JPH05121073A - Nickel-metal hydride storage battery - Google Patents

Nickel-metal hydride storage battery

Info

Publication number
JPH05121073A
JPH05121073A JP3306675A JP30667591A JPH05121073A JP H05121073 A JPH05121073 A JP H05121073A JP 3306675 A JP3306675 A JP 3306675A JP 30667591 A JP30667591 A JP 30667591A JP H05121073 A JPH05121073 A JP H05121073A
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
storage battery
battery
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3306675A
Other languages
Japanese (ja)
Other versions
JP3200822B2 (en
Inventor
Toshio Murata
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP30667591A priority Critical patent/JP3200822B2/en
Publication of JPH05121073A publication Critical patent/JPH05121073A/en
Application granted granted Critical
Publication of JP3200822B2 publication Critical patent/JP3200822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a storage battery having a long charge/discharge cyclic lifetime and a low self-discharging speed by allowing a positive electrode to contain nickel hydroxide as a main active material and also Mn compound, and forming the body of a negative electrode from a hydrogen storage alloy. CONSTITUTION:A Ni-metal hydride storage battery has a specific self- discharging mechanism, and a minute quantity of hydrogen generated by a negative electrode is oxidated by a positive electrode. According to this constitution the Mn compounds added to the positive electrode pass through the process of dissolution and eduction into the electrolytic solution and move gradually to the surfaces of the positive electrode active substance and/or its electricity collecting body, and the positive electrode active substance lowers the oxidation reaction speed of the hydrogen at the surface of the collecting body. This lowers in turn the self-discharging speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正極の主活物質が水酸
化ニッケルであり、負極の主体が水素吸蔵合金からなる
ニッケル−金属水素化物蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-metal hydride storage battery in which the main active material of the positive electrode is nickel hydroxide and the main component of the negative electrode is a hydrogen storage alloy.

【0002】[0002]

【従来の技術】ニッケル−金属水素化物蓄電池の負極に
用いる水素吸蔵電極は、水素吸蔵合金を備えている。こ
の水素吸蔵合金には、LaNi5 やZiNi2 などの金属間化合
物があり、これらの合金の成分元素の一部を、そのほか
の元素で置換することや、化学量論数を変化させること
によって、これらの合金の水素吸蔵量を変化させたり、
これらの金属水素化物の平衡水素圧を変化させたり、ア
ルカリ電解液中における合金の耐食性を向上させて、電
極に用いられている。
2. Description of the Related Art A hydrogen storage electrode used for a negative electrode of a nickel-metal hydride storage battery has a hydrogen storage alloy. This hydrogen storage alloy has intermetallic compounds such as LaNi 5 and ZiNi 2, and by substituting some of the constituent elements of these alloys with other elements, or by changing the stoichiometric number, Change the hydrogen storage capacity of these alloys,
It is used for electrodes by changing the equilibrium hydrogen pressure of these metal hydrides and improving the corrosion resistance of alloys in alkaline electrolytes.

【0003】この水素吸蔵電極には、上記の水素吸蔵合
金の粉末を、パンチングメタルや発泡ニッケルなどの導
電性支持体に保持させ、ポリビニルアルコール、フッ素
樹脂、アクリル−スチレン樹脂などの耐アルカリ性高分
子で結合するものや、水素吸蔵合金を焼結したものなど
がある。
In this hydrogen storage electrode, the powder of the above hydrogen storage alloy is held on a conductive support such as punching metal or foamed nickel, and an alkali resistant polymer such as polyvinyl alcohol, fluororesin or acrylic-styrene resin is used. There are those that are bonded by, and those that are sintered hydrogen storage alloy.

【0004】この負極と組み合わせる正極には、ニッケ
ル・カドミウム電池などのアルカリ電池と同様の焼結式
や発泡メタル式の水酸化ニッケル電極が用いられる。
For the positive electrode combined with this negative electrode, a nickel hydroxide electrode of the same sintering type or foam metal type as that of an alkaline battery such as a nickel-cadmium battery is used.

【0005】電解液には、水酸化カリウムや水酸化ナト
リウムを主体とする水溶液が用いられる。
An aqueous solution mainly containing potassium hydroxide or sodium hydroxide is used as the electrolytic solution.

【0006】[0006]

【発明が解決しようとする課題】このようなニッケル−
金属水素化物蓄電池は、ニッケル・カドミウム電池と比
較して、自己放電速度が大きいという欠点があった。こ
の著しく大きい自己放電は、負極に水素吸蔵合金を用い
る場合に、この合金の吸蔵水素が放出されて、正極に到
達し、正極の充電生成物を還元して放電させるという自
己放電反応に起因するものと推察される。
[Problems to be Solved by the Invention]
The metal hydride storage battery has a drawback that it has a higher self-discharge rate than the nickel-cadmium battery. This remarkably large self-discharge is caused by a self-discharge reaction in which, when a hydrogen storage alloy is used for the negative electrode, the hydrogen stored in the alloy is released and reaches the positive electrode, and the charge product of the positive electrode is reduced and discharged. It is presumed to be a thing.

【0007】この自己放電は、特に、CaCu5 形の結晶構
造を有する金属間化合物であるLaNi5 の成分元素を、ほ
かの元素で置き換えた水素吸蔵合金の場合に、合金中の
マンガンの含有率が高いほど効果的に抑制されることが
知られていた。
[0007] This self-discharging is caused by the content ratio of manganese in the alloy, especially in the case of a hydrogen storage alloy in which the constituent element of LaNi 5 , which is an intermetallic compound having a CaCu 5 type crystal structure, is replaced with another element. It was known that the higher the value, the more effectively it was suppressed.

【0008】しかし、CaCu5 形だけではなく、ZrNi2
TiNiなどの水素吸蔵合金でも、水素吸蔵合金中のマンガ
ンの含有率が高いほど、充放電サイクルの進行にともな
う水素吸蔵合金の劣化速度が大きくなり、電池の充放電
サイクル寿命が短くなるという問題点がある。
However, not only CaCu 5 type but also ZrNi 2 and
Even with hydrogen storage alloys such as TiNi, the higher the manganese content in the hydrogen storage alloy, the higher the deterioration rate of the hydrogen storage alloy with the progress of the charge / discharge cycle, and the shorter the charge / discharge cycle life of the battery. There is.

【0009】そこで、負極の水素吸蔵合金中のマンガン
の含有率が低くて充放電サイクル寿命が長く、しかも、
自己放電速度が小さいニッケル−金属水素化物蓄電池が
望まれていた。
Therefore, the content of manganese in the hydrogen storage alloy of the negative electrode is low and the charge / discharge cycle life is long, and
A nickel-metal hydride storage battery with a low self-discharge rate has been desired.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、正極の主活物質が水酸化ニッケルであ
り、負極の主体が水素吸蔵合金からなり、該正極がマン
ガン化合物を含有するニッケル−金属水素化物蓄電池を
提供する。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention uses nickel hydroxide as the main active material of the positive electrode and a hydrogen storage alloy as the main component of the negative electrode, and the positive electrode contains a manganese compound. Provided is a nickel-metal hydride storage battery containing the same.

【0011】[0011]

【作用】本発明では、上記の構成を採用することによっ
て、金属水素化物蓄電池の負極の水素吸蔵合金のマンガ
ンの含有率が小さい場合においても、ニッケル−金属水
素化物蓄電池の自己放電が抑制される。従って、充放電
サイクルの進行にともなう負極の水素吸蔵合金の寿命の
低下が抑制されて、しかも自己放電速度が小さいニッケ
ル−金属水素化物蓄電池が得られる。
According to the present invention, by adopting the above configuration, the self-discharge of the nickel-metal hydride storage battery is suppressed even when the content of manganese in the hydrogen storage alloy of the negative electrode of the metal hydride storage battery is small. .. Therefore, it is possible to obtain a nickel-metal hydride storage battery in which the life of the hydrogen storage alloy of the negative electrode is suppressed from being shortened as the charging / discharging cycle proceeds and the self-discharge rate is low.

【0012】なお、本発明の構成を採用することによっ
て、電池の自己放電速度が小さくなる原因は定かでない
ものの、あえて推論を述べるならば、次の仮説によっ
て、その機構を説明することができるかもしれない。
Although it is not clear why the self-discharge rate of the battery is reduced by adopting the configuration of the present invention, the reason is that the following hypothesis may explain the mechanism. unknown.

【0013】すなわち、ニッケル−金属水素化物蓄電池
に特有の自己放電の機構には、上述のように、負極から
発生する微量の水素が正極で酸化されるというものがあ
る。そして、本発明の手段を採用すると、正極に添加し
たマンガン化合物が、電解液への溶解析出過程などを経
由して、次第に正極活物質やその集電体の表面に移動
し、正極活物質や集電体の表面における水素の酸化反応
速度を低下させる結果、自己放電速度が低下するように
思われる。
That is, as a self-discharging mechanism peculiar to the nickel-metal hydride storage battery, there is one in which a small amount of hydrogen generated from the negative electrode is oxidized at the positive electrode as described above. Then, when the means of the present invention is adopted, the manganese compound added to the positive electrode is gradually moved to the surface of the positive electrode active material or the current collector thereof via the dissolution and precipitation process in the electrolytic solution, and the positive electrode active material or It seems that the self-discharge rate decreases as a result of decreasing the hydrogen oxidation reaction rate on the surface of the current collector.

【0014】[0014]

【実施例】本発明を好適な実施例によって説明する。 [蓄電池A](本発明実施例) 負極が水素吸蔵合金を主体とし、アルカリ電解液を有す
る外形が角形の密閉式ニッケル−金属水素化物蓄電池を
次のようにして製作した。
EXAMPLES The present invention will be described by way of preferred examples. [Rechargeable Battery A] (Examples of the Present Invention) A sealed nickel-metal hydride rechargeable battery having a negative electrode mainly composed of a hydrogen storage alloy and an alkaline electrolyte and a rectangular outer shape was manufactured as follows.

【0015】負極板は、寸法が15mm×55mm×0.4mm のペ
ースト式のものを5枚用いた。この電極は次のようにし
て製作した。
As the negative electrode plate, five paste type plates each having a size of 15 mm × 55 mm × 0.4 mm were used. This electrode was manufactured as follows.

【0016】水素吸蔵合金は、その組成が原子比でLmNi
3.8 Co0.7 Al0.5 になるように、その構成元素を金属の
状態で真空にした高周波誘導炉中で溶解し、鋳造してか
ら粉砕した。ここでLmは、Laを約90重量% 含有する稀土
類金属の混合物であるランタンリッチミッシュメタルで
ある。この合金粉末を、増粘剤かつ結着剤の機能を果た
すポリビニルアルコールの水溶液に分散してペースト状
にした。そしてニッケルメッキを施した鉄製のパンチン
グメタルの両面にこのペーストを塗着し、乾燥し、プレ
スし、切断して水素吸蔵電極を製作した。
The hydrogen storage alloy has a composition of LmNi in atomic ratio.
The constituent elements were melted in a metallic state in a high-frequency induction furnace in a vacuum so as to be 3.8 Co 0.7 Al 0.5 , cast, and then pulverized. Here, Lm is a lanthanum rich misch metal which is a mixture of rare earth metals containing about 90% by weight of La. This alloy powder was dispersed in an aqueous solution of polyvinyl alcohol that functions as a thickener and a binder to form a paste. Then, this paste was applied to both sides of a nickel-plated iron punching metal, dried, pressed, and cut to manufacture a hydrogen storage electrode.

【0017】この電池1個の負極板5枚に含まれる水素
吸蔵合金の重量は、約5.3gである。
The weight of the hydrogen storage alloy contained in the five negative plates of this battery was about 5.3 g.

【0018】正極には、公知の焼結式水酸化ニッケル電
極を、0.1Mの濃度の硫酸マンガン水溶液に浸漬して
から、アルカリ水溶液で中和して、水酸化ニッケル電極
の細孔中に水酸化マンガンを含有させ、そののちに水洗
を繰り返して硫酸イオンを除去し、乾燥したもの4枚を
用いた。
For the positive electrode, a known sintered nickel hydroxide electrode is immersed in an aqueous solution of manganese sulfate having a concentration of 0.1 M, and then neutralized with an alkaline aqueous solution to form the pores of the nickel hydroxide electrode. 4 sheets of manganese hydroxide were added, and then washed with water repeatedly to remove sulfate ions and dried, and 4 sheets were used.

【0019】正極の水酸化ニッケル電極の4枚(1枚の
寸法は、14mm×54mm×0.75mm)に含まれる水酸化ニッケ
ルの合計の重量は、1セル当たり3.9gである。従っ
て、水酸化ニッケルが1電子反応に従うことを仮定する
と、電池1個の正極の理論容量は約1.1Ahである。
この電極には、水酸化ニッケル1グラム当たり水酸化コ
バルト0.04グラムを添加してある。
The total weight of nickel hydroxide contained in the four nickel hydroxide electrodes of the positive electrode (the size of one sheet is 14 mm × 54 mm × 0.75 mm) is 3.9 g per cell. Therefore, assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of the positive electrode of one battery is about 1.1 Ah.
To this electrode was added 0.04 grams of cobalt hydroxide per gram of nickel hydroxide.

【0020】試験用の電池は、ポリプロピレンとポリス
チレンとの混合物の繊維からなる不織布のポリスチレン
をスルフォン化して親水性を賦与したセパレータを介し
て、これらの負極および正極を交互に積層し、この極板
群を角形の密閉式金属電槽に収納して製作した。
In the test battery, the negative electrode and the positive electrode are alternately laminated via a separator obtained by sulfonating polystyrene, which is a non-woven fabric made of fibers of a mixture of polypropylene and polystyrene, and imparting hydrophilicity thereto. The group was stored in a rectangular closed metal battery case.

【0021】電解液は、従来の電池Aには、20g/l
のLiOHを溶解した6MのKOH水溶液を用いた。 [蓄電池(B)](本発明実施例) 蓄電池(A)における正極の焼結式水酸化ニッケル電極
の代わりに、次のような非焼結式の水酸化ニッケル電極
を用いそのほかの構成は、蓄電池(A)と同じにして、
本発明のニッケル−金属水素化物蓄電池(B)を製作し
た。
The electrolytic solution contained in the conventional battery A was 20 g / l.
6M KOH aqueous solution in which was dissolved LiOH was used. [Battery (B)] (Example of the present invention) Instead of the sintered nickel hydroxide electrode of the positive electrode in the battery (A), the following non-sintered nickel hydroxide electrode was used, and other configurations were as follows: Same as the storage battery (A),
The nickel-metal hydride storage battery (B) of the present invention was manufactured.

