JP3412162B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP3412162B2
JP3412162B2 JP09252992A JP9252992A JP3412162B2 JP 3412162 B2 JP3412162 B2 JP 3412162B2 JP 09252992 A JP09252992 A JP 09252992A JP 9252992 A JP9252992 A JP 9252992A JP 3412162 B2 JP3412162 B2 JP 3412162B2
Authority
JP
Japan
Prior art keywords
positive electrode
hydroxide
storage battery
nickel
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09252992A
Other languages
Japanese (ja)
Other versions
JPH05290879A (en
Inventor
和宏 太田
宏夢 松田
忠雄 木村
克典 児守
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP09252992A priority Critical patent/JP3412162B2/en
Publication of JPH05290879A publication Critical patent/JPH05290879A/en
Application granted granted Critical
Publication of JP3412162B2 publication Critical patent/JP3412162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はアルカリ蓄電池に関し、
特に高温充電特性を改良した正極活物質に水酸化ニッケ
ルを用いるアルカリ蓄電池に関する。 【0002】 【従来の技術】近年、正極に水酸化ニッケル,負極に水
素吸蔵合金,電解質にアルカリ水溶液を用いた密閉形ニ
ッケル水素蓄電池やニッケルカドミウム蓄電池,ニッケ
ル亜鉛蓄電池が、高エネルギー密度を達成できるとして
注目を集めている。この電池での正極での充電機構は式
(1)のように進む。放電反応はこの逆である。e-
電子である。 【0003】 Ni(OH)2+OH-=NiOOH+H2O+e- (1) しかし、充電時には上記反応だけでなく副反応式(2)
が起こる。 【0004】 4OH-=2H2O+O2+4e- (2) そこで、正極での式(2)の副反応に対しては、密閉形
ニッケル水素蓄電池では発生した酸素ガスを負極に導い
て、式(3)のように水にする方法が用いられ、 O2+4MH=M+2H2O (3) 密閉を保っている。ここでMは水素吸蔵合金を、MHは
水素を吸蔵した水素吸蔵合金を表す。 【0005】この式(2)で示される副反応は、高温た
とえば45℃以上では正極の充電反応である式(1)に
較べ優勢的に起こり、正極の充填容量の150%の電気
量で充電しても、正極は50%程度しか充電されていな
かった。本発明ではこの正極理論容量に対する充電され
た割合を充電受け入れ率と呼ぶことにする。 【0006】この高温での充電受け入れ率を改良するた
め種々の改良がなされているが、最も効果的なのは正極
中に水酸化カドミウムや水酸化カルシウムを添加するこ
とである。 【0007】 【発明が解決しようとする課題】しかしこの場合でも、
45℃での充電では正極は水酸化カドミウムを用いた場
合で80%程度、水酸化カルシウムでは70%程度にし
か充電されなかった。しかも、カドミウムは公害物質で
あることより、この使用やましてこれを多量に使用する
ことは好ましくないのは言うまでもない。 【0008】本発明はこのような課題を解決するもの
で、公害の少ない材料の添加により水酸化ニッケル正極
の高温での充電受け入れ率を向上し、高温で充電された
場合でも、大きな放電容量が得られる。アルカリ蓄電池
を提供することを目的とする。 【0009】 【課題を解決するための手段】この目的を達成するため
本発明のアルカリ蓄電池は、充放電可能な負極と、水酸
化ニッケルよりなる正極と、アルカリ水溶液を電解液と
して用いるアルカリ蓄電池において、前記正極中に水酸
化ストロンチウムを添加したものである。 【0010】 【作用】式(2)で示される酸素発生の副反応は、高温
になると正極表面、特に水酸化ニッケル表面での酸素過
電圧の低下によるものと考えている。従来の水酸化カド
ミウムや水酸化カルシウムの正極中への添加は、これら
水酸化物が一部正極中に含まれる電解液中に溶解し、金
属イオンが水酸化ニッケル表面で酸素過電圧を増大させ
ていると考えられる。そこで、金属イオンのこのような
効果に着目し、他の金属イオン(特にa,b族金属イオ
ン)を検討した結果、ストロンチウムイオンが優れた効
果を示すことを見つけた。中でもアルカリ電解液中で解
離した場合OH-イオンしか生成しない水酸化ストロン
チウムが最も有効で、ストロンチウムイオンが酸素過電
圧の増加に寄与しているものと考える。酸素過電圧が増
加したため充電受け入れ率が向上し、その結果、高温で
充電した場合でも、大きな放電容量が得られることとな
る。 【0011】 【実施例】以下、本発明の実施例のアルカリ蓄電池につ
いて図面を参照して説明する。 【0012】(実施例1)水酸化ニッケルと金属コバル
トと水酸化コバルトと水酸化ストロンチウムを重量比で
100:7:5:2.5に秤量した粉末をよく混合した
後、混合粉末20gに水を添加しペースト状にした。横
60mm,縦81mm,重量3.1gの発泡ニッケル中に、
このペーストを充填し、乾燥後厚み1.74mmに圧縮し
正極板とした。正極板の角にリードとしてのニッケル板
をスポット溶接した。金属コバルトは放電リザーブの確
保に寄与し、水酸化コバルトは20℃での充電効率の改
良に寄与する。しかし、45℃のような高温では効果は
少ない。このとき、正極板1枚の理論容量は5.05A
hである。試験用電池には、この正極板を5枚用いた。 【0013】負極として水素吸蔵合金を用いた。水素吸
蔵合金としてランタン含量10%のミッシュメダル(M
m)を用いたMmNi3.55Mn0.4Al0.3Co0.75を用
い、この合金19.4gに同様に水を加えてペーストと
した。横60mm,縦81mm,重量3.1gの発泡ニッケ
ル中に、このペーストを充填し乾燥後、厚み1.20mm
に圧縮し負極板とした。負極板の角にリードとしてのニ
ッケル板をスポット溶接した。このとき、負極板1枚の
理論容量は5.63Ahである。試験用電池には、この
負極板を6枚用いた。 【0014】図1のように、スルフォン化処理を行った
ポリプロピレン不織布セパレータ1を介して、負極2,
正極3の順に外側に負極がくるように配置した。負極2
のリード8をニッケル製負極端子4に、正極3のリード
9をニッケル製正極端子(図示していない)にスポット
溶接した。これらの極板群を厚み3mmのアルリロニトリ
ルースチレン樹脂からなる縦108mm,横69mm,幅1
8mmのケース5に入れた。比重1.3の水酸化カリウム
水溶液を電解液として54CC加えた。 【0015】2気圧で作動する安全弁6を取り付けたア
ルリロニトリルースチレン樹脂からなる封口板7をケー
ス5にエポキシ樹脂で接着した。その後、正極端子,負
極端子4を封口板7にOリングを介して圧接固定し、密
閉電池とした。この電池をAとする。 【0016】従来例として、水酸化ストロンチウムの代
わりに同じ重量比で水酸化カドミウムを添加した電池を
B,水酸化カルシウムを添加した電池をCとする。した
がって、AからCの電池は同じ正極理論充填容量を持
つ。 【0017】AからCの電池を45℃で10時間率つま
り2.53Aで15時間充電し、20℃で5時間率5.
