JPH05290829A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH05290829A
JPH05290829A JP4085195A JP8519592A JPH05290829A JP H05290829 A JPH05290829 A JP H05290829A JP 4085195 A JP4085195 A JP 4085195A JP 8519592 A JP8519592 A JP 8519592A JP H05290829 A JPH05290829 A JP H05290829A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
nickel
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4085195A
Other languages
Japanese (ja)
Inventor
Hiromu Matsuda
宏夢 松田
Kazuhiro Ota
和宏 太田
Tadao Kimura
忠雄 木村
Katsunori Komori
克典 児守
Yoshinori Toyoguchi
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4085195A priority Critical patent/JPH05290829A/en
Publication of JPH05290829A publication Critical patent/JPH05290829A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PURPOSE:To provide a sealed alkaline storage battery capable of obtaining large discharge capacity with charge-receiving property improved. CONSTITUTION:An aluminum-made terminal, applied with nickel plating or copper plating, is used as a negative electrode terminal 5. Large discharge capacity can be provided by improving the charge receiving property of the battery by discharging heat, generated when oxygen generated from a positive electrode as sub-reaction at the time of charging is returned to water on a negative electrode outside the battery quickly to restrain the temperature rise of the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉形アルカリ蓄電池に
関し、特に、充電特性を改良した正極活物質に水酸化ニ
ッケルを用いる大形の密閉形アルカリ蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery, and more particularly to a large sealed alkaline storage battery using nickel hydroxide as a positive electrode active material having improved charging characteristics.

【0002】[0002]

【従来の技術】近年、正極に水酸化ニッケル,負極に水
素吸蔵合金,電解質にアルカリ水溶液を用いた密閉形ニ
ッケル水素蓄電池やニッケルカドミウム蓄電池,ニッケ
ル亜鉛蓄電池が高エネルギー密度を達成できるとして注
目を集めている。これらの電池の正極や負極のリードや
端子には、電気電導性の良好なニッケルが用いられてき
た。
2. Description of the Related Art In recent years, attention has been paid to sealed nickel-metal hydride storage batteries, nickel-cadmium storage batteries, and nickel-zinc storage batteries that use nickel hydroxide for the positive electrode, a hydrogen storage alloy for the negative electrode, and an alkaline aqueous solution for the electrolyte, and can achieve high energy density. ing. Nickel, which has good electric conductivity, has been used for the leads and terminals of the positive and negative electrodes of these batteries.

【0003】この電池での正極での充電機構は式(1)
のように進む。放電反応はこの逆である。e-は電子で
ある。
The charging mechanism at the positive electrode of this battery is represented by the formula (1)
Proceed like. The discharge reaction is the opposite. e - is an electron.

【0004】 Ni(OH)2+OH-=NiOOH+H2O+e- (1) しかし、充電時には上記反応だけでなく副反応式(2)
が起こる。
Ni (OH) 2 + OH = NiOOH + H 2 O + e (1) However, not only the above reaction but also the side reaction formula (2) at the time of charging.
Happens.

【0005】4OH-=2H2O+O2+4e- (2) そこで、正極での式(2)の副反応に対しては、密閉形
ニッケル水素蓄電池では発生した酸素ガスを負極に導い
て、式(3)のように水にする方法が用いられ、 O2+4MH=M+22H2O (3) 密閉を保っている。ここでMは水素吸蔵合金を、MHは
水素を吸蔵した水素吸蔵合金を表す。
4OH = 2H 2 O + O 2 + 4e (2) Therefore, with respect to the side reaction of the formula (2) at the positive electrode, the oxygen gas generated in the sealed nickel-metal hydride storage battery is guided to the negative electrode to obtain the formula ( A method of using water as in 3) is used, and O 2 + 4MH = M + 22H 2 O (3) The airtightness is maintained. Here, M represents a hydrogen storage alloy, and MH represents a hydrogen storage alloy that has stored hydrogen.

【0006】この式(2)で示される副反応は、温度が
高くなるにつれて正極の充放電反応である式(1)に較
べ優勢的に起こり、高温たとえば45℃では正極の充填
容量の150%の電気量で充電しても、正極は50%程
度しか充電されない。
The side reaction represented by the formula (2) occurs more predominantly as compared with the formula (1) which is a charge / discharge reaction of the positive electrode as the temperature rises, and at a high temperature, for example, 45 ° C., 150% of the positive electrode filling capacity is obtained. Even if the battery is charged with this amount of electricity, only about 50% of the positive electrode is charged.