【0022】非焼結式水酸化ニッケル電極は、水酸化ニ
ッケルを主体とする活物質粉末100重量部と、水酸化
マンガン(化学式:Mn(OH)2 )粉末2重量部と、活物質
利用率を高くする添加物たる水酸化コバルト粉末5重量
部とを生成水と混合してペースト状混合物を調製し、こ
のペースト状混合物をニッケルの発泡体に充填し、乾燥
し、プレスし、切断して製作した。正極の水酸化ニッケ
ルの量は、蓄電池(A)と同じにした。 [蓄電池(C)](本発明実施例) 蓄電池(B)における正極の水酸化マンガンの粉末の代
わりに、硫酸マンガンの粉末を用い、そのほかの構成は
蓄電池(B)と同じにして、本発明のニッケル−金属水
素化物蓄電池(C)を製作した。 [蓄電池(D)](本発明実施例) 蓄電池(B)における正極の水酸化マンガンの粉末の代
わりに、2酸化マンガンの粉末を用い、そのほかの構成
は蓄電池(B)と同じにして、本発明のニッケル−金属
水素化物蓄電池(D)を製作した。 [蓄電池(E)](従来例) 蓄電池(A)における正極の焼結式水酸化ニッケル電極
で、水酸化マンガンを充填することなく、そのほかの構
成は蓄電池(A)と同じにして、従来の角形の密閉式ニ
ッケルー金属水素化物蓄電池(E)を製作した。 [蓄電池(F)](従来例) 蓄電池(E)における負極の水素吸蔵合金として、原子
比でLmNi3.8Co0.7 Al0.5 の組成のものを用いる代わり
に、原子比でLmNi3.8 Co0.7 Al0.2 Mn0.3 のものを用
い、そのほかの構成は蓄電池(E)と同じにして、従来
の角形の密閉式ニッケル−金属水素化物蓄電池(F)を
製作した。 [蓄電池(G)](従来例) 蓄電池(B)における正極の非焼結式水酸化ニッケル電
極で、水酸化マンガンを添加することなく、そのほかの
構成は蓄電池(B)と同じにして、従来の角形の密閉式
ニッケルー金属水素化物蓄電池(G)を製作した。 [蓄電池(H)](従来例) 蓄電池(G)における負極の水素吸蔵合金として、原子
比でLmNi3.8Co0.7 Al0.5 の組成のものを用いる代わり
に、原子比でLmNi3.8 Co0.7 Al0.2 Mn0.3 のものを用
い、そのほかの構成は蓄電池(G)と同じにして、従来
の角形の密閉式ニッケル−金属水素化物蓄電池(H)を
製作した。
The non-sintered nickel hydroxide electrode has 100 parts by weight of an active material powder mainly composed of nickel hydroxide, 2 parts by weight of manganese hydroxide (chemical formula: Mn (OH) 2 ) powder, and an active material utilization rate. A paste-like mixture was prepared by mixing 5 parts by weight of cobalt hydroxide powder, which is an additive for increasing the viscosity, with the produced water, and the paste-like mixture was filled in a nickel foam, dried, pressed and cut. I made it. The amount of nickel hydroxide in the positive electrode was the same as in the storage battery (A). [Storage Battery (C)] (Examples of the Present Invention) In the present invention, a powder of manganese sulfate was used instead of the powder of manganese hydroxide of the positive electrode in the storage battery (B), and other configurations were the same as those of the storage battery (B). A nickel-metal hydride storage battery (C) was manufactured. [Storage Battery (D)] (Example of the Present Invention) Manganese dioxide powder was used in place of the manganese hydroxide powder of the positive electrode in the storage battery (B), and the other configurations were the same as those of the storage battery (B). An inventive nickel-metal hydride storage battery (D) was made. [Rechargeable Battery (E)] (Conventional Example) A storage type nickel hydroxide electrode of the positive electrode in the storage battery (A) is the same as that of the storage battery (A) except that it is not filled with manganese hydroxide. A prismatic sealed nickel-metal hydride storage battery (E) was manufactured. [Battery (F)] (conventional example) Instead of using a hydrogen storage alloy having a composition of LmNi 3.8 Co 0.7 Al 0.5 by atomic ratio as the negative electrode hydrogen storage alloy in the storage battery (E), LmNi 3.8 Co 0.7 Al 0.2 Mn by atomic ratio is used. A conventional prismatic sealed nickel-metal hydride storage battery (F) was manufactured by using 0.3 of the other components and making the other configurations the same as the storage battery (E). [Rechargeable Battery (G)] (Conventional Example) The non-sintered nickel hydroxide electrode of the positive electrode in the rechargeable battery (B) is the same as the rechargeable battery (B) except that manganese hydroxide is not added. A prismatic sealed nickel-metal hydride storage battery (G) was manufactured. [Battery (H)] (conventional example) Instead of using a hydrogen storage alloy having a composition of LmNi 3.8 Co 0.7 Al 0.5 by atomic ratio as a negative electrode in the storage battery (G), LmNi 3.8 Co 0.7 Al 0.2 Mn by atomic ratio is used. A conventional prismatic sealed nickel-metal hydride storage battery (H) was manufactured by using 0.3 of the other components and making the other configurations the same as the storage battery (G).