06Aで端子間電圧が1Vになるまで放電する充放電サ
イクルを繰り返した。 【0018】10サイクル後の放電容量と、これを正極
の理論充填容量で除した充電受け入れ率を、(表1)に
示す。これより、水酸化ストロンチウムを正極中に添加
したことにより 【0019】 【表1】 【0020】充電受け入れ率が向上し、放電容量が増加
することがわかる。 (実施例2)添加する水酸化ストロンチウム量を検討し
た。 【0021】水酸化ニッケルと金属コバルトと水酸化コ
バルトと水酸化ストロンチウムを重量比で100:7:
5:Xとし、X=0,0.5,1,2.5,5,10,
20,30で秤量した粉末をよく混合した後、混合粉末
20gに水を添加しペースト状にした。これらのペース
トを用いて実施例1と同様に正極板を作り、同じ負極を
用いて電池を作った。 【0022】実施例1と同様の試験を行い、各水酸化ス
トロンチウム添加量での充電受け入れ率を求めた。結果
を図2に示す。これより充電受け入れ率は、重量比で水
酸化ニッケル100に対して0.5で十分な改善効果が
出ることがわかる。 【0023】水酸化ストロンチウム0.5の値は、水酸
化カドミウムを用いたときとほぼ同じになるが、公害の
観点より水酸化ストロンチウムの方が好ましい。水酸化
ストロンチウム量を多くすると、充電受け入れ率は良く
なるが、重量当りの充電された電気量でみると水酸化ス
トロンチウム添加量Xの値が0の時の充電受け入れ率か
らみて、Xを30以上にすると充電された電気量は低下
することになり好ましくない。 【0024】 【発明の効果】以上の実施例の説明により明らかなよう
に、本発明のアルカリ蓄電池によれば、公害の少ない水
酸化ストロンチウムを正極中に添加することにより、水
酸化ニッケル正極の高温での充電特性を改良し、アルカ
リ蓄電池の高温での充電を効率良くできるようになる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery,
In particular, the present invention relates to an alkaline storage battery using nickel hydroxide as a positive electrode active material having improved high-temperature charging characteristics. In recent years, sealed nickel-metal hydride batteries, nickel cadmium batteries, and nickel zinc batteries using nickel hydroxide for a positive electrode, a hydrogen storage alloy for a negative electrode, and an alkaline aqueous solution for an electrolyte can achieve high energy densities. As attention has been drawn. The charging mechanism at the positive electrode in this battery proceeds as in equation (1). The discharge reaction is the opposite. e - is an electron. Ni (OH) 2 + OH = NiOOH + H 2 O + e (1) However, at the time of charging, not only the above reaction but also a side reaction formula (2)
Happens. 4OH = 2H 2 O + O 2 + 4e (2) Therefore, for the side reaction of the formula (2) at the positive electrode, the oxygen gas generated in the sealed nickel-metal hydride battery is led to the negative electrode, and the formula (2) The method of making water as in 3) is used, and O 2 + 4MH = M + 2H 2 O (3) The hermeticity is maintained. Here, M represents a hydrogen storage alloy, and MH represents a hydrogen storage alloy storing hydrogen. The side reaction represented by the formula (2) occurs more predominantly at a high temperature, for example, at 45 ° C. or higher, as compared with the formula (1), which is a charging reaction of the positive electrode. Even so, only about 50% of the positive electrode was charged. In the present invention, the charged ratio to the positive electrode theoretical capacity is referred to as a charge acceptance ratio. Various improvements have been made to improve the charge acceptance rate at high temperatures, but the most effective is to add cadmium hydroxide or calcium hydroxide to the positive electrode. [0007] However, even in this case,
When charged at 45 ° C., the positive electrode was charged only to about 80% when cadmium hydroxide was used, and was charged only to about 70% with calcium hydroxide. Moreover, since cadmium is a pollutant, it is needless to say that it is not preferable to use cadmium or use it in a large amount. The present invention solves such a problem, and improves the charge acceptance rate of a nickel hydroxide positive electrode at a high temperature by adding a low-pollution material so that a large discharge capacity can be obtained even when charged at a high temperature. can get. An object is to provide an alkaline storage battery. In order to achieve this object, an alkaline storage battery of the present invention comprises a chargeable / dischargeable negative electrode, a positive electrode made of nickel hydroxide, and an alkaline storage battery using an alkaline aqueous solution as an electrolyte. And strontium hydroxide added to the positive electrode. It is considered that the side reaction of oxygen generation represented by the formula (2) is caused by a decrease in oxygen overvoltage at the surface of the positive electrode, particularly at the surface of nickel hydroxide at a high temperature. Conventional addition of cadmium hydroxide or calcium hydroxide to the positive electrode involves dissolving some of these hydroxides in the electrolyte contained in the positive electrode, causing metal ions to increase the oxygen overvoltage on the nickel hydroxide surface. It is thought that there is. Then, paying attention to such an effect of the metal ion and examining other metal ions (particularly, metal ions of the a and b groups), it was found that the strontium ion exhibited an excellent effect. Among them, strontium hydroxide, which produces only OH - ions when dissociated in an alkaline electrolyte, is most effective, and strontium ions are considered to contribute to an increase in oxygen overvoltage. Since the oxygen overvoltage is increased, the charge acceptance ratio is improved, and as a result, a large discharge capacity can be obtained even when the battery is charged at a high temperature. An alkaline storage battery according to an embodiment of the present invention will be described below with reference to the drawings. (Example 1) A powder obtained by weighing nickel hydroxide, metallic cobalt, cobalt hydroxide and strontium hydroxide in a weight ratio of 100: 7: 5: 2.5 was mixed well, and 20 g of the mixed powder was added to water. Was added to form a paste. In foam nickel of 60mm in width, 81mm in length, and 3.1g in weight,
This paste was filled, dried and then compressed to a thickness of 1.74 mm to obtain a positive electrode plate. A nickel plate as a lead was spot-welded to a corner of the positive electrode plate. Metallic cobalt contributes to securing a discharge reserve, and cobalt hydroxide contributes to improvement of charging efficiency at 20 ° C. However, at a high temperature such as 45 ° C., the effect is small. At this time, the theoretical capacity of one positive electrode plate is 5.05 A
h. Five positive electrodes were used for a test battery. [0013] A hydrogen storage alloy was used as the negative electrode. Misch medal with a lanthanum content of 10% (M
Using MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 using m), water was similarly added to 19.4 g of this alloy to form a paste. This paste is filled in a foamed nickel foam having a width of 60 mm, a length of 81 mm and a weight of 3.1 g, and after drying, has a thickness of 1.20 mm.
Into a negative electrode plate. A nickel plate as a lead was spot-welded to a corner of the negative electrode plate. At this time, the theoretical capacity of one negative electrode plate is 5.63 Ah. Six negative electrodes were used for a test battery. As shown in FIG. 1, a negative electrode 2 and a negative electrode 2 are interposed via a sulfonated polypropylene nonwoven fabric separator 1.
The negative electrode was arranged outside the positive electrode 3 in this order. Negative electrode 2
And the lead 9 of the positive electrode 3 was spot-welded to a nickel positive electrode terminal 4 (not shown). These electrode plates were made of an allylonitrile styrene resin having a thickness of 3 mm, length 108 mm, width 69 mm, width 1
It was placed in an 8 mm case 5. 54 CC of an aqueous solution of potassium hydroxide having a specific gravity of 1.3 was added as an electrolytic solution. A sealing plate 7 made of allylonitrile styrene resin and having a safety valve 6 operating at 2 atm was attached to the case 5 with an epoxy resin. Thereafter, the positive electrode terminal and the negative electrode terminal 4 were pressed and fixed to the sealing plate 7 via an O-ring to obtain a sealed battery. This battery is designated as A. As a conventional example, a battery in which cadmium hydroxide is added in the same weight ratio instead of strontium hydroxide is designated as B, and a battery in which calcium hydroxide is added is designated as C. Thus, cells A through C have the same theoretical theoretical fill capacity. The batteries A to C are charged at 45 ° C. for 10 hours at a rate of 2.53 A for 15 hours, and at 20 ° C. for 5 hours at a rate of 5.
The charge / discharge cycle of discharging at 06 A until the inter-terminal voltage became 1 V was repeated. Table 1 shows the discharge capacity after 10 cycles and the charge acceptance ratio obtained by dividing the discharge capacity by the theoretical filling capacity of the positive electrode. Table 1 shows that strontium hydroxide was added to the positive electrode. It can be seen that the charge acceptance ratio is improved and the discharge capacity is increased. (Example 2) The amount of strontium hydroxide to be added was examined. Nickel hydroxide, metallic cobalt, cobalt hydroxide and strontium hydroxide are in a weight ratio of 100: 7:
5: X, X = 0, 0.5, 1, 2.5, 5, 10,
After the powders weighed at 20, 30 were mixed well, water was added to 20 g of the mixed powder to form a paste. A positive electrode plate was made using these pastes in the same manner as in Example 1, and a battery was made using the same negative electrode. The same test as in Example 1 was carried out, and the charge acceptance ratio at each strontium hydroxide addition amount was determined. FIG. 2 shows the results. From this, it can be seen that a sufficient improvement effect can be obtained when the charge acceptance ratio is 0.5 with respect to 100 parts by weight of nickel hydroxide. The value of strontium hydroxide 0.5 is almost the same as when cadmium hydroxide is used, but strontium hydroxide is more preferable from the viewpoint of pollution. When the amount of strontium hydroxide is increased, the charge acceptance ratio is improved. However, in terms of the amount of charged electricity per weight, when the value of the strontium hydroxide addition amount X is 0, X is 30 or more. In this case, the amount of charged electricity is undesirably reduced. As is apparent from the above description of the embodiment, according to the alkaline storage battery of the present invention, by adding strontium hydroxide having low pollution to the positive electrode, the temperature of the nickel hydroxide positive electrode can be increased. , The charging characteristics of the alkaline storage battery at a high temperature can be efficiently performed.

【図面の簡単な説明】 【図1】本発明の実施例のアルカリ蓄電池の縦断面図 【図2】本発明の実施例2のアルカリ蓄電池の水酸化ス
トロンチウム添加量と充電受け入れ率との関係を示すグ
ラフ 【符号の説明】 1 セパレータ 2 負極 3 正極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of an alkaline storage battery according to an embodiment of the present invention. FIG. Graphs [Explanation of symbols] 1 Separator 2 Negative electrode 3 Positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 児守 克典 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭49−96246(JP,A) 特開 昭49−121131(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/62 H01M 4/32 H01M 10/30 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Katsunori Komori 1006 Kazuma Kadoma, Osaka Pref.Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-49-96246 (JP, A) JP-A-49-121131 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/62 H01M 4/32 H01M 10/30

Claims (1)

(57)【特許請求の範囲】 【請求項1】 水酸化ニッケル、コバルト化合物、およ
び水酸化ストロンチウムを有するペーストから得られる
正極と、水素吸蔵合金を有する負極と、セパレータと、
アルカリ水溶液よりなる電解液とを有することを特徴と
するアルカリ蓄電池。
(57) [Claims] (1) Nickel hydroxide, a cobalt compound, and
From strontium hydroxide and paste
A positive electrode, a negative electrode having a hydrogen storage alloy, a separator,
Characterized by having an electrolytic solution comprising an alkaline aqueous solution.
Alkaline storage battery.
JP09252992A 1992-04-13 1992-04-13 Alkaline storage battery Expired - Fee Related JP3412162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09252992A JP3412162B2 (en) 1992-04-13 1992-04-13 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09252992A JP3412162B2 (en) 1992-04-13 1992-04-13 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH05290879A JPH05290879A (en) 1993-11-05
JP3412162B2 true JP3412162B2 (en) 2003-06-03

Family

ID=14056883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09252992A Expired - Fee Related JP3412162B2 (en) 1992-04-13 1992-04-13 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3412162B2 (en)

Also Published As

Publication number Publication date
JPH05290879A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
Kaiya et al. Improvement in cycle life performance of high capacity nickel-metal hydride battery
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH08329937A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery
JP3428305B2 (en) Nickel electrode for alkaline storage battery
JP3412162B2 (en) Alkaline storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3221040B2 (en) Alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JPH09204930A (en) Nickel hydrogen storage battery
JP3412161B2 (en) Sealed nickel-metal hydride storage battery
JP6951047B2 (en) Alkaline secondary battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP3057737B2 (en) Sealed alkaline storage battery
JPH05290829A (en) Sealed alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH05283056A (en) Sealed alkaline storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JPH05290835A (en) Rectangular nickel-hydrogen storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees