とを生成水と混合してペースト状混合物を調製し、こ
のペースト状混合物をニッケルの発泡体に充填し、乾燥
し、プレスし、切断して製作した。正極の水酸化ニッケ
ルの量は、蓄電池(A)と同じにした。 [蓄電池(C)](本発明実施例) 蓄電池(B)における正極の水酸化マンガンの粉末の代
わりに、硫酸マンガンの粉末を用い、そのほかの構成は
蓄電池(B)と同じにして、本発明のニッケル−金属水
素化物蓄電池(C)を製作した。 [蓄電池(D)](本発明実施例) 蓄電池(B)における正極の水酸化マンガンの粉末の代
わりに、2酸化マンガンの粉末を用い、そのほかの構成
は蓄電池(B)と同じにして、本発明のニッケル−金属
水素化物蓄電池(D)を製作した。 [蓄電池(E)](従来例) 蓄電池(A)における正極の焼結式水酸化ニッケル電極
で、水酸化マンガンを充填することなく、そのほかの構
成は蓄電池(A)と同じにして、従来の角形の密閉式ニ
ッケルー金属水素化物蓄電池(E)を製作した。 [蓄電池(F)](従来例) 蓄電池(E)における負極の水素吸蔵合金として、原子
比でLmNi3.8Co0.7 Al0.5 の組成のものを用いる代わり
に、原子比でLmNi3.8 Co0.7 Al0.2 Mn0.3 のものを用
い、そのほかの構成は蓄電池(E)と同じにして、従来
の角形の密閉式ニッケル−金属水素化物蓄電池(F)を
製作した。 [蓄電池(G)](従来例) 蓄電池(B)における正極の非焼結式水酸化ニッケル電
極で、水酸化マンガンを添加することなく、そのほかの
構成は蓄電池(B)と同じにして、従来の角形の密閉式
ニッケルー金属水素化物蓄電池(G)を製作した。 [蓄電池(H)](従来例) 蓄電池(G)における負極の水素吸蔵合金として、原子
比でLmNi3.8Co0.7 Al0.5 の組成のものを用いる代わり
に、原子比でLmNi3.8 Co0.7 Al0.2 Mn0.3 のものを用
い、そのほかの構成は蓄電池(G)と同じにして、従来
の角形の密閉式ニッケル−金属水素化物蓄電池(H)を
製作した。
The non-sintered nickel hydroxide electrode comprises 100 parts by weight of an active material powder mainly composed of nickel hydroxide, 2 parts by weight of manganese hydroxide (chemical formula: Mn (OH) 2 ) powder, 5 parts by weight of cobalt hydroxide powder, which is an additive, is mixed with the produced water to prepare a paste-like mixture, and the paste-like mixture is filled in a nickel foam, dried, pressed, and cut. Made. The amount of nickel hydroxide of the positive electrode was the same as that of the storage battery (A). [Storage battery (C)] (Example of the present invention) Instead of the positive electrode manganese hydroxide powder in the storage battery (B), manganese sulfate powder was used, and the other configuration was the same as that of the storage battery (B). The nickel-metal hydride storage battery (C) was manufactured. [Storage battery (D)] (Example of the present invention) Instead of the manganese hydroxide powder of the positive electrode in the storage battery (B), manganese dioxide powder was used, and the other configuration was the same as that of the storage battery (B). The nickel-metal hydride storage battery (D) of the invention was manufactured. [Storage battery (E)] (Conventional example) A sintered nickel hydroxide electrode of the positive electrode of the storage battery (A), which is not filled with manganese hydroxide. A prismatic sealed nickel-metal hydride storage battery (E) was manufactured. [Storage Battery (F)] (Conventional Example) Instead of using a hydrogen storage alloy having a composition of LmNi 3.8 Co 0.7 Al 0.5 in atomic ratio as a negative electrode hydrogen storage alloy in storage battery (E), use LmNi 3.8 Co 0.7 Al 0.2 Mn in atomic ratio. A conventional rectangular sealed nickel-metal hydride storage battery (F) was manufactured using a 0.3 battery and the other configuration was the same as that of the storage battery (E). [Battery (G)] (Conventional example) The non-sintered nickel hydroxide electrode of the positive electrode of the storage battery (B), without adding manganese hydroxide, with the other configuration being the same as that of the storage battery (B). A sealed nickel-metal hydride storage battery (G) was manufactured. [Storage Battery (H)] (Conventional Example) Instead of using a composition having an atomic ratio of LmNi 3.8 Co 0.7 Al 0.5 as a negative electrode hydrogen storage alloy in a storage battery (G), use an atomic ratio of LmNi 3.8 Co 0.7 Al 0.2 Mn A conventional prismatic sealed nickel-metal hydride storage battery (H) was manufactured using a 0.3 battery and the other configuration was the same as the storage battery (G).

【0023】これらの電池を、正極の理論容量を基準と
して10時間率の電流で15時間充電し、5時間率の電
流で端子電圧が1Vになるまで放電するという条件で化
成充放電をおこなった。次に、10時間率の電流で15
時間充電し、5時間率の電流で端子電圧が1Vになるま
で放電するという条件で、放置の前の放電容量を測定し
た。そして、10時間率の電流で15時間充電し、20
日間放置してから、5時間率の電流で端子電圧が1Vに
なるまで放電するという条件で放置後の放電容量を測定
した。これらの充放電および充電後の放置は、全て25
℃の周囲温度においておこなった。
These batteries were charged and discharged under the condition that they were charged at a 10-hour rate current for 15 hours based on the theoretical capacity of the positive electrode and discharged at a 5-hour rate current until the terminal voltage became 1 V. . Next, at a current of 10 hour rate, 15
Under the condition that the battery was charged for 5 hours and discharged at a current of 5 hours until the terminal voltage became 1 V, the discharge capacity before leaving was measured. The battery is charged for 15 hours at a current rate of 10 hours,
The discharge capacity after standing was measured under the condition that the battery was discharged for 5 days at a current rate of 5 hours until the terminal voltage became 1 V. Leaving these batteries after charging / discharging and charging were all 25
Performed at an ambient temperature of ° C.

【0024】この試験において、放置による容量保持率
を、放置の前の放電容量に対する放置の後の放電容量と
定義し、上記の試験で得られた各電池の容量保持率の値
を調べた。
In this test, the capacity retention after standing was defined as the discharge capacity after standing relative to the discharge capacity before standing, and the value of the capacity retention of each battery obtained in the above test was examined.

【0025】また、これらの電池を、1時間率の電流で
1.2時間充電し、1時間率の電流で端子電圧が1.0
Vになるまで放電するという条件で充放電サイクル試験
をおこなった。そして、電池の放電容量が充放電サイク
ルの初期の放電容量の70%に低下するまでの充放電サ
イクル数を調べた。この充放電サイクル試験も周囲温度
25℃でおこなった。
Further, these batteries are charged at a current of one hour for 1.2 hours, and a terminal voltage of 1.0 is obtained at a current of one hour.
A charge / discharge cycle test was performed under the condition that the battery was discharged until the voltage reached V. Then, the number of charge / discharge cycles until the discharge capacity of the battery decreased to 70% of the initial discharge capacity of the charge / discharge cycle was examined. This charge / discharge cycle test was also performed at an ambient temperature of 25 ° C.

【0026】これらの試験結果を、表1に示す。Table 1 shows the results of these tests.

【0027】[0027]

【表1】 表1から、次のことがわかる。[Table 1] Table 1 shows the following.

【0028】すなわち、正極の水酸化ニッケル電極にマ
ンガン化合物を含有して、負極の水素吸蔵合金にマンガ
ンを含有しない電池(A)、(B)、(C)、および
(D)と、正極の水酸化ニッケル電極にマンガン化合物
を含有しないで、負極の水素吸蔵合金にマンガンを含有
する電池(F)および(H)とは、正極にマンガン化合
物を含有せず、負極の水素吸蔵合金にマンガンを含有し
ない電池(E)および(G)と比較して、充電状態の電
池を放置した場合の容量保持率が大きい。従って、正極
の水酸化ニッケル電極にマンガン化合物を含有するか、
もしくは負極の水素吸蔵合金にマンガンを含有すると、
ニッケル−金属水素化物蓄電池の自己放電速度が小さく
なる。
That is, batteries (A), (B), (C) and (D) containing a manganese compound in the nickel hydroxide electrode of the positive electrode and containing no manganese in the hydrogen storage alloy of the negative electrode, Batteries (F) and (H) which contain no manganese compound in the nickel hydroxide electrode and contain manganese in the hydrogen storage alloy of the negative electrode include manganese in the hydrogen storage alloy of the negative electrode without the manganese compound in the positive electrode. Compared to the batteries (E) and (G) that do not contain the battery, the capacity retention when the battery in the charged state is left is large. Therefore, whether the nickel hydroxide electrode of the positive electrode contains a manganese compound,
Or if manganese is contained in the hydrogen storage alloy of the negative electrode,
The self-discharge rate of the nickel-metal hydride storage battery is reduced.

【0029】一方、負極の水素吸蔵合金にマンガンを含
有しない電池(A)、(B)、(C)、(D)、
(E)、および(G)は、負極の水素吸蔵合金にマンガ
ンを含有する電池(F)および(H)と比較して、放電
容量が初期の放電容量の70%に低下するまでの充放電
サイクル数が大きい。
On the other hand, batteries (A), (B), (C), (D),
(E) and (G) show charge / discharge until the discharge capacity is reduced to 70% of the initial discharge capacity as compared with the batteries (F) and (H) containing manganese in the hydrogen storage alloy of the negative electrode. The number of cycles is large.

【0030】以上の実験から、正極の主活物質が水酸化
ニッケルであり、負極の主体が水素吸蔵合金からなり、
該正極がマンガン化合物を含有する本発明のニッケル−
金属水素化物蓄電池は、自己放電速度が小さく、しかも
充放電サイクル寿命が長いという効果を兼ね備えている
ことが明らかである。
From the above experiments, the main active material of the positive electrode is nickel hydroxide, the main component of the negative electrode is a hydrogen storage alloy,
The nickel of the present invention wherein the positive electrode contains a manganese compound.
It is clear that the metal hydride storage battery has the effects of a low self-discharge rate and a long charge-discharge cycle life.

【0031】なお、上記の実施例では、マンガン化合物
として、水酸化物、酸化物、および硫酸塩を含有する場
合を説明したが、そのほかに、カルコゲン化物や、金属
状態のものや、各種の塩を含有する場合にも同様の作用
効果を奏する。
In the above embodiment, the case where the manganese compound contains a hydroxide, an oxide, or a sulfate is described. In addition, chalcogenides, metal compounds, various salts, etc. The same action and effect can be obtained when the compound contains.

【0032】また,上記の実施例では,負極の水素吸蔵
合金として、特定の組成の稀土類系合金を用いる場合に
ついて説明したが,単にこれらの合金だけではなく、La
Ni の水素吸蔵合金の構成金属をほかの元素で置換した
ものについても,上記の実施例と同様の作用効果が得ら
れる。
Further, in the above embodiment, as the negative electrode of the hydrogen storage alloy has described the case of using the rare earth-based alloy of specific composition, not just these alloys, La
The same operation and effect as in the above embodiment can be obtained also in the case where the constituent metal of the hydrogen storage alloy of Ni 5 is replaced with another element.

【0033】そして、上記の実施例では、非焼結式水酸
化ニッケル電極の活物質支持体として、発泡ニッケルを
用いる場合について説明したが、そのほかに、金属ニッ
ケルの繊維の焼結体、ニッケルメッキした鉄などのよう
な耐アルカリ性金属の穿孔板、ニッケル網、ニッケルの
エキスパンデッドメタルなどを支持体に用いる場合も同
様の作用効果がある。
In the above-described embodiment, the case where foamed nickel is used as the active material support of the non-sintered nickel hydroxide electrode has been described. Similar effects can be obtained when a perforated plate made of an alkali-resistant metal such as iron or the like, a nickel mesh, an expanded metal made of nickel, or the like is used for the support.

【0034】さらに、上記の実施例では、非焼結式の水
酸化ニッケル電極に水酸化コバルトを添加する場合につ
いて説明したが、そのほかに、金属コバルトや、酸化コ
バルトを添加する場合にも、上記の実施例と同様の作用
効果が得られる。
Further, in the above embodiment, the case where cobalt hydroxide is added to the non-sintered nickel hydroxide electrode has been described. The same operation and effect as those of the embodiment can be obtained.

【0035】また、上記の実施例では、角形の密閉形の
電池について説明したが、円筒形や開放形電池の場合に
も、上記の実施例と同様の作用効果が得られる。
Further, in the above-described embodiment, the sealed rectangular battery has been described. However, the same operation and effect as those of the above-described embodiment can be obtained in the case of a cylindrical or open battery.

【0036】[0036]

【発明の効果】以上に述べたように、本発明のニッケル
−金属水素化物蓄電池は、充放電サイクル寿命が長く
て、しかも自己放電速度が小さいという効果を奏する。
As described above, the nickel-metal hydride storage battery of the present invention has an effect that the charge / discharge cycle life is long and the self-discharge rate is low.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/32 H01M 4/24 - 4/26 H01M 4/52 H01M 4/62 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/32 H01M 4/24-4/26 H01M 4/52 H01M 4/62

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極の主活物質が水酸化ニッケルであり、
負極の主体がCaCu 形の水素吸蔵合金からなり、該正極
水酸化ニッケルとともにマンガン化合物を含有するこ
とを特徴とするニッケル−金属水素化物蓄電池。
The main active material of the positive electrode is nickel hydroxide,
Metal hydride storage batteries - nickel principal of the negative electrode consists of CaCu 5 form of the hydrogen storage alloy, the positive electrode is characterized in that it contains the manganese compound with the nickel hydroxide.
JP30667591A 1991-10-24 1991-10-24 Nickel-metal hydride storage battery Expired - Lifetime JP3200822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30667591A JP3200822B2 (en) 1991-10-24 1991-10-24 Nickel-metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30667591A JP3200822B2 (en) 1991-10-24 1991-10-24 Nickel-metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH05121073A JPH05121073A (en) 1993-05-18
JP3200822B2 true JP3200822B2 (en) 2001-08-20

Family

ID=17959968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30667591A Expired - Lifetime JP3200822B2 (en) 1991-10-24 1991-10-24 Nickel-metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3200822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803414B2 (en) 1999-09-29 2004-10-12 Mitsubishi Fuso Truck And Bus Corporation Damping resin composition and damping resin article for structure using the resin composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343322A1 (en) * 1993-12-18 1995-06-22 Varta Batterie Ni / metal hydride secondary element
JP3389252B2 (en) * 1997-01-09 2003-03-24 三洋電機株式会社 Alkaline storage battery and charging method thereof
EP1006598A3 (en) 1998-11-30 2006-06-28 SANYO ELECTRIC Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries
JP2001351619A (en) 2000-04-04 2001-12-21 Matsushita Electric Ind Co Ltd Nickel positive electrode plate and alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803414B2 (en) 1999-09-29 2004-10-12 Mitsubishi Fuso Truck And Bus Corporation Damping resin composition and damping resin article for structure using the resin composition

Also Published As

Publication number Publication date
JPH05121073A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH11162505A (en) Nickel-hydrogen battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JP3079303B2 (en) Activation method of alkaline secondary battery
JPH01102855A (en) Hydrogen storing alloy electrode
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP3113891B2 (en) Metal hydride storage battery
JP2987873B2 (en) Alkaline storage battery
JP6951047B2 (en) Alkaline secondary battery
JPH09204930A (en) Nickel hydrogen storage battery
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JP3057737B2 (en) Sealed alkaline storage battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0562428B2 (en)
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2750793B2 (en) Nickel-metal hydride battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11