【0023】これらの電池を、正極の理論容量を基準と
して10時間率の電流で15時間充電し、5時間率の電
流で端子電圧が1Vになるまで放電するという条件で化
成充放電をおこなった。次に、10時間率の電流で15
時間充電し、5時間率の電流で端子電圧が1Vになるま
で放電するという条件で、放置の前の放電容量を測定し
た。そして、10時間率の電流で15時間充電し、20
日間放置してから、5時間率の電流で端子電圧が1Vに
なるまで放電するという条件で放置後の放電容量を測定
した。これらの充放電および充電後の放置は、全て25
℃の周囲温度においておこなった。
These batteries were subjected to chemical charge and discharge under the condition that they were charged at a current of 10 hours rate for 15 hours and discharged at a current of 5 hours rate until the terminal voltage became 1 V, based on the theoretical capacity of the positive electrode. .. Next, at the current rate of 10 hours,
The discharge capacity before standing was measured under the condition that the battery was charged for an hour and discharged with a current at a rate of 5 hours until the terminal voltage became 1V. Then, charge it for 15 hours with a current of 10 hours rate, and
The discharge capacity after standing was measured under the condition that the battery was left for one day and then discharged at a current of 5 hours until the terminal voltage became 1V. Charge and discharge and leave after charging are all 25
Performed at ambient temperature of ° C.

【0024】この試験において、放置による容量保持率
を、放置の前の放電容量に対する放置の後の放電容量と
定義し、上記の試験で得られた各電池の容量保持率の値
を調べた。
In this test, the capacity retention rate after standing was defined as the discharge capacity after standing with respect to the discharge capacity before standing, and the value of the capacity retention rate of each battery obtained in the above test was examined.

【0025】また、これらの電池を、1時間率の電流で
1.2時間充電し、1時間率の電流で端子電圧が1.0
Vになるまで放電するという条件で充放電サイクル試験
をおこなった。そして、電池の放電容量が充放電サイク
ルの初期の放電容量の70%に低下するまでの充放電サ
イクル数を調べた。この充放電サイクル試験も周囲温度
25℃でおこなった。
These batteries were charged for 1.2 hours at a current of 1 hour rate, and the terminal voltage was 1.0 at a current of 1 hour rate.
A charge / discharge cycle test was performed under the condition that the battery was discharged to V. Then, the number of charge / discharge cycles until the discharge capacity of the battery decreased to 70% of the initial discharge capacity of the charge / discharge cycle was examined. This charge / discharge cycle test was also performed at an ambient temperature of 25 ° C.

【0026】これらの試験結果を、表1に示す。The results of these tests are shown in Table 1.

【0027】[0027]

【表1】 表1から、次のことがわかる。[Table 1] The following can be seen from Table 1.

【0028】すなわち、正極の水酸化ニッケル電極にマ
ンガン化合物を含有して、負極の水素吸蔵合金にマンガ
ンを含有しない電池(A)、(B)、(C)、および
(D)と、正極の水酸化ニッケル電極にマンガン化合物
を含有しないで、負極の水素吸蔵合金にマンガンを含有
する電池(F)および(H)とは、正極にマンガン化合
物を含有せず、負極の水素吸蔵合金にマンガンを含有し
ない電池(E)および(G)と比較して、充電状態の電
池を放置した場合の容量保持率が大きい。従って、正極
の水酸化ニッケル電極にマンガン化合物を含有するか、
もしくは負極の水素吸蔵合金にマンガンを含有すると、
ニッケル−金属水素化物蓄電池の自己放電速度が小さく
なる。
That is, the batteries (A), (B), (C), and (D) in which the nickel hydroxide electrode of the positive electrode contains a manganese compound and the hydrogen storage alloy of the negative electrode does not contain manganese, Batteries (F) and (H) in which the nickel hydroxide electrode does not contain a manganese compound and the negative electrode hydrogen storage alloy contains manganese are the batteries (F) and (H) in which the positive electrode does not contain a manganese compound and the negative electrode hydrogen storage alloy contains manganese. Compared with the batteries (E) and (G) which do not contain, the capacity retention rate when the battery in the charged state is left is large. Therefore, if the nickel hydroxide electrode of the positive electrode contains a manganese compound,
Or, if manganese is contained in the hydrogen storage alloy of the negative electrode,
The self-discharge rate of the nickel-metal hydride storage battery is reduced.

【0029】一方、負極の水素吸蔵合金にマンガンを含
有しない電池(A)、(B)、(C)、(D)、
(E)、および(G)は、負極の水素吸蔵合金にマンガ
ンを含有する電池(F)および(H)と比較して、放電
容量が初期の放電容量の70%に低下するまでの充放電
サイクル数が大きい。
On the other hand, batteries (A), (B), (C), (D), in which the hydrogen storage alloy of the negative electrode does not contain manganese.
(E) and (G) are charging / discharging until the discharge capacity is reduced to 70% of the initial discharge capacity as compared with the batteries (F) and (H) in which the negative electrode hydrogen storage alloy contains manganese. The number of cycles is large.

【0030】以上の実験から、正極の主活物質が水酸化
ニッケルであり、負極の主体が水素吸蔵合金からなり、
該正極がマンガン化合物を含有する本発明のニッケル−
金属水素化物蓄電池は、自己放電速度が小さく、しかも
充放電サイクル寿命が長いという効果を兼ね備えている
ことが明らかである。
From the above experiments, the main active material of the positive electrode was nickel hydroxide, and the main component of the negative electrode was a hydrogen storage alloy,
The nickel of the present invention, wherein the positive electrode contains a manganese compound.
It is clear that the metal hydride storage battery has the advantages of a low self-discharge rate and a long charge / discharge cycle life.

【0031】なお、上記の実施例では、マンガン化合物
として、水酸化物、酸化物、および硫酸塩を含有する場
合を説明したが、そのほかに、カルコゲン化物や、金属
状態のものや、各種の塩を含有する場合にも同様の作用
効果を奏する。
In the above examples, the case where the manganese compound contains a hydroxide, an oxide and a sulfate has been described, but in addition to this, chalcogenides, metal compounds and various salts are also included. The same action and effect can be obtained even when it contains.

【0032】また、上記の実施例では、負極の水素吸蔵
合金として、特定の組成の稀土類系合金を用いる場合に
ついて説明したが、単にこれらの合金だけではなく、La
Ni5 、ZrNi2 、TiNi、Ti2Ni等の水素吸蔵合金の構成金
属をほかの元素で置換したものについても、上記の実施
例と同様の作用効果が得られる。
In the above embodiments, the case where a rare earth alloy having a specific composition is used as the hydrogen storage alloy for the negative electrode has been described. However, not only these alloys but also La alloy
Even when the constituent metal of the hydrogen storage alloy such as Ni 5 , ZrNi 2 , TiNi, and Ti 2 Ni is replaced with another element, the same operation and effect as those of the above embodiment can be obtained.

【0033】そして、上記の実施例では、非焼結式水酸
化ニッケル電極の活物質支持体として、発泡ニッケルを
用いる場合について説明したが、そのほかに、金属ニッ
ケルの繊維の焼結体、ニッケルメッキした鉄などのよう
な耐アルカリ性金属の穿孔板、ニッケル網、ニッケルの
エキスパンデッドメタルなどを支持体に用いる場合も同
様の作用効果がある。
In the above embodiment, the case where foamed nickel is used as the active material support of the non-sintered nickel hydroxide electrode has been described, but in addition to this, a sintered body of metal nickel fibers and nickel plating are used. The same effect can be obtained when a perforated plate of an alkali-resistant metal such as iron or the like, a nickel net, an expanded metal of nickel, or the like is used as the support.

【0034】さらに、上記の実施例では、非焼結式の水
酸化ニッケル電極に水酸化コバルトを添加する場合につ
いて説明したが、そのほかに、金属コバルトや、酸化コ
バルトを添加する場合にも、上記の実施例と同様の作用
効果が得られる。
Further, in the above embodiment, the case where cobalt hydroxide is added to the non-sintered nickel hydroxide electrode has been described. However, in addition to the above, the case where metal cobalt or cobalt oxide is added is also described above. The same effect as that of the embodiment can be obtained.

【0035】また、上記の実施例では、角形の密閉形の
電池について説明したが、円筒形や開放形電池の場合に
も、上記の実施例と同様の作用効果が得られる。
Further, in the above-mentioned embodiment, the prismatic closed type battery has been described, but the same operational effect as that of the above-mentioned embodiment can be obtained also in the case of the cylindrical type or the open type battery.

【0036】[0036]

【発明の効果】以上に述べたように、本発明のニッケル
−金属水素化物蓄電池は、充放電サイクル寿命が長く
て、しかも自己放電速度が小さいという効果を奏する。
As described above, the nickel-metal hydride storage battery of the present invention has the effects of a long charge / discharge cycle life and a low self-discharge rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極の主活物質が水酸化ニッケルであり、
負極の主体が水素吸蔵合金からなり、該正極がマンガン
化合物を含有することを特徴とするニッケル−金属水素
化物蓄電池。
1. The main active material of the positive electrode is nickel hydroxide,
A nickel-metal hydride storage battery, wherein the negative electrode mainly comprises a hydrogen storage alloy, and the positive electrode contains a manganese compound.
JP30667591A 1991-10-24 1991-10-24 Nickel-metal hydride storage battery Expired - Lifetime JP3200822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30667591A JP3200822B2 (en) 1991-10-24 1991-10-24 Nickel-metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30667591A JP3200822B2 (en) 1991-10-24 1991-10-24 Nickel-metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH05121073A true JPH05121073A (en) 1993-05-18
JP3200822B2 JP3200822B2 (en) 2001-08-20

Family

ID=17959968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30667591A Expired - Lifetime JP3200822B2 (en) 1991-10-24 1991-10-24 Nickel-metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3200822B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658947A1 (en) * 1993-12-18 1995-06-21 VARTA Batterie Aktiengesellschaft Nickel/metallic hydride secondary cell
WO1998031063A1 (en) * 1997-01-09 1998-07-16 Sanyo Electric Co., Ltd. Alkaline storage battery and method for charging battery
US6803148B2 (en) 2000-04-04 2004-10-12 Matsushita Electric Industrial, Co., Ltd. Nickel positive electrode plate and akaline storage battery
EP1901373A1 (en) 1998-11-30 2008-03-19 Sanyo Electric Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803414B2 (en) 1999-09-29 2004-10-12 Mitsubishi Fuso Truck And Bus Corporation Damping resin composition and damping resin article for structure using the resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658947A1 (en) * 1993-12-18 1995-06-21 VARTA Batterie Aktiengesellschaft Nickel/metallic hydride secondary cell
WO1998031063A1 (en) * 1997-01-09 1998-07-16 Sanyo Electric Co., Ltd. Alkaline storage battery and method for charging battery
EP1901373A1 (en) 1998-11-30 2008-03-19 Sanyo Electric Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries
US6803148B2 (en) 2000-04-04 2004-10-12 Matsushita Electric Industrial, Co., Ltd. Nickel positive electrode plate and akaline storage battery
US7364818B2 (en) 2000-04-04 2008-04-29 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode plate and alkaline storage battery

Also Published As

Publication number Publication date
JP3200822B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
JPH1064537A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery using this electrode
JPH05121073A (en) Nickel-metal hydride storage battery
JPH01102855A (en) Hydrogen storing alloy electrode
JP2595967B2 (en) Hydrogen storage electrode
JPH0855618A (en) Sealed alkaline storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JPH09204930A (en) Nickel hydrogen storage battery
JP6951047B2 (en) Alkaline secondary battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JPH0513096A (en) Metal hydride storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3057737B2 (en) Sealed alkaline storage battery
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH0562428B2 (en)
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP4839433B2 (en) Sealed nickel hydride secondary battery
JP2750793B2 (en) Nickel-metal hydride battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP3070081B2 (en) Sealed alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3412162B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11