【0007】[0007]

【発明が解決しようとする課題】密閉形アルカリ蓄電池
では式(3)の反応を利用して密閉化を行っているため
式(3)の反応熱が電池内で発生し電池温度が上昇す
る。10Ah程度の容量の電池では、10時間率の充電
では電池ケースやニッケル製端子からの放熱効果により
電池温度の上昇は比較的少ない。しかしながら、25A
h以上の容量の電池では放熱より発熱が顕著になり始め
る。10Ahの容量の電池でも高率充電では発熱が顕著
である。
In the sealed alkaline storage battery, the reaction of the formula (3) is used for sealing, so the reaction heat of the formula (3) is generated in the battery and the battery temperature rises. In the case of a battery having a capacity of about 10 Ah, the temperature rise of the battery is relatively small due to the heat radiation effect from the battery case and the nickel terminal when the battery is charged for 10 hours. However, 25A
In a battery having a capacity of h or more, heat generation becomes more remarkable than heat radiation. Even with a battery having a capacity of 10 Ah, heat generation is remarkable at high rate charging.

【0008】この発熱により電池温度が上昇し、正極の
充電受け入れ性が低下し、十分な放電容量が得られなか
った。
Due to this heat generation, the battery temperature increased, the charge acceptance of the positive electrode decreased, and a sufficient discharge capacity could not be obtained.

【0009】本発明はこのような課題を解決するもの
で、負極のリードや端子材質を変えることにより、高温
での充電受け入れ性を向上し、大きな放電容量が得られ
る密閉形アルカリ蓄電池を提供することを目的とする。
The present invention solves such a problem, and provides a sealed alkaline storage battery in which charge acceptance at a high temperature is improved and a large discharge capacity is obtained by changing the material of the negative electrode lead or terminal. The purpose is to

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
本発明の密閉形アルカリ蓄電池は、充放電可能な負極,
水酸化ニッケルよりなる正極、,解質にアルカリ水溶液
を用い、ニッケルめっき、または銅めっきをしたアルミ
ニウム負極端子を具備したものである。
To achieve this object, the sealed alkaline storage battery of the present invention comprises a chargeable / dischargeable negative electrode,
It comprises a positive electrode made of nickel hydroxide, and an aluminum negative electrode terminal plated with nickel or copper by using an alkaline aqueous solution for disassembly.

【0011】[0011]

【作用】密閉形アルカリ蓄電池では正極より発生する酸
素を式(3)の反応により水に戻している。このときの
反応熱により温度が上昇する。式(3)より明らかなよ
うに反応する場所は負極上である。したがって、熱も負
極上で発生し、電解液,セパレータを通して正極に伝わ
る。伝わった熱が正極の温度を上げ、さらに、酸素の発
生がしやすくなる。本発明は、負極上で発生した熱をで
きるだけ速やかに電池の外に放出し、正極の温度上昇を
抑えることにより、正極からの酸素発生を抑え、電池の
充電受け入れ性を向上させようとするものである。
In the sealed alkaline storage battery, oxygen generated from the positive electrode is returned to water by the reaction of formula (3). The heat of reaction at this time raises the temperature. As is clear from the formula (3), the place where the reaction occurs is on the negative electrode. Therefore, heat is also generated on the negative electrode and transmitted to the positive electrode through the electrolytic solution and the separator. The transferred heat raises the temperature of the positive electrode, and further oxygen is easily generated. The present invention intends to improve the charge acceptability of a battery by releasing the heat generated on the negative electrode to the outside of the battery as quickly as possible and suppressing the temperature rise of the positive electrode to suppress oxygen generation from the positive electrode. Is.

【0012】そこで、負極上で発生する熱を速やかに電
池が外に放出するため、負極のリードや端子に熱電導性
の良好なアルミニウムを使用することが考えられる。し
かしながら、アルミニウムはアルカリ水溶液と科学反応
を起こし溶解するので、そのままでは使えない。銅めっ
きやニッケルめっきを施し、熱電導性の良好なかつアル
カリ水溶液と反応しない端子とした。
Therefore, in order to quickly release the heat generated on the negative electrode to the outside of the battery, it is conceivable to use aluminum having good thermal conductivity for the leads and terminals of the negative electrode. However, aluminum cannot be used as it is because it causes a chemical reaction with an alkaline aqueous solution and dissolves. Copper-plated or nickel-plated was used to obtain a terminal having good thermal conductivity and not reacting with an alkaline aqueous solution.

【0013】[0013]

【実施例】以下、本発明の一実施例の密閉形アルカリ電
池について図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A sealed alkaline battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0014】水酸化ニッケルと金属コバルトと水酸化コ
バルトを重量比で100:7:5に秤量した粉末をよく
混合した後、混合粉末20gに水を添加しペースト状に
した。横60mm,縦81mm,重量3.1gの発泡ニッケ
ル中に、このペーストを充填し乾燥後、厚み1.74mm
に圧縮し正極板とした。正極板の角にリードとしてのニ
ッケル板をスポット溶接した。金属コバルトは放電リザ
ーブの確保に寄与し、水酸化コバルトは20℃での充動
効率の改良に寄与する。
Powders in which nickel hydroxide, metallic cobalt and cobalt hydroxide were weighed at a weight ratio of 100: 7: 5 were mixed well, and then 20 g of the mixed powder was added with water to form a paste. This paste is filled into nickel foam with a width of 60 mm, a length of 81 mm, and a weight of 3.1 g, and after drying, the thickness is 1.74 mm.
It was compressed into a positive electrode plate. A nickel plate as a lead was spot-welded to the corner of the positive electrode plate. Metallic cobalt contributes to ensuring the discharge reserve, and cobalt hydroxide contributes to improving the charging efficiency at 20 ° C.

【0015】このとき正極板1枚の理論容量は5.05
Ahである。試験用電池にはこの正極板を5枚用いた。
At this time, the theoretical capacity of one positive electrode plate is 5.05.
It is Ah. Five positive electrode plates were used for the test battery.

【0016】負極として水素吸蔵合金を用いた。水素吸
蔵合金としてランタン含量10%のミッシュメタル(M
m)を用いたMmNi3.55Mn0.4Al0.3Co0.75を用
い、この合金19.4gに同様に水を加えてペーストと
した。横60mm,縦81mm,重量3.1gの発泡ニッケ
ル中に、このペーストを充填し乾燥後、厚み1.20mm
圧縮し負極板とした。負極板の角にリードとしての熱電
導性のよい幅20mm,厚さ0.2mmの銅板をスポット溶
接した。このとき負極板1枚の理論容量は5.63Ah
である。試験用電池にはこの負極板を6枚用いた。
A hydrogen storage alloy was used as the negative electrode. As hydrogen storage alloy, misch metal with 10% lanthanum content (M
Using MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 with m), and a paste by adding water in the same manner as in the alloy 19.4 g. This paste is filled into nickel foam with a width of 60 mm, a length of 81 mm, and a weight of 3.1 g, and after drying, the thickness is 1.20 mm.
It was compressed into a negative electrode plate. A copper plate having a width of 20 mm and a thickness of 0.2 mm having good thermal conductivity as a lead was spot-welded to a corner of the negative electrode plate. At this time, the theoretical capacity of one negative electrode plate is 5.63 Ah.
Is. Six negative plates were used for the test battery.

【0017】図1のようにスルフォン化処理を行ったポ
リプロピレン不織布セパレータ1を介して、負極2,正
極3の順に外側に負極2がくるように配置した。負極2
の銅製リード4を0.1mmの厚さに銅めっきを施したア
ルミニウム製負極端子5に、正極3のニッケル製リード
9をニッケル製正極端子(図示していない)にスポット
溶接した。めっきの厚さは0.05mm以上あればアルカ
リ水溶液との反応は妨げた。
As shown in FIG. 1, the negative electrode 2 and the positive electrode 3 were arranged in this order so that the negative electrode 2 was placed outside through the sulfonated polypropylene nonwoven fabric separator 1. Negative electrode 2
The copper lead 4 was spot-welded to the aluminum negative electrode terminal 5 plated with copper to a thickness of 0.1 mm, and the nickel lead 9 of the positive electrode 3 to the nickel positive electrode terminal (not shown). If the plating thickness was 0.05 mm or more, the reaction with the alkaline aqueous solution was hindered.

【0018】これらの極板群を厚み3mmのアルリロニト
リルースチレン樹脂からなる縦108mm,横69mm,幅
18mmのケース6に入れた。比重1.3の水酸化カリウ
ム水溶液を電解液として54cc加えた。
These electrode plates were placed in a case 6 of 3 mm thick, made of allylnitrile-styrene resin, which had a length of 108 mm, a width of 69 mm, and a width of 18 mm. 54 cc of an aqueous potassium hydroxide solution having a specific gravity of 1.3 was added as an electrolytic solution.

【0019】2気圧で作動する安全弁7を取りつけたア
ルリロニトリルースチレン樹脂からなる封口板8をケー
ス6にエポキシ樹脂で接着した。その後、正極端子,負
極端子5を封口板8にオーリングを介して圧接固定し、
密閉電池とした。この電池をAとする。さらに、上記と
ほぼ同じ構成であるが、負極リード4に銅板を、負極端
子5に0.1mmの厚さにニッケルめっきを施したアルミ
ニウム製の端子を用いた電池をBとする。比較例として
負極リード4に銅板を、ニッケル製負極端子5を用いた
電池をCとする。従来例としてニッケル製の負極リード
4,負極端子5を用いた電池をDとする。AからDの電
池は同じ正極理論充填容量をもつ。
A sealing plate 8 made of allylonitrile-styrene resin, to which a safety valve 7 operating at 2 atmospheres was attached, was attached to a case 6 with an epoxy resin. After that, the positive electrode terminal and the negative electrode terminal 5 are press-contacted and fixed to the sealing plate 8 via an O-ring,
It was a sealed battery. This battery is designated as A. Further, a battery having substantially the same configuration as the above, but using a copper plate for the negative electrode lead 4 and an aluminum terminal with a nickel plating of 0.1 mm as the negative electrode terminal 5, is designated as B. As a comparative example, a battery using a copper plate for the negative electrode lead 4 and a nickel negative electrode terminal 5 is C. As a conventional example, a battery using a negative electrode lead 4 and a negative electrode terminal 5 made of nickel is designated as D. The cells A to D have the same positive electrode theoretical fill capacity.

【0020】AからDの電池を20℃で3時間率の8.
45Aで4.5時間充電した後、5時間率5.06Aで
端子間電圧が1Vになるまで放電する充放電サイクルを
繰り返した。
The batteries A to D were stored at 20 ° C. for 3 hours.
After charging at 45 A for 4.5 hours, a charging / discharging cycle of discharging at a 5-hour rate of 5.06 A until the terminal voltage became 1 V was repeated.

【0021】10サイクル目の放電曲線を図2に示す。
この結果、実施例の電池A,Bは放電容量が大であり、
充電受け入れ性が良好になっている。
The discharge curve at the 10th cycle is shown in FIG.
As a result, the batteries A and B of the examples have a large discharge capacity,
Charge acceptance is good.

【0022】[0022]

【発明の効果】以上の実例の説明により明らかなように
本発明の密閉形アルカリ蓄電池によれば、充電受け入れ
性が向上し、大きな放電容量が得られることになり、産
業上の意義は大である。
As is apparent from the above description of the examples, according to the sealed alkaline storage battery of the present invention, charge acceptability is improved and a large discharge capacity can be obtained, which has great industrial significance. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明および従来の密閉形アルカリ蓄電池の縦
断面図
FIG. 1 is a vertical sectional view of the present invention and a conventional sealed alkaline storage battery.

【図2】本発明,比較例およびび従来の密閉形アルカリ
蓄電池の10サイクル目の放電特性を示すグラフ
FIG. 2 is a graph showing discharge characteristics at the 10th cycle of the present invention, comparative examples, and conventional sealed alkaline storage batteries.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 負極 3 正極 4 負極リード 5 負極端子 1 separator 2 negative electrode 3 positive electrode 4 negative electrode lead 5 negative electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 児守 克典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsunori Komori 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshinori Toyokuchi 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セパレータを介して対向する充放電可能
な負極と、水酸化ニッケルよりなる正極と、アルカリ電
解液を主体として構成され、ニッケルめっき、または銅
めっきをしたアルミニウム負極端子を具備した密閉形ア
ルカリ蓄電池。
1. A hermetically sealed structure comprising a chargeable / dischargeable negative electrode facing each other via a separator, a positive electrode made of nickel hydroxide, and an aluminum negative electrode terminal mainly composed of an alkaline electrolyte and plated with nickel or copper. Type alkaline storage battery.
JP4085195A 1992-04-07 1992-04-07 Sealed alkaline storage battery Pending JPH05290829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4085195A JPH05290829A (en) 1992-04-07 1992-04-07 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4085195A JPH05290829A (en) 1992-04-07 1992-04-07 Sealed alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH05290829A true JPH05290829A (en) 1993-11-05

Family

ID=13851870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4085195A Pending JPH05290829A (en) 1992-04-07 1992-04-07 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH05290829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466767B1 (en) * 1998-09-02 2005-01-24 산요덴키가부시키가이샤 Lithium Secondary Cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466767B1 (en) * 1998-09-02 2005-01-24 산요덴키가부시키가이샤 Lithium Secondary Cell

Similar Documents

Publication Publication Date Title
US5455125A (en) Medium or large scale sealed metal oxide/metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
EP0170519B1 (en) A method of producing a sealed metal oxide-hydrogen storage cell
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH08329937A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JPH05290829A (en) Sealed alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3412161B2 (en) Sealed nickel-metal hydride storage battery
JP3221040B2 (en) Alkaline storage battery
JP3412162B2 (en) Alkaline storage battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05283056A (en) Sealed alkaline storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP6951047B2 (en) Alkaline secondary battery
JP2750793B2 (en) Nickel-metal hydride battery
JPH04109556A (en) Closed-type secondary battery
EP0567132B1 (en) Sealed type nickel/hydrogen alkaline storage battery
JP3057737B2 (en) Sealed alkaline storage battery
JPH05290835A (en) Rectangular nickel-hydrogen storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP2679441B2 (en) Nickel-metal hydride battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode