JP3221040B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP3221040B2
JP3221040B2 JP08519692A JP8519692A JP3221040B2 JP 3221040 B2 JP3221040 B2 JP 3221040B2 JP 08519692 A JP08519692 A JP 08519692A JP 8519692 A JP8519692 A JP 8519692A JP 3221040 B2 JP3221040 B2 JP 3221040B2
Authority
JP
Japan
Prior art keywords
positive electrode
storage battery
hydroxide
alkaline storage
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08519692A
Other languages
Japanese (ja)
Other versions
JPH05290840A (en
Inventor
宏夢 松田
和宏 太田
忠雄 木村
克典 児守
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP08519692A priority Critical patent/JP3221040B2/en
Publication of JPH05290840A publication Critical patent/JPH05290840A/en
Application granted granted Critical
Publication of JP3221040B2 publication Critical patent/JP3221040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルカリ蓄電池に関し、
特に高温充電特性を向上した正極活物質に水酸化ニッケ
ルを用いるアルカリ蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery,
In particular, the present invention relates to an alkaline storage battery using nickel hydroxide as a positive electrode active material having improved high-temperature charging characteristics.

【0002】[0002]

【従来の技術】近年、正極に水酸化ニッケル、負極に水
素吸蔵合金、電解質にアルカリ水溶液を用いた密閉形ニ
ッケル水素蓄電池やニッケルカドミウム蓄電池,ニッケ
ル亜鉛蓄電池が、高エネルギー密度を達成できるとして
注目を集めている。この電池での正極での充電機構は式
(1)のように進む。放電反応はこの逆である。e-
電子である。 Ni(OH)2+OH-=NiOOH+H2O+e-…(1) しかし、充電時には上記反応だけでなく副反応式(2)
が起こる。
2. Description of the Related Art In recent years, attention has been paid to sealed nickel-metal hydride storage batteries, nickel cadmium storage batteries, and nickel zinc storage batteries using nickel hydroxide for a positive electrode, a hydrogen storage alloy for a negative electrode, and an alkaline aqueous solution for an electrolyte because they can achieve high energy density. I am collecting. The charging mechanism at the positive electrode in this battery proceeds as in equation (1). The discharge reaction is the opposite. e - is an electron. Ni (OH) 2 + OH = NiOOH + H 2 O + e (1) However, when charging, not only the above reaction but also a side reaction formula (2)
Happens.

【0003】4OH-=2H2O+O2+4e-…(2) そこで、正極での式(2)の副反応に対しては、密閉形
ニッケル水素蓄電池では発生した酸素ガスを負極に導い
て、式(3)のように水にする方法が用いられ、 O2+4MH=M+2H2O…(3) 密閉を保っている。ここでMは水素吸蔵合金を、MHは
水素を吸蔵した水素吸蔵合金を表す。
[0003] 4OH - = 2H 2 O + O 2 + 4e - ... (2) Therefore, for the side reaction formula (2) at the positive electrode, leading the generated oxygen gas to the negative electrode is sealed nickel-metal hydride storage battery Then, a method of making water as in the formula (3) is used, and O 2 + 4MH = M + 2H 2 O (3) The hermeticity is maintained. Here, M represents a hydrogen storage alloy, and MH represents a hydrogen storage alloy storing hydrogen.

【0004】この式(2)で示される副反応は、高温た
とえば45℃以上では正極の充電反応である式(1)に
較らべ優勢的に起こり、正極の充填容量の150%の電
気量で充電しても、正極は50%程度しか充電されてい
なかった(この正極理論容量に対する充電された割合を
充電受け入れ率と呼ぶ)。
The side reaction represented by the formula (2) occurs more predominantly at a high temperature, for example, at 45 ° C. or higher than in the case of the formula (1), which is a charging reaction of the positive electrode. , The positive electrode was charged only about 50% (the ratio of the charged capacity to the theoretical capacity of the positive electrode is called a charge acceptance rate).

【0005】[0005]

【発明が解決しようとする課題】この高温での充電受け
入れ率を改良するため種々の改良がなされているが、最
も効果的なのは正極中に水酸化カドミウムや水酸化カル
シウムを添加することである。しかしこの場合でも45
℃での充電では正極は水酸化カドミウムを用いた場合で
80%程度、水酸化カルシウムでは70%程度にしか充
電されなかった。しかもカドミウムは公害物質であるこ
とより、使用することは好ましくないのは言うまでもな
い。
Various improvements have been made to improve the charge acceptance rate at high temperatures, but the most effective one is to add cadmium hydroxide or calcium hydroxide to the positive electrode. But even in this case 45
When charged at ℃, the positive electrode was charged only to about 80% when cadmium hydroxide was used, and to about 70% with calcium hydroxide. Moreover, it is needless to say that cadmium is not preferable because it is a pollutant.

【0006】本発明はこのような課題を解決するもの
で、公害の少ない材料の添加により水酸化ニッケル正極
の高温での充電受け入れ率を向上し、高温で充電された
場合でも、大きな放電容量が得られるアルカリ蓄電池を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves such a problem, and improves the charge acceptance rate of a nickel hydroxide positive electrode at a high temperature by adding a low-pollution material, thereby increasing a large discharge capacity even when charged at a high temperature. An object is to provide an obtained alkaline storage battery.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明のアルカリ蓄電池は、水酸化ニッケルよりなる正
極,電解質にアルカリ水溶液を用いるアルカリ蓄電池に
おいて、正極中にふっ化カルシウムを添加したものであ
る。
In order to achieve this object, an alkaline storage battery according to the present invention is a positive electrode made of nickel hydroxide and an alkaline storage battery using an alkaline aqueous solution as an electrolyte, wherein calcium fluoride is added to the positive electrode. is there.

【0008】[0008]

【作用】式(2)で示される酸素発生の副反応は、高温
になると正極表面、特に水酸化ニッケル表面での酸素過
電圧の低下によるものと考えている。従来の水酸化カド
ミウムや水酸化カルシウムの正極中への添加は、これら
水酸化物が一部正極中に含まれる電解液中に溶解し、金
属イオンが水酸化ニッケル表面で酸素過電圧を増大させ
ていると考えた。そこで金属イオンのこのような効果を
他のマイナスイオンも持つのではと推定し種々のカルシ
ウム塩を検討した結果、ふっ化カルシウムが優れた効果
を示すことを見つけた。カルシウムイオンの他にふっ素
イオンも酸素過電圧の増加に寄与しているものと考えら
れる。酸素過電圧が増加したため充電受け入れ率が向上
した。その結果、高温で充電した場合でも、大きな放電
容量が得られた。
It is considered that the side reaction of oxygen generation represented by the formula (2) is caused by a decrease in oxygen overvoltage at the surface of the positive electrode, particularly at the surface of nickel hydroxide at a high temperature. Conventional addition of cadmium hydroxide or calcium hydroxide to the positive electrode involves dissolving some of these hydroxides in the electrolyte contained in the positive electrode, causing metal ions to increase the oxygen overvoltage on the nickel hydroxide surface. I thought you were. Then, it was presumed that such an effect of the metal ion might have other negative ions, and as a result of examining various calcium salts, it was found that calcium fluoride exhibited an excellent effect. It is considered that fluorine ions in addition to calcium ions also contribute to an increase in oxygen overvoltage. The charge acceptance rate improved due to the increased oxygen overvoltage. As a result, a large discharge capacity was obtained even when charged at a high temperature.

【0009】[0009]

【実施例】以下本発明の実施例のアルカリ蓄電池を図面
を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An alkaline storage battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0010】(実施例1)水酸化ニッケルと金属コバル
トと水酸化コバルトとふっ化カルシウムを重量比で10
0:7:5:2.5に秤量した粉末を良く混合した後、
混合粉末20gに水を添加しペースト状にした。横60
mm縦81mm重量3.1gの発泡ニッケル中に、このペー
ストを充填し乾燥後、厚み1.74mmに圧縮し正極板と
した。正極板の角にリードとしてのニッケル板をスポッ
ト溶接した。金属コバルトは放電リザーブの確保に寄与
し、水酸化コバルトは20℃での充電効率の改良に寄与
する。しかし45℃のような高温では効果は少ない。
(Example 1) Nickel hydroxide, metallic cobalt, cobalt hydroxide and calcium fluoride were used in a weight ratio of 10%.
After thoroughly mixing the powders weighed at 0: 7: 5: 2.5,
Water was added to 20 g of the mixed powder to form a paste. Width 60
This paste was filled into a foamed nickel foam having a length of 81 mm and a weight of 3.1 g, dried, and then compressed to a thickness of 1.74 mm to obtain a positive electrode plate. A nickel plate as a lead was spot-welded to a corner of the positive electrode plate. Metallic cobalt contributes to securing a discharge reserve, and cobalt hydroxide contributes to improvement of charging efficiency at 20 ° C. However, at a high temperature such as 45 ° C., the effect is small.

【0011】この時正極板1枚の理論容量は5.05A
hである。試験用電池にはこの正極板を5枚用いた。
At this time, the theoretical capacity of one positive electrode plate is 5.05 A
h. Five positive electrodes were used for a test battery.

【0012】負極として水素吸蔵合金を用いた。水素吸
蔵合金としてランタン含量10%のミッシュメタル(M
m)を用いたMmNi3.550.4Al0.3Co0.75を用
い、この合金19.4gに同様に水を加えてペーストと
した。横60mm縦81mm重量3.1gの発泡ニッケル中
に、このペーストを充填し乾燥後、厚み1.20mmに圧
縮し負極板とした。負極板の角にリードとしてのニッケ
ル板をスポット溶接した。この時負極板1枚の理論容量
は5.63Ahである。試験用電池にはこの負極板を6
枚用いた。
A hydrogen storage alloy was used as a negative electrode. Misch metal with lanthanum content of 10% (M
Using MmNi 3.55 M 0.4 Al 0.3 Co 0.75 using m), water was similarly added to 19.4 g of this alloy to form a paste. This paste was filled in a foamed nickel foam having a width of 60 mm and a length of 81 mm and weighing 3.1 g, dried, and then compressed to a thickness of 1.20 mm to obtain a negative electrode plate. A nickel plate as a lead was spot-welded to a corner of the negative electrode plate. At this time, the theoretical capacity of one negative electrode plate is 5.63 Ah. This negative electrode plate was used for the test battery.
Used.

【0013】図1のようにスルフォン化処理を行ったポ
リプロビレン不織布セパレータ1を介して、負極2,正
極3の順に外側に負極2がくるように配置した。負極2
のリードをニッケル製負極端子4に、正極3のリードを
ニッケル製正極端子(図示していない)にスポット溶接
した。これらの極板群を厚み3mmのアルリロニトリル−
スチレン樹脂からなる縦108mm,横69mm,幅18mm
のケース5に入れた。比重1.3の水酸化カリウム水溶
液を電解質として54cc加えた。
As shown in FIG. 1, a negative electrode 2 was disposed outside a negative electrode 2 and a positive electrode 3 in this order via a nonwoven fabric separator 1 subjected to sulfonation. Negative electrode 2
Was welded to the nickel negative electrode terminal 4 and the lead of the positive electrode 3 was spot welded to the nickel positive electrode terminal (not shown). These electrode plates are made of 3 mm thick allylonitrile-
108mm long, 69mm wide, 18mm wide made of styrene resin
In Case 5. 54 cc of an aqueous solution of potassium hydroxide having a specific gravity of 1.3 was added as an electrolyte.

【0014】2気圧で作動する安全弁6を取り付けたア
ルリロニトリル−スチレン樹脂からなる封口板7をケー
スにエポキシ樹脂で接着した。その後正極端子,負極端
子4を封口板にオーリングを介して圧接固定し、密閉電
池とした。この実施例の電池をAとする。
A sealing plate 7 made of allylonitrile-styrene resin and having a safety valve 6 operated at 2 atm was bonded to the case with an epoxy resin. After that, the positive electrode terminal and the negative electrode terminal 4 were pressed and fixed to the sealing plate via an O-ring to obtain a sealed battery. The battery of this embodiment is designated as A.

【0015】従来例として、ふっ化カルシウムの代わり
に同じ重量比で水酸化カドミウムを添加した電池をB、
水酸化カルシウムを添加した電池をCとする。したがっ
て、AからCの電池は同じ正極論理充填容量を持つ。
As a conventional example, a battery in which cadmium hydroxide was added at the same weight ratio instead of calcium fluoride was designated as B,
The battery to which calcium hydroxide was added was designated as C. Thus, cells A through C have the same positive logic fill capacity.

【0016】AからCの電池を45℃で10時間率つま
り2.53Aで15時間充電し、20℃で5時間率5.
06Aで端子間電圧が1Vになるまで放電する充放電サ
イクルを繰り返した。
The batteries A to C were charged at 45 ° C. for 10 hours at a rate of 2.53 A for 15 hours, and at 20 ° C. for 5 hours at a rate of 5.
The charge / discharge cycle of discharging at 06 A until the inter-terminal voltage became 1 V was repeated.

【0017】10サイクル後の放電容量と、これを正極
の論理充填容量で除した充電受け入れ率を、(表1)に
示す。これより、ふっ化カルシウムを正極中に添加した
ことにより、
The discharge capacity after 10 cycles and the charge acceptance ratio obtained by dividing the discharge capacity by the logical filling capacity of the positive electrode are shown in Table 1. From this, by adding calcium fluoride to the positive electrode,

【0018】[0018]

【表1】 [Table 1]

【0019】充電受け入れ率が向上し、放電容量が増加
することがわかる。 (実施例2)添加するふっ化カルシウム量を検討した。
It can be seen that the charge acceptance ratio is improved and the discharge capacity is increased. (Example 2) The amount of added calcium fluoride was examined.

【0020】水酸化ニッケルと金属コバルトと水酸化コ
バルトとふっ化カルシウムを重量比で100:7:5:
Xとし、X=0,0.5,1.0,2.5,5,10,
20,30で秤量した粉末を良く混合した後、混合粉末
20gに水を添加しペースト状にした。これらのペース
トを用いて実施例1と同様に正極板を作り、同じ負極を
用いて電池を作った。
Nickel hydroxide, metallic cobalt, cobalt hydroxide and calcium fluoride are in a weight ratio of 100: 7: 5:
X, X = 0, 0.5, 1.0, 2.5, 5, 10,
After the powders weighed at 20, 30 were mixed well, water was added to 20 g of the mixed powder to form a paste. A positive electrode plate was made using these pastes in the same manner as in Example 1, and a battery was made using the same negative electrode.

【0021】実施例1と同様の試験を行い、各ふっ化カ
ルシウム添加量での充電受け入れ率を求めた。結果を
(表2)に示す。これより充電受け入れ率は、重量比で
水酸化ニッケル100に対して0.5で十分な改善効果
が出ることがわかった。
The same test as in Example 1 was performed, and the charge acceptance ratio at each amount of added calcium fluoride was determined. The results are shown in (Table 2). From this, it was found that a sufficient improvement effect was obtained when the charge acceptance ratio was 0.5 with respect to nickel hydroxide 100 by weight ratio.

【0022】ふっ化カルシウム0.5の値は、水酸化カ
ドミウムを用いたときと同じになるが、公害の観点より
ふっ化カルシウムの方が好ましい。ふっ化カルシウム量
を多くすると、充電受け入れ率は良くなるが、重量当り
の充電された電気量でみるとふっ化カルシウム添加量X
の値が0の時の充電受け入れりつからみて、Xを30以
上にすると充電された電気量は低下することになり好ま
しくない。
The value of calcium fluoride 0.5 is the same as that when cadmium hydroxide is used, but calcium fluoride is preferred from the viewpoint of pollution. When the amount of calcium fluoride is increased, the charge acceptance ratio is improved, but the amount of charged calcium per weight X
In view of the charge acceptance when the value of is 0, setting X to 30 or more is not preferable because the charged amount of electricity decreases.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】以上の実施例の説明により明らかなよう
に本発明のアルカリ蓄電池によれば、公害の少ないふっ
化カルシウムを正極中に添加することにより、アルカリ
蓄電池に用いる水酸化ニッケル正極の高温での充電特性
を改良し、アルカリ蓄電池の高温での充電効率を向上で
きるようになる。
As is apparent from the above description of the embodiment, according to the alkaline storage battery of the present invention, by adding calcium fluoride having low pollution to the positive electrode, the high temperature of the nickel hydroxide positive electrode used for the alkaline storage battery can be obtained. , And the charging efficiency of the alkaline storage battery at high temperatures can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のアルカリ蓄電池の縦断面図FIG. 1 is a longitudinal sectional view of an alkaline storage battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 負極 3 正極 1 separator 2 negative electrode 3 positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 児守 克典 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭48−46841(JP,A) 特開 昭50−69530(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/32 H01M 4/36 - 4/62 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Katsunori Komori 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Yoshinori Toyoguchi 1006 Kazuma Kazuma Kadoma, Osaka Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-48-46841 (JP, A) JP-A-50-69530 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/32 H01M 4/36-4/62

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セパレータを介して対向する充放電可能
な負極と、水酸化ニッケルよりなる正極と、アルカリ電
溶液を主体として構成され、ふっ化カルシウムを添加し
た前記正極を備えたアリカリ蓄電池。
1. An alkaline storage battery comprising a chargeable / dischargeable negative electrode facing through a separator, a positive electrode made of nickel hydroxide, and the positive electrode mainly composed of an alkaline electrolysis solution and having calcium fluoride added thereto.
JP08519692A 1992-04-07 1992-04-07 Alkaline storage battery Expired - Fee Related JP3221040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08519692A JP3221040B2 (en) 1992-04-07 1992-04-07 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08519692A JP3221040B2 (en) 1992-04-07 1992-04-07 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH05290840A JPH05290840A (en) 1993-11-05
JP3221040B2 true JP3221040B2 (en) 2001-10-22

Family

ID=13851896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08519692A Expired - Fee Related JP3221040B2 (en) 1992-04-07 1992-04-07 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3221040B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1341248A1 (en) * 2000-11-17 2003-09-03 Toshiba Battery Co., Ltd. Enclosed nickel-zinc primary battery, its anode and production methods for them

Also Published As

Publication number Publication date
JPH05290840A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3923157B2 (en) Alkaline storage battery
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH08329937A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery
US3202544A (en) Alkaline accumulator
JP3221040B2 (en) Alkaline storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3412162B2 (en) Alkaline storage battery
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0737609A (en) Alkaline storage battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP2537084B2 (en) Hydrogen storage alloy electrode
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3412161B2 (en) Sealed nickel-metal hydride storage battery
JP7092639B2 (en) Alkaline secondary battery
JP2750793B2 (en) Nickel-metal hydride battery
JP3343413B2 (en) Alkaline secondary battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH05290829A (en) Sealed alkaline storage battery
JP2950895B2 (en) Metal-hydrogen alkaline storage battery
JPH05283056A (en) Sealed alkaline storage battery
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees