JPH08264174A - Hydrogen storage alloy cathode and its preparation - Google Patents

Hydrogen storage alloy cathode and its preparation

Info

Publication number
JPH08264174A
JPH08264174A JP8061424A JP6142496A JPH08264174A JP H08264174 A JPH08264174 A JP H08264174A JP 8061424 A JP8061424 A JP 8061424A JP 6142496 A JP6142496 A JP 6142496A JP H08264174 A JPH08264174 A JP H08264174A
Authority
JP
Japan
Prior art keywords
cathode
hydrogen storage
storage alloy
secondary battery
battery according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8061424A
Other languages
Japanese (ja)
Inventor
Meen-Seon Paik
旻善 白
Kyeng-Ho Han
慶鎬 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSEI DENKAN KK
Samsung SDI Co Ltd
Original Assignee
SANSEI DENKAN KK
Samsung Display Devices Co Ltd
Samsung Electron Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANSEI DENKAN KK, Samsung Display Devices Co Ltd, Samsung Electron Devices Co Ltd filed Critical SANSEI DENKAN KK
Publication of JPH08264174A publication Critical patent/JPH08264174A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0084Solid storage mediums characterised by their shape, e.g. pellets, sintered shaped bodies, sheets, porous compacts, spongy metals, hollow particles, solids with cavities, layered solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/523Removing gases inside the secondary cell, e.g. by absorption by recombination on a catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a pressure increase inside a battery and improve the battery life by using a hydrogen storage alloy for a cathode active material as one kind selected from an AB2 hydrogen storage alloy group and coating a cathode surface with a carbon material within a range of the specified quantity. SOLUTION: A first step of manufacture of a hydrogen storage alloy cathode is that vanadium, titanium, zirconium, nickel, chromium, cobalt, and manganese are dissolved to form an AB2 hydrogen storage alloy. This alloy is heat-treated for 4 to 6 hours at 900 to 1100 deg.C. This is evenly broken into a powder state. This powder is filled and depressed on a substrate to form a cathode material and then sintered. This cathode material surface is coated with a carbon material such as furnace black within a range of 0.05 to 0.5 mg/cm<2> . An absorption reaction and an ion reaction of oxygen gas are quickly performed by the catalyst effect to decrease an inner pressure of a battery, and durability is improved so as to attain quick charge and discharge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、2次電池の電極等
として用いられる水素貯蔵合金陰極およびその製造方法
に係り、さらに詳細には電池の内圧上昇を抑える効果に
優れて電池の寿命を延ばし得る密閉型Ni―MH(ここ
で、Mは金属を表し、Ni−MはNi系水素貯蔵合金を
表し、Ni―MHはNi系水素貯蔵合金の金属水素化物
を表す)蓄電池用水素貯蔵合金陰極およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy cathode used as an electrode or the like of a secondary battery and a method for manufacturing the same, and more particularly to an effect of suppressing an increase in internal pressure of the battery and extending the life of the battery. Obtained sealed Ni-MH (where M represents a metal, Ni-M represents a Ni-based hydrogen storage alloy, and Ni-MH represents a metal hydride of a Ni-based hydrogen storage alloy) Hydrogen storage alloy cathode for storage battery And a manufacturing method thereof.

【0002】水素貯蔵合金とは、周知のように水素の圧
力や温度などが一定の条件下で電気化学的な反応により
水素が可逆的に吸収および放出できる機能を有する材料
のことをいう。このような水素貯蔵合金は前記したよう
な特性を用いてヒートポンプや高純度水素ガスの精製な
どに応用でき、さらにNi―MH蓄電池などのような2
次電池への応用も可能なことは良く知られている。
As is well known, a hydrogen storage alloy refers to a material having a function of reversibly absorbing and releasing hydrogen by an electrochemical reaction under the conditions of constant pressure and temperature of hydrogen. Such a hydrogen storage alloy can be applied to a heat pump and refining of high-purity hydrogen gas by using the above-mentioned characteristics, and further, it can be applied to a Ni-MH storage battery or the like.
It is well known that it can be applied to secondary batteries.

【0003】一般的に水素貯蔵合金は、再充電が可能で
あり高いエネルギ密度を有するので、かかる水素貯蔵合
金を陰極として有するNi―MH電池は鉛蓄電池やNi
―Cd電池または他の蓄電池システムとは違う方式で作
動する。再充電可能な電池には電気化学的な反応により
可逆的に水素が貯蔵できる陰極が用いられる。このよう
な陰極の用いられる電池には通常陽極物質としては水酸
化ニッケルが用いられるが、他の物質も用いられること
は言うまでもない。電池内の陰極および陽極はアルカリ
電解液内で互いに離れており、その間に適切な絶縁膜を
具備する構造を有する。
Since hydrogen storage alloys are generally rechargeable and have a high energy density, Ni-MH batteries having such hydrogen storage alloys as cathodes are used for lead storage batteries and Ni.
-It operates differently than Cd batteries or other accumulator systems. A rechargeable battery uses a cathode that can store hydrogen reversibly by an electrochemical reaction. Nickel hydroxide is usually used as an anode material in a battery using such a cathode, but it goes without saying that other materials are also used. The cathode and anode in the battery are separated from each other in the alkaline electrolyte and have a structure having a suitable insulating film therebetween.

【0004】電気化学的に再充電可能な水素貯蔵合金を
陰極として用いる2次電池は従来の2次電池および蓄電
池(Ni―Cd電池、鉛蓄電池、リチウム電池)と比較
する時次のような長所がある。
A secondary battery using an electrochemically rechargeable hydrogen storage alloy as a cathode has the following advantages over conventional secondary batteries and storage batteries (Ni-Cd batteries, lead storage batteries, lithium batteries). There is.

【0005】第一、水素貯蔵2次電池は消費者の安全と
環境汚染の恐れのあるカドミウム、鉛やリチウムを含ま
ない。第二、水素貯蔵陰極を有する電気化学電池は鉛ま
たはカドミウム電池に比し非常に高い固有電荷容量を提
供する。その結果、水素貯蔵電池は従来の系でよりエネ
ルギー密度が高くて特に商業向きに作られる。
First, the hydrogen storage secondary battery does not contain cadmium, lead or lithium, which may be a consumer safety and environmental pollution. Second, electrochemical cells with hydrogen storage cathodes offer much higher intrinsic charge capacity than lead or cadmium cells. As a result, hydrogen storage batteries have higher energy densities than conventional systems and are made especially commercial.

【0006】水素貯蔵合金を陰極として使用する2次電
池において充・放電時の反応式は次のに通りである。ま
ず、電極間に電気的ポテンシャルをかけると陰極物質
(M)は水素を吸収して充電される。
The reaction equations during charge / discharge in a secondary battery using a hydrogen storage alloy as the cathode are as follows. First, when an electric potential is applied between the electrodes, the cathode material (M) absorbs hydrogen and is charged.

【0007】 M+H2 O+e- → M―H+OH- (充電) 放電時、貯蔵された水素は水の形態で放出されながら電
子を放出する。
M + H 2 O + e → M−H + OH (charge) During discharge, stored hydrogen releases electrons in the form of water.

【0008】 M―H+OH- → M+H2 O+e- (放電) 前記した充電および放電の反応式を要約すれば次の通り
であり、可逆(2次)電池においては該反応が可逆的で
ある。
M−H + OH → M + H 2 O + e (Discharge) The reaction formulas of the charging and discharging described above are summarized as follows, and in a reversible (secondary) battery, the reaction is reversible.

【0009】[0009]

【化1】 Embedded image

【0010】2次電池の陽極で起きる反応も可逆的であ
る。例えば、水酸化ニッケルでの反応式は次の通りであ
る。
The reaction occurring at the secondary battery anode is also reversible. For example, the reaction formula for nickel hydroxide is as follows.

【0011】 Ni(OH)2 +OH- → NiOOH+H2 O+e- (充電) NiOOH+H2 O+e- → Ni(OH)2 +OH- (放電) 一方、水素貯蔵合金は各種の合金が提案されているが、
AB2 系、AB5 系およびAB系に大別される。
Ni (OH) 2 + OH → NiOOH + H 2 O + e (charge) NiOOH + H 2 O + e → Ni (OH) 2 + OH (discharge) On the other hand, various hydrogen storage alloys have been proposed.
It is roughly divided into AB 2 series, AB 5 series, and AB series.

【0012】初期AB2 系の合金としては、ZrM
2 、TiNi2 、ZrCr2 、ZrV2 、ZrMo2
などがある。このような系列の他の元素としてはMg―
Ni水素貯蔵合金がある。これら水素貯蔵合金は外部電
源供給による電子移動によるものではなく圧力および温
度による推進力により水素化および脱水素化された。
The initial AB 2 alloy is ZrM.
n 2 , TiNi 2 , ZrCr 2 , ZrV 2 , ZrMo 2
and so on. Other elements in this series are Mg-
There is a Ni hydrogen storage alloy. These hydrogen storage alloys were hydrogenated and dehydrogenated not by electron transfer with external power supply but by propulsion by pressure and temperature.

【0013】AB5 系にはLaNi5 、MmNi5 など
があり、AB系にはTiNi、TiFeなどがあるが、
これらの代表的な合金は実際に産業上応用し難い。
The AB 5 system includes LaNi 5 , MmNi 5, etc., and the AB system includes TiNi, TiFe, etc.
These typical alloys are practically difficult to apply industrially.

【0014】LaNi5 の場合は、高価であり微細粉末
化されるなどの問題があるが、これを解決するためにL
aの代わりに安値の希土類元素の混合物であるMm(ミ
ッシュメタル;misch metal)に置き換えて得られるMm
Ni5 が多く用いられている。しかしながら、MmNi
5 は初期活性化が困難で、平衡解離圧が高いという短所
がある。
In the case of LaNi 5 , there is a problem that it is expensive and is made into a fine powder, but in order to solve this problem, L
Mm obtained by substituting Mm (misch metal) which is a mixture of low-priced rare earth elements instead of a
Ni 5 is often used. However, MmNi
5 has the disadvantage that the initial activation is difficult and the equilibrium dissociation pressure is high.

【0015】TiFeの場合、安値で微分化特性も良好
であるが、初期活性化が困難である。ZrMn2 の場合
は平衡解離圧が低くて常温では使用できなく、200℃
以上の高温で使用可能である。TiNi、TiNi2
合金の表面に不動態皮膜を形成して水素を吸収および放
出し難い。
In the case of TiFe, it has a low price and good differentiation characteristics, but initial activation is difficult. In the case of ZrMn 2 , the equilibrium dissociation pressure is low and it cannot be used at room temperature.
It can be used at higher temperatures. TiNi and TiNi 2 form a passive film on the surface of the alloy and are difficult to absorb and release hydrogen.

【0016】かかる各合金の短所を補い且つ特性を生か
すために各類型別に多元系合金が開発されてきており、
また合金粉末に金属皮膜をコーティングするマイクロカ
プセル化が同時に進まれて産業上の応用分野の特性に合
う合金が開発されている。
In order to make up for the disadvantages of each alloy and to make the best use of the characteristics, multi-component alloys have been developed for each type,
At the same time, microencapsulation by coating the alloy powder with a metal film has been advanced to develop alloys that meet the characteristics of industrial application fields.

【0017】通常、前記した水素貯蔵合金のうち耐アル
カリ性であり、水素の吸・放出量の多い合金を選択して
陰極材料として用いると放電電気量の多い陰極になる可
能性が高い。従って、公知のニッケル陽極と組み合わせ
るとエネルギ密度の高いアルカリ蓄電池が製造できる。
そして、アルカリ蓄電池の市場を考慮してみれば開放型
より完全密閉型の方が有利である。従って、最近では水
素貯蔵合金を用いた高容量の密閉型Ni―MH電池が注
目されている。
Generally, when an alloy having alkali resistance and having a large hydrogen absorption / desorption amount is selected from the above hydrogen storage alloys and used as a cathode material, there is a high possibility that the cathode has a large discharge electricity amount. Therefore, an alkaline storage battery having a high energy density can be manufactured by combining it with a known nickel anode.
Considering the market of alkaline storage batteries, the completely sealed type is more advantageous than the open type. Therefore, recently, a high capacity sealed Ni-MH battery using a hydrogen storage alloy has been attracting attention.

【0018】しかしながら、このような密閉型Ni―M
H電池の実用化を妨げる問題の一つは充放電の寿命がN
i―Cd電池に比し短いという点である。これは過充電
時陽極で発生する酸素ガスにより内圧が上昇するからで
ある。
However, such a sealed Ni-M
One of the problems that hinders the practical use of H batteries is the charge / discharge life of N
It is shorter than the i-Cd battery. This is because the internal pressure rises due to the oxygen gas generated at the anode during overcharge.

【0019】前記のような問題点を克服するために電池
の内圧が上昇する時ガスを外部に排出し得る完全バルブ
を設けることにより内圧上昇を防止している。
In order to overcome the above problems, a complete valve capable of discharging gas to the outside when the internal pressure of the battery rises is provided to prevent the internal pressure from rising.

【0020】さらに、電池の内圧上昇を防止するための
他の方法は放電特性を劣化させない最小量の電解液を添
加して陰極で酸素の吸収力を高めることである。
Further, another method for preventing the internal pressure of the battery from increasing is to increase the oxygen absorption capacity at the cathode by adding a minimum amount of electrolytic solution which does not deteriorate the discharge characteristics.

【0021】しかしながら、前記したように設計された
電池の内圧が上がって安全バルブが作動する時酸素ガス
および電解液が排出されて放電容量の低下で漏液現象が
発生して結果的に充放電の寿命の短縮を引き起こす。こ
れを解決するために、例えば、特開昭62−13925
5号に開示されているように水素貯蔵合金陰極をフッ素
樹脂懸濁液に浸漬して電池の内圧上昇を抑制することに
より充放電の寿命を多少延ばす方法が提案されたことが
ある。
However, when the internal pressure of the battery designed as described above rises and the safety valve operates, oxygen gas and electrolyte are discharged, and the discharge capacity is reduced to cause a leakage phenomenon, resulting in charge / discharge. Cause a shortened lifespan. To solve this, for example, Japanese Patent Laid-Open No. 62-13925.
As disclosed in No. 5, there has been proposed a method in which a hydrogen storage alloy cathode is immersed in a fluororesin suspension to suppress an increase in internal pressure of the battery to prolong the charge / discharge life to some extent.

【0022】そして、前記したNi―MH電池の性能は
陰極活物質として用いられる水素貯蔵合金の種類、特性
および製造工程などに左右される。
The performance of the above Ni-MH battery depends on the type, characteristics and manufacturing process of the hydrogen storage alloy used as the cathode active material.

【0023】以下、前記の各種要因中、本発明の対象な
る製造工程について添付した図面に基づき水素貯蔵合金
を用いた従来の陰極製造方法に対して説明する。
Among the various factors mentioned above, the conventional manufacturing method of the cathode using the hydrogen storage alloy will be described with reference to the accompanying drawings with respect to the manufacturing process of the present invention.

【0024】図1は、従来のTi―Ni系水素貯蔵合金
を用いたNi―MH2次電池の陰極製造工程を示す図面
である。これは、まず合金を製造した後粉砕して基板上
に充電した後焼結して製造する方法である。
FIG. 1 is a view showing a cathode manufacturing process of a Ni-MH secondary battery using a conventional Ti-Ni type hydrogen storage alloy. This is a method in which an alloy is first manufactured, then crushed, charged on a substrate, and then sintered to manufacture.

【0025】図2は、従来の希土類元素の複合物である
Mm(AB5 )系、Ti―Fe系水素貯蔵合金を用いた
2次電池の陰極製造工程を示しす図面であり、合金を製
造して粉砕した後これを溶媒と混合してスラリー状態に
して基板上に充電および圧着する。
FIG. 2 is a drawing showing a cathode manufacturing process of a secondary battery using a conventional rare earth element composite Mm (AB 5 ) type, Ti—Fe type hydrogen storage alloy. After crushing the powder, it is mixed with a solvent to form a slurry, which is charged and pressure-bonded onto the substrate.

【0026】ところが、前記のような方法により製造さ
れた従来の水素貯蔵合金を用いたNi―MH2次電池は
5大特性、即ち1)容量 2)電荷保存力 3)内圧
4)急速充放電特性 5)耐久性のうち、容量を除いた
他の特性が大抵不良であり、特に耐久性が不良であり、
急速充電時内圧が上昇して電池の性能が低下し爆発の恐
れがあるので急速充放電が困難である。
However, the Ni-MH secondary battery using the conventional hydrogen storage alloy manufactured by the above method has five major characteristics: 1) capacity 2) charge storage capacity 3) internal pressure
4) Rapid charge / discharge characteristics 5) Out of the durability, other characteristics except the capacity are usually poor, and particularly the durability is poor,
Rapid charging / discharging is difficult because the internal pressure during rapid charging rises and battery performance deteriorates, which may cause an explosion.

【0027】[0027]

【発明が解決しようとする課題】従って、本発明は、前
記の問題点を解決するために創出されたものであり、本
発明の目的は、電池の内圧上昇を抑えて耐久性を改善さ
せることにより2次電池の寿命を延ばし得る水素貯蔵合
金陰極を提供することにある。
SUMMARY OF THE INVENTION Therefore, the present invention was created to solve the above problems, and an object of the present invention is to suppress an increase in internal pressure of a battery and improve its durability. Accordingly, it is to provide a hydrogen storage alloy cathode capable of extending the life of a secondary battery.

【0028】さらに、本発明の他の目的は、前記の目的
を達成するための陰極の製造方法を提供することにあ
る。
Still another object of the present invention is to provide a method of manufacturing a cathode for achieving the above object.

【0029】本発明のさらに他の目的は、前記した目的
を達成するために本発明の製造方法により製造された前
記陰極を具備することにより内圧特性および耐久性が改
善されて寿命の延びた2次電池を提供することにある。
Still another object of the present invention is to improve the internal pressure characteristics and durability by providing the cathode manufactured by the manufacturing method of the present invention in order to achieve the above-mentioned object, thereby extending the life. It is to provide the next battery.

【0030】[0030]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明は、(1) 陰極活物質に用いられる水素
貯蔵合金の種類がAB2 系水素貯蔵合金よりなる群から
選ばれた1種よりなり、陰極の表面に0.05〜0.5
mg/cm2 の範囲で炭素物質が被覆されていることを
特徴とする2次電池用水素貯蔵合金陰極により達成され
る。
In order to achieve the above-mentioned object, in the present invention, (1) the kind of hydrogen storage alloy used for the cathode active material is selected from the group consisting of AB 2 type hydrogen storage alloys. It consists of one kind, and 0.05 to 0.5 on the surface of the cathode.
It is achieved by a hydrogen storage alloy cathode for a secondary battery, which is characterized by being coated with a carbon material in the range of mg / cm 2 .

【0031】また、本発明の他の目的は、(2) 前記
陰極が、AB2 系水素貯蔵合金を粉末状態で基板上に充
電圧着して焼結させた後、炭素物質の混合されたポリテ
トラフルオロエチレン懸濁液に浸漬して乾燥させること
により形成されていることを特徴とする上記(1)に示
す2次電池用水素貯蔵合金陰極によっても達成される。
Another object of the present invention is (2) in which the cathode is formed by charging and bonding an AB 2 type hydrogen storage alloy on a substrate in a powder state by pressure bonding and sintering, and then mixing a carbon material-containing poly. The hydrogen storage alloy cathode for a secondary battery according to the above (1) is also formed by immersing in a tetrafluoroethylene suspension and drying.

【0032】さらに、本発明の他の目的は、(3) 前
記炭素物質が、ファーネスブラック、アセチレンブラッ
クおよびグラファイトの中のいずれか一つであることを
特徴とする上記(1)に示す2次電池用水素貯蔵合金陰
極によっても達成される。
Further, another object of the present invention is (3) the carbon material is any one of furnace black, acetylene black and graphite. It is also achieved by a hydrogen storage alloy cathode for batteries.

【0033】さらにまた、本発明の他の目的は、(4)
前記炭素物質が、ファーネスブラック、アセチレンブ
ラックおよびグラファイトの中のいずれか一つであるこ
とを特徴とする上記(2)に示す2次電池用水素貯蔵合
金陰極によっても達成される。
Still another object of the present invention is (4)
The hydrogen storage alloy cathode for a secondary battery according to (2) above, wherein the carbon material is one of furnace black, acetylene black and graphite.

【0034】また、本発明の他の目的は、(5) 前記
AB2 系水素貯蔵合金の成分をなすバナジウム、チタ
ン、ジルコニウム、ニッケル、クロム、コバルトおよび
マンガンは、それぞれの元素の純度がいずれも99.5
%以上であることを特徴とする上記(1)に示す2次電
池用水素貯蔵合金陰極によっても達成される。
Another object of the present invention is: (5) The vanadium, titanium, zirconium, nickel, chromium, cobalt, and manganese components of the AB 2 type hydrogen storage alloy are all elements having respective purities. 99.5
It is also achieved by the hydrogen storage alloy cathode for a secondary battery as described in (1) above, which is characterized by being at least%.

【0035】さらに、本発明の他の目的は、(6) 前
記AB2 系水素貯蔵合金の成分組成が、V18Ti15Zr
18Ni29Cr5 Co7 Mn8 よりなることを特徴とする
上記(1)または(5)に示す2次電池用水素貯蔵合金
陰極によっても達成される。
Still another object of the present invention is (6) wherein the composition of the AB 2 type hydrogen storage alloy is V 18 Ti 15 Zr.
It is also achieved by the hydrogen storage alloy cathode for a secondary battery according to the above (1) or (5), which is made of 18 Ni 29 Cr 5 Co 7 Mn 8 .

【0036】本発明のまた他の目的は、(7) バナジ
ウム、チタン、ジルコニウム、ニッケル、クロム、コバ
ルトおよびマンガンを溶解してAB2 系水素貯蔵合金を
形成する段階と、前記AB2 系水素貯蔵合金を900〜
1100℃で4〜6時間熱処理する段階と、前記熱処理
した合金を均質に粉砕して粉末状態に形成する段階と、
前記粉末を基材上に充電圧着して陰極材を形成する段階
と、前記陰極材を焼結する段階と、前記焼結された陰極
材の表面に炭素物質を被覆する段階とを順次含めてなる
ことを特徴とする2次電池用水素貯蔵合金陰極の製造方
法により達成される。
Still another object of the present invention is to (7) dissolve vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese to form an AB 2 -based hydrogen storage alloy, and the AB 2 -based hydrogen storage. Alloy 900 ~
Heat treating at 1100 ° C. for 4 to 6 hours, homogenizing the heat treated alloy to form a powder state,
The steps of charging and pressing the powder on a substrate to form a cathode material, sintering the cathode material, and coating the surface of the sintered cathode material with a carbon material are sequentially included. And a hydrogen storage alloy cathode for a secondary battery.

【0037】また、本発明のまた他の目的は、(8)
前記合金の熱処理が、990〜1010℃で4.5〜
5.5時間、真空雰囲気で行われることを特徴とする上
記(7)に示す2次電池用水素貯蔵合金陰極の製造方法
によっても達成される。
Another object of the present invention is (8)
The heat treatment of the alloy is 4.5-at 990-1010 ° C.
It is also achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery according to (7), which is performed in a vacuum atmosphere for 5.5 hours.

【0038】さらに、本発明のまた他の目的は、(9)
前記合金の粉末の粒子の大きさが、200メッシュ(m
esh)以下であることを特徴とする上記(7)に示す2次
電池用水素貯蔵合金陰極の製造方法によっても達成され
る。
Still another object of the present invention is (9)
The particle size of the alloy powder is 200 mesh (m
esh) or less, which is also achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery according to the above (7).

【0039】さらにまた、本発明のまた他の目的は、
(10) 前記陰極材が、ニッケル網基材に前記粉末を
充電してローラプレスを用いて圧着して形成されること
を特徴とする上記(7)に示す2次電池用水素貯蔵合金
陰極の製造方法によっても達成される。
Still another object of the present invention is to
(10) The hydrogen storage alloy cathode for a secondary battery according to (7) above, wherein the cathode material is formed by charging the nickel mesh base material with the powder and press-bonding the powder using a roller press. It is also achieved by the manufacturing method.

【0040】また、本発明のまた他の目的は、(11)
前記焼結が、900〜1000℃の弱還元性雰囲気で
行われることを特徴とする上記(7)に示す2次電池用
水素貯蔵合金陰極の製造方法によっても達成される。
Another object of the present invention is (11)
The sintering can also be achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery according to (7), which is performed in a weakly reducing atmosphere at 900 to 1000 ° C.

【0041】さらに、本発明のまた他の目的は、(1
2) 前記焼結が、950℃の弱還元性雰囲気で行われ
ることを特徴とする上記(7)に示す2次電池用水素貯
蔵合金陰極の製造方法によっても達成される。
Still another object of the present invention is (1
2) The sintering can also be achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery according to (7), which is performed in a weakly reducing atmosphere at 950 ° C.

【0042】さらにまた、本発明のまた他の目的は、
(13) 前記合金成分をなすバナジウム、チタン、ジ
ルコニウム、ニッケル、クロム、コバルトおよびマンガ
ンは、合金の製造に使われるそれぞれの元素の成分の純
度が99.5%以上であることを特徴とする上記(7)
に示す2次電池用水素貯蔵合金陰極の製造方法によって
も達成される。
Still another object of the present invention is to
(13) With respect to vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese forming the alloy components, the purity of each element component used in the production of the alloy is 99.5% or more. (7)
It can also be achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery as shown in FIG.

【0043】また、本発明のまた他の目的は、(14)
前記陰極材の表面に炭素物質を被覆する段階が、ポリ
テトラフルオロエチレン懸濁液と炭素物質を混合した溶
液に前記陰極材を浸漬する段階と、前記浸漬された陰極
材を乾燥させる段階とを含むことを特徴とする上記
(7)に示す2次電池用水素貯蔵合金陰極の製造方法に
よっても達成される。
Another object of the present invention is (14)
The step of coating the surface of the cathode material with a carbon material comprises the steps of immersing the cathode material in a solution in which a polytetrafluoroethylene suspension and a carbon material are mixed, and drying the immersed cathode material. It is also achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery as described in (7) above, which is characterized by including the above.

【0044】さらに、本発明のまた他の目的は、(1
5) 前記陰極材の表面に炭素物質が、0.05〜0.
5mg/cm2 で被覆されることを特徴とする上記
(7)に示す2次電池用水素貯蔵合金陰極の製造方法に
よっても達成される。
Still another object of the present invention is (1
5) The carbon material is present on the surface of the cathode material in an amount of 0.05 to 0.
It can also be achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery according to the above (7), which is characterized in that the cathode is coated with 5 mg / cm 2 .

【0045】さらにまた、本発明のまた他の目的は、
(16) 前記陰極材の表面に炭素物質が、0.05〜
0.5mg/cm2 で被覆されることを特徴とする上記
(14)に示す2次電池用水素貯蔵合金陰極の製造方法
によっても達成される。
Still another object of the present invention is to
(16) A carbon material is contained on the surface of the cathode material in an amount of 0.05 to
It is also achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery according to the above (14), which is characterized in that the cathode is coated with 0.5 mg / cm 2 .

【0046】また、本発明のまた他の目的は、(17)
前記炭素物質が、ファーネスブラック、アセチレンブ
ラックおよびグラファイトの中のいずれか一つであるこ
とを特徴とする上記(7)に示す2次電池用水素貯蔵合
金陰極の製造方法によっても達成される。
Another object of the present invention is (17)
The carbon material is also one of furnace black, acetylene black and graphite, which is also achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery according to the above (7).

【0047】さらに、本発明のまた他の目的は、(1
8) 前記炭素物質が、ファーネスブラック、アセチレ
ンブラックおよびグラファイトの中のいずれか一つであ
ることを特徴とする上記(14)に示す2次電池用水素
貯蔵合金陰極の製造方法によっても達成される。
Still another object of the present invention is (1
8) The carbon material is also one of furnace black, acetylene black and graphite, which is also achieved by the method for producing a hydrogen storage alloy cathode for a secondary battery according to the above (14). .

【0048】本発明のさらに他の目的は、(19) 純
度99.5%以上のバナジウム、チタン、ジルコニウ
ム、ニッケル、クロム、コバルトおよびマンガンを使用
して合金化したAB2 系水素貯蔵合金を粉末状態に形成
して基材上に充電圧着して形成した陰極材を焼結後、炭
素物質の混合されたポリテトラフルオロエチレン懸濁液
に浸漬および乾燥させてその表面に0.05〜0.5m
g/cm2 の範囲で炭素物質を被覆させて形成した水素
貯蔵合金陰極を具備したことを特徴とする2次電池によ
り達成される。
Still another object of the present invention is (19) a powder of an AB 2 type hydrogen storage alloy alloyed with vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese having a purity of 99.5% or more. After the cathode material formed into a state and charged and pressure-bonded on the base material is sintered, it is immersed in a polytetrafluoroethylene suspension mixed with a carbon material and dried to form 0.05 to 0. 5m
The secondary battery is characterized by comprising a hydrogen storage alloy cathode formed by coating a carbon material in the range of g / cm 2 .

【0049】また、本発明のさらに他の目的は、(2
0) 前記炭素物質が、ファーネスブラック、アセチレ
ンブラックおよびグラファイトの中のいずれか一つであ
ることを特徴とする上記(19)に示す2次電池によっ
ても達成される。
Still another object of the present invention is (2
0) The secondary battery according to the above (19), wherein the carbon material is one of furnace black, acetylene black, and graphite.

【0050】[0050]

【発明の実施の形態】本発明による水素貯蔵合金陰極
は、陰極活物質に用いられる水素貯蔵合金の種類がAB
2 系水素貯蔵合金よりなる群から選ばれた1種よりな
り、陰極の表面に0.05〜0.5mg/cm2 の範囲
で炭素物質が被覆されてなることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION In the hydrogen storage alloy cathode according to the present invention, the type of hydrogen storage alloy used for the cathode active material is AB.
It is made of one selected from the group consisting of 2 type hydrogen storage alloys, and is characterized in that the surface of the cathode is coated with a carbon substance in the range of 0.05 to 0.5 mg / cm 2 .

【0051】本発明による2次電池用水素貯蔵合金陰極
において、特に陰極が前記AB2 系水素貯蔵合金を粉末
状態で基板上に充電圧着し焼結させた後、炭素物質の混
合されたPTFE懸濁液に浸漬して乾燥させることによ
り形成されていることが好ましく、前記炭素物質は、フ
ァーネスブラック、アセチレンブラックおよびグラファ
イトの中のいずれか一つであることが好ましい。さら
に、前記AB2 系水素貯蔵合金の成分を成すバナジウ
ム、チタン、ジルコニウム、ニッケル、クロム、コバル
トおよびマンガンは、それぞれの元素の純度が99.5
%以上であることが好ましい。
In the hydrogen storage alloy cathode for a secondary battery according to the present invention, in particular, the cathode is charged with the AB 2 -based hydrogen storage alloy in a powder state by pressure-bonding and sintering, and then a PTFE suspension containing a carbon material is mixed. It is preferably formed by immersing in a suspension and drying, and the carbon substance is preferably any one of furnace black, acetylene black and graphite. Further, vanadium, titanium, zirconium, nickel, chromium, cobalt, and manganese, which are components of the AB 2 -based hydrogen storage alloy, have respective element purity of 99.5.
% Or more is preferable.

【0052】そして、本発明による水素貯蔵合金陰極の
製造方法は、バナジウム、チタン、ジルコニウム、ニッ
ケル、クロム、コバルトおよびマンガンを溶解してAB
2 系水素貯蔵合金を形成する段階と、前記合金を900
〜1100℃で4〜6時間熱処理する段階と、前記熱処
理した合金を均質に粉砕して粉末状態に形成する段階
と、前記粉末を基板上に充電圧着して陰極材を形成する
する段階と、前記陰極材を焼結する段階と、前記焼結さ
れた陰極材の表面に炭素物質を被覆する段階とを順次含
めてなることを特徴とする。
The method for producing a hydrogen storage alloy cathode according to the present invention is characterized in that vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese are dissolved to obtain AB.
Forming a 2 type hydrogen storage alloy, and adding 900 to the alloy.
Heat treating at ˜1100 ° C. for 4 to 6 hours, uniformly crushing the heat treated alloy to form a powder, and charging and pressing the powder onto a substrate to form a cathode material, The method further includes sequentially sintering the cathode material and coating the surface of the sintered cathode material with a carbon material.

【0053】本発明による2次電池用水素貯蔵合金陰極
の製造方法において、特に前記合金の熱処理は、990
〜1010℃で4.5〜5.5時間、真空雰囲気で行わ
れることが好ましく、前記合金の粉末は、粒子の大きさ
が200メッシュ以下であることが好ましい。そして、
前記陰極材は、ニッケル網基板に前記粉末を充電してロ
ーラプレスを用いて圧着して形成されることが好まし
く、前記焼結は900〜1000℃の弱還元性雰囲気で
行われることが好ましいが、特に950℃の弱還元性雰
囲気で行われることが好ましい。さらに、前記合金成分
をなすバナジウム、チタン、ジルコニウム、ニッケル、
クロム、コバルトおよびマンガンは、その純度が99.
5%以上であることが好ましく、前記陰極材の表面に炭
素物質を被覆する段階は、PTFE懸濁液と炭素物質を
混合した溶液に前記陰極材を浸漬する段階と、前記浸漬
された陰極材を乾燥させる段階とを含むことが好まし
い。そして、前記陰材の表面には炭素物質が、0.05
〜0.5mg/cm2 に被覆されることが好ましく、前
記炭素物質は、ファーネスブラック、アセチレンブラッ
クおよびグラファイトの中のいずれか一つであることが
好ましい。
In the method for producing a hydrogen storage alloy cathode for a secondary battery according to the present invention, the heat treatment of the alloy is performed in particular at 990.
It is preferably carried out in a vacuum atmosphere at 10 to 10 ° C. for 4.5 to 5.5 hours, and the alloy powder preferably has a particle size of 200 mesh or less. And
The cathode material is preferably formed by charging the nickel net substrate with the powder and press-bonding it using a roller press, and the sintering is preferably performed in a weak reducing atmosphere at 900 to 1000 ° C. It is particularly preferable to carry out in a weak reducing atmosphere at 950 ° C. Furthermore, vanadium, titanium, zirconium, nickel, which form the alloy component,
Chromium, cobalt and manganese have a purity of 99.
5% or more is preferable, and the step of coating the surface of the cathode material with the carbon material includes the step of immersing the cathode material in a solution obtained by mixing the PTFE suspension and the carbon material, and the immersed cathode material. Is preferably dried. And, the carbon material is 0.05% on the surface of the negative material.
It is preferable that the carbon substance is coated to 0.5 mg / cm 2 and the carbon substance is any one of furnace black, acetylene black and graphite.

【0054】さらに、本発明による2次電池は、前記し
た2次電池用水素貯蔵合金陰極の製造方法により形成し
た陰極を具備したことを特徴とする。
Further, the secondary battery according to the present invention is characterized by including a cathode formed by the above-described method for manufacturing a hydrogen storage alloy cathode for a secondary battery.

【0055】[0055]

【実施例】以下、添付した図面に基づき本発明の好まし
い実施例を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0056】実施例1 純度99.9%以上のバナジウム、チタン、ジルコニウ
ム、ニッケル、クロム、コバルトおよびマンガンを溶解
してAB2 系水素貯蔵合金、具体的に成分組成がV18
15Zr18Ni29Cr5 Co7 Mn8 よりなる合金を形
成し、この合金を真空雰囲気で1000℃、5時間かけ
て熱処理を行った後、200メッシュ以下の均質な粉末
状態に粉砕した。その後、この粉末をニッケル網基板に
充電して50トンローラプレスで圧着し、950℃の弱
還元性の雰囲気で焼結して陰極を製造した。
Example 1 An AB 2 type hydrogen storage alloy having a purity of 99.9% or more, in which vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese are dissolved, specifically a component composition is V 18 T.
An alloy made of i 15 Zr 18 Ni 29 Cr 5 Co 7 Mn 8 was formed, and this alloy was heat-treated at 1000 ° C. for 5 hours in a vacuum atmosphere and then pulverized into a homogeneous powder state of 200 mesh or less. Then, this powder was charged on a nickel net substrate, pressed by a 50-ton roller press, and sintered in a weakly reducing atmosphere at 950 ° C. to manufacture a cathode.

【0057】そして、前記陰極を5%PTFE懸濁液に
ファーネスブラックを混合した溶液内に浸漬して乾燥さ
せて陰極の表面にファーネスブラックを0.05mg/
cm2 被覆させた陰極板を製造した。
Then, the cathode was dipped in a solution prepared by mixing furnace black in a 5% PTFE suspension and dried to obtain 0.05 mg of furnace black on the surface of the cathode.
A cathode plate coated with cm 2 was produced.

【0058】実施例2 実施例1と同一の条件で陰極を製造し、該陰極を5%P
TFE懸濁液にファーネスブラックを混合した溶液内に
浸漬して乾燥させて陰極の表面にファーネスブラックを
0.10mg/cm2 被覆させた陰極板を製造した。
Example 2 A cathode was manufactured under the same conditions as in Example 1, and the cathode was 5% P
It was dipped in a solution of furnace black mixed with TFE suspension and dried to manufacture a cathode plate in which the surface of the cathode was coated with furnace black at 0.10 mg / cm 2 .

【0059】実施例3 実施例1と同一の条件で陰極を製造し、該陰極を5%P
TFE懸濁液にファーネスブラックを混合した溶液内に
浸漬して乾燥させて陰極の表面にファーネスブラックを
0.30mg/cm2 被覆させた陰極板を製造した。
Example 3 A cathode was manufactured under the same conditions as in Example 1, and the cathode was 5% P
It was dipped in a solution of furnace black mixed with TFE suspension and dried to prepare a cathode plate in which the surface of the cathode was coated with furnace black at 0.30 mg / cm 2 .

【0060】実施例4 実施例1と同一の条件で陰極を製造し、該陰極を5%P
TFE懸濁液にファーネスブラックを混合した溶液内に
浸漬して乾燥させて陰極の表面にファーネスブラックを
0.50mg/cm2 被覆させた陰極板を製造した。
Example 4 A cathode was manufactured under the same conditions as in Example 1, and the cathode was 5% P
A cathode plate was produced by coating the surface of the cathode with 0.50 mg / cm 2 of furnace black by immersing it in a solution of furnace black mixed with TFE suspension and drying it.

【0061】実施例5 実施例1と同一の条件で陰極を製造し、該陰極を5%P
TFE懸濁液にファーネスブラックを混合した溶液内に
浸漬して乾燥させて陰極の表面にアセチレンブラックを
0.10mg/cm2 被覆させた陰極板を製造した。
Example 5 A cathode was manufactured under the same conditions as in Example 1, and the cathode was 5% P
It was dipped in a solution of furnace black mixed with TFE suspension and dried to prepare a cathode plate in which the surface of the cathode was coated with 0.10 mg / cm 2 of acetylene black.

【0062】実施例6 実施例1と同一の条件で陰極を製造し、該陰極を5%P
TFE懸濁液にファーネスブラックを混合した溶液内に
浸漬して乾燥させて陰極の表面にグラファイトを0.1
0mg/cm2 被覆させた陰極板を製造した。
Example 6 A cathode was manufactured under the same conditions as in Example 1, and the cathode was 5% P
It is dipped in a solution of furnace black mixed with TFE suspension and dried to give 0.1% graphite on the surface of the cathode.
A cathode plate coated with 0 mg / cm 2 was produced.

【0063】比較例1 純度99.5%以上のバナジウム、チタン、ジルコニウ
ム、ニッケル、クロム、コバルトおよびマンガンを溶解
してAB2 系水素貯蔵合金、具体的に成分組成がV18
15Zr18Ni29Cr5 Co7 Mn8 よりなる合金を形
成し、これを真空雰囲気で1000℃、5時間熱処理を
行った後、200メッシュ以下の均質な粉末状態に粉砕
した。その後、この粉末をニッケル網基板に充電して5
0トンローラプレスで圧着し、950℃の弱還元性雰囲
気で焼結して陰極を製造した。
Comparative Example 1 A vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese having a purity of 99.5% or more are dissolved to produce an AB 2 type hydrogen storage alloy, specifically a component composition is V 18 T.
An alloy of i 15 Zr 18 Ni 29 Cr 5 Co 7 Mn 8 was formed, heat-treated at 1000 ° C. for 5 hours in a vacuum atmosphere, and then pulverized into a homogeneous powder state of 200 mesh or less. Then, charge this powder on a nickel net substrate and
A cathode was manufactured by press-bonding with a 0-ton roller press and sintering in a weak reducing atmosphere at 950 ° C.

【0064】以上、実施例1〜実施例6と比較例1によ
りそれぞれ製造された陰極(a〜g:表1)と、従来の
焼結式ニッケル電極を陽極として用い、セパレータは市
販されるポリプロピレン不織布を用いてこれらをゼリロ
ール(jelly roll)状に巻き取ってそれぞれ次のような規
格の電池を構成した。
As described above, the cathodes (a to g: Table 1) produced by Examples 1 to 6 and Comparative Example 1, respectively, and the conventional sintered nickel electrode were used as the anode, and the separator was a commercially available polypropylene. Using a non-woven fabric, these were wound in a jelly roll shape to form batteries having the following specifications.

【0065】即ち、陽極の容量は1000mAhであ
り、電解液は30重量%KOH水溶液に水酸化リチウム
を20g/リットルを溶解したものを2.6g注入して
公称容量1000mAhの電池(A〜G:表1)を制作
した。
That is, the capacity of the anode was 1000 mAh, and 2.6 g of an electrolyte solution in which 20 g / liter of lithium hydroxide was dissolved in a 30% by weight KOH aqueous solution was injected and batteries having a nominal capacity of 1000 mAh (A to G: Table 1) was produced.

【0066】このように制作した各電池は20℃の一定
の温度で1Cで1.4時間充電した後、1Cで終止電圧
0.9Vまで放電する条件で充放電特性を評価し、電池
の下部に穴を空けて圧力センサを取り付けて充放電によ
る電池内圧の変化を測定した。
Each of the batteries manufactured in this manner was charged at a constant temperature of 20 ° C. for 1.4 hours at 1 C, and then the charge / discharge characteristics were evaluated under the condition of discharging at a final voltage of 0.9 V at 1 C. A pressure sensor was attached to each hole to measure the change in battery internal pressure due to charge and discharge.

【0067】前記各実施例および比較例により制作され
た電池の主な製造条件と、これら電池を充放電試験を繰
り返しながら10サイクルにおける最大電池内圧を測定
した結果をまとめて下記表1に示した。
Table 1 below shows the main manufacturing conditions of the batteries manufactured in the above-mentioned Examples and Comparative Examples and the results of measuring the maximum battery internal pressure in 10 cycles while repeating the charge / discharge test of these batteries. .

【0068】下記表1に示された各電池の充放電試験で
10サイクルにおける最大電池内圧を測定した結果を調
べてみると、本発明により製造された陰極表面に炭素物
質、特にファーネスブラックを被覆することにより過充
電時に発生する酸素ガスの吸収が速く進行されて電池の
内圧の上昇が従来の陰極を用いた比較例1の結果より著
しく鈍化されることがことが判る。
Examining the results of measuring the maximum battery internal pressure in 10 cycles in the charge / discharge test of each battery shown in Table 1 below, the surface of the cathode manufactured according to the present invention was coated with a carbon material, especially furnace black. By doing so, it is understood that the absorption of oxygen gas generated during overcharging progresses rapidly and the increase in the internal pressure of the battery is significantly slowed down as compared with the result of Comparative Example 1 using the conventional cathode.

【0069】[0069]

【表1】 [Table 1]

【0070】前記したような結果は電気化学的な酸素ガ
スの吸収反応と酸素ガスのイオン化反応が陰極の表面に
被覆されたファーネスブラックの触媒作用により促進さ
れるためだと言える。
The above results can be said to be because the electrochemical oxygen gas absorption reaction and oxygen gas ionization reaction are promoted by the catalytic action of the furnace black coated on the surface of the cathode.

【0071】一方、アセチレンブラックとグラファイト
の場合は同じ炭素物質類とは言え、触媒性が低いのでフ
ァーネスブラックの場合に比し内圧減少の効果が著しく
下がる。しかしながら、従来陰極を使用した比較例1の
結果よりも多少下がることが判る。
On the other hand, in the case of acetylene black and graphite, although they are the same carbonaceous substances, the effect of reducing the internal pressure is remarkably reduced as compared with the case of furnace black because of their low catalytic properties. However, it can be seen that it is slightly lower than the result of Comparative Example 1 using the conventional cathode.

【0072】一般に、密閉型Ni―MH電池系では過充
電時に発生する酸素ガスが陰極中に吸収された水素と反
応して水が生成される反応により酸素ガスが吸収され
る。即ち、これを酸素ガス吸収反応と言い、化学式で示
すと次の式1の通りである。
Generally, in a sealed Ni-MH battery system, oxygen gas is absorbed by a reaction in which oxygen gas generated during overcharge reacts with hydrogen absorbed in the cathode to generate water. That is, this is called an oxygen gas absorption reaction, and the chemical formula is as shown in the following formula 1.

【0073】 O2 +4MH → M+2H2 O (式1) そして、前記式1の酸素ガスの吸収反応により吸収され
たもの以外の酸素ガスは陰極表面で電気化学的にイオン
化される。さらに、Ni―MH電池系において、電解液
量を少なく規制するので電極表面に3相界面が容易に形
成されて酸素ガスイオン化反応といった次の式2により
酸素が還元される。
O 2 + 4MH → M + 2H 2 O (Equation 1) Then, oxygen gas other than that absorbed by the oxygen gas absorption reaction of Equation 1 is electrochemically ionized on the cathode surface. Further, in the Ni-MH battery system, the amount of the electrolytic solution is restricted to a small amount, so that a three-phase interface is easily formed on the electrode surface and oxygen is reduced by the following equation 2 such as oxygen gas ionization reaction.

【0074】 2H2 O+O2 +4e- → 4OH- (式2) 図4は、本発明の製造方法により製造された陰極を使用
した電池(B〜G)と従来の製造方法により製造された
陰極を用いた電池(A)の充放電サイクル寿命の特性と
を比較したグラフであり、これを参照してみれば、本発
明の製造方法により陰極表面にファーネスブラックを被
覆させた場合の電池(C)が最優秀の充放電寿命特性を
示すことが判る。
2H 2 O + O 2 + 4e → 4OH (Formula 2) FIG. 4 shows batteries (BG) using the cathode manufactured by the manufacturing method of the present invention and a cathode manufactured by the conventional manufacturing method. It is a graph comparing the characteristics of the charge-discharge cycle life of the used battery (A), and referring to this graph, the battery (C) when the cathode surface is coated with furnace black by the manufacturing method of the present invention. Shows that it has the best charge / discharge life characteristics.

【0075】かかる寿命特性の向上は電池の内圧上昇を
抑えることにより安全バルブを通じた電解液の消失が最
小化されるからである。
The improvement of the life characteristics is because the increase of the internal pressure of the battery is suppressed and the loss of the electrolytic solution through the safety valve is minimized.

【0076】[0076]

【発明の効果】以上調べたように、本発明による水素貯
蔵合金陰極およびその製造方法によれば、酸素ガスの吸
収反応と酸素ガスのイオン化反応が迅速に行われて電池
の内圧を減らし得る触媒効果に優れた特性を有する炭素
物質類、特にファーネスブラックを水素貯蔵合金陰極の
表面に被覆させることにより、該陰極を用いる密閉型N
i―MH蓄電池の内圧特性および耐久性を向上させて急
速充放電を可能にする上、長寿命化を図ることができ
る。
As described above, according to the hydrogen storage alloy cathode and the method for producing the same of the present invention, the catalyst capable of reducing the internal pressure of the battery by rapidly performing the oxygen gas absorption reaction and the oxygen gas ionization reaction. A carbon type having excellent properties, especially furnace black, is coated on the surface of a hydrogen storage alloy cathode to form a closed type N using the cathode.
It is possible to improve the internal pressure characteristics and durability of the i-MH storage battery to enable rapid charging / discharging, and also to prolong the service life.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来のTi―Ni系水素貯蔵合金を用いたN
i―MH蓄電池の陰極製造方法を示した概略的製造工程
図である。
FIG. 1 N using a conventional Ti—Ni-based hydrogen storage alloy
It is a schematic manufacturing process drawing which showed the cathode manufacturing method of the i-MH storage battery.

【図2】 従来のMn系、Ti―Fe系水素貯蔵合金を
用いた蓄電池の陰極製造方法を示した概略的製造工程図
である。
FIG. 2 is a schematic manufacturing process diagram showing a conventional method for manufacturing a cathode of a storage battery using a Mn-based and Ti—Fe-based hydrogen storage alloy.

【図3】 本発明による水素貯蔵合金を用いた蓄電池の
陰極製造方法を示した概略的な製造工程図である。
FIG. 3 is a schematic manufacturing process diagram showing a method for manufacturing a cathode of a storage battery using a hydrogen storage alloy according to the present invention.

【図4】 本発明の製造方法により製造した水素貯蔵合
金陰極を用いた電池と、従来の製造方法により製造され
た水素貯蔵合金陰極を用いた電池の充放電サイクル寿命
特性を比較して示したグラフである。
FIG. 4 shows a comparison of charge-discharge cycle life characteristics of a battery using the hydrogen storage alloy cathode manufactured by the manufacturing method of the present invention and a battery using the hydrogen storage alloy cathode manufactured by the conventional manufacturing method. It is a graph.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 陰極活物質に用いられる水素貯蔵合金の
種類がAB2 系水素貯蔵合金よりなる群から選ばれた1
種よりなり、陰極の表面に0.05〜0.5mg/cm
2 の範囲で炭素物質が被覆されていることを特徴とする
2次電池用水素貯蔵合金陰極。
1. The type of hydrogen storage alloy used for the cathode active material is selected from the group consisting of AB 2 type hydrogen storage alloys.
Seed, 0.05-0.5 mg / cm on the surface of the cathode
A hydrogen storage alloy cathode for a secondary battery, which is coated with a carbon material in the range of 2.
【請求項2】 前記陰極が、AB2 系水素貯蔵合金を粉
末状態で基板上に充電圧着して焼結させた後、炭素物質
の混合されたポリテトラフルオロエチレン懸濁液に浸漬
して乾燥させることにより形成されていることを特徴と
する請求項1に記載の2次電池用水素貯蔵合金陰極。
2. The cathode is charged with an AB 2 -based hydrogen storage alloy in a powder state, pressure-bonded on a substrate, sintered, and then dipped in a polytetrafluoroethylene suspension containing a carbon material and dried. The hydrogen storage alloy cathode for a secondary battery according to claim 1, wherein the cathode is a hydrogen storage alloy cathode.
【請求項3】 前記炭素物質が、ファーネスブラック、
アセチレンブラックおよびグラファイトの中のいずれか
一つであることを特徴とする請求項1に記載の2次電池
用水素貯蔵合金陰極。
3. The carbonaceous material is furnace black,
The hydrogen storage alloy cathode for a secondary battery according to claim 1, which is one of acetylene black and graphite.
【請求項4】 前記炭素物質が、ファーネスブラック、
アセチレンブラックおよびグラファイトの中のいずれか
一つであることを特徴とする請求項2に記載の2次電池
用水素貯蔵合金陰極。
4. The carbonaceous material is furnace black,
The hydrogen storage alloy cathode for a secondary battery according to claim 2, which is one of acetylene black and graphite.
【請求項5】 前記AB2 系水素貯蔵合金の成分をなす
バナジウム、チタン、ジルコニウム、ニッケル、クロ
ム、コバルトおよびマンガンは、それぞれの元素の純度
がいずれも99.5%以上であることを特徴とする請求
項1に記載の2次電池用水素貯蔵合金陰極。
5. The vanadium, titanium, zirconium, nickel, chromium, cobalt, and manganese components of the AB 2 -based hydrogen storage alloy are each 99.5% or more in purity. The hydrogen storage alloy cathode for a secondary battery according to claim 1.
【請求項6】 前記AB2 系水素貯蔵合金の成分組成
が、V18Ti15Zr18Ni29Cr5 Co7 Mn8 よりな
ることを特徴とする請求項1または5に記載の2次電池
用水素貯蔵合金陰極。
6. The secondary battery according to claim 1, wherein the composition of the AB 2 type hydrogen storage alloy is V 18 Ti 15 Zr 18 Ni 29 Cr 5 Co 7 Mn 8 . Hydrogen storage alloy cathode.
【請求項7】 バナジウム、チタン、ジルコニウム、ニ
ッケル、クロム、コバルトおよびマンガンを溶解してA
2 系水素貯蔵合金を形成する段階と、 前記AB2 系水素貯蔵合金を900〜1100℃で4〜
6時間熱処理する段階と、 前記熱処理した合金を均質に粉砕して粉末状態に形成す
る段階と、 前記粉末を基材上に充電圧着して陰極材を形成する段階
と、 前記陰極材を焼結する段階と、 前記焼結された陰極材の表面に炭素物質を被覆する段階
とを順次含めてなることを特徴とする2次電池用水素貯
蔵合金陰極の製造方法。
7. A solution of vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese
Forming a B 2 -based hydrogen storage alloy, and adding the AB 2 -based hydrogen storage alloy at 900 to 1100 ° C. for 4 to
Heat-treating for 6 hours, uniformly crushing the heat-treated alloy to form a powder, charging and pressing the powder onto a base material to form a cathode material, and sintering the cathode material And a step of coating the surface of the sintered cathode material with a carbon material in sequence, the method of manufacturing a hydrogen storage alloy cathode for a secondary battery.
【請求項8】 前記合金の熱処理が、990〜1010
℃で4.5〜5.5時間、真空雰囲気で行われることを
特徴とする請求項7に記載の2次電池用水素貯蔵合金陰
極の製造方法。
8. The heat treatment of the alloy is between 990 and 1010.
The method for producing a hydrogen storage alloy cathode for a secondary battery according to claim 7, wherein the method is performed in a vacuum atmosphere at 4.5 ° C for 4.5 to 5.5 hours.
【請求項9】 前記合金の粉末の粒子の大きさが、20
0メッシュ以下であることを特徴とする請求項7に記載
の2次電池用水素貯蔵合金陰極の製造方法。
9. The particle size of the alloy powder is 20.
The method for producing a hydrogen storage alloy cathode for a secondary battery according to claim 7, characterized in that the mesh size is 0 mesh or less.
【請求項10】 前記陰極材が、ニッケル網基材に前記
粉末を充電してローラプレスを用いて圧着して形成され
ることを特徴とする請求項7に記載の2次電池用水素貯
蔵合金陰極の製造方法。
10. The hydrogen storage alloy for a secondary battery according to claim 7, wherein the cathode material is formed by charging the nickel net base material with the powder and press-bonding the powder using a roller press. Method of manufacturing cathode.
【請求項11】 前記焼結が、900〜1000℃の弱
還元性雰囲気で行われることを特徴とする請求項7に記
載の2次電池用水素貯蔵合金陰極の製造方法。
11. The method for producing a hydrogen storage alloy cathode for a secondary battery according to claim 7, wherein the sintering is performed in a weak reducing atmosphere at 900 to 1000 ° C.
【請求項12】 前記焼結が、950℃の弱還元性雰囲
気で行われることを特徴とする請求項7に記載の2次電
池用水素貯蔵合金陰極の製造方法。
12. The method for producing a hydrogen storage alloy cathode for a secondary battery according to claim 7, wherein the sintering is performed in a weak reducing atmosphere at 950 ° C.
【請求項13】 前記合金成分をなすバナジウム、チタ
ン、ジルコニウム、ニッケル、クロム、コバルトおよび
マンガンは、合金の製造に使われるそれぞれの元素の成
分の純度が99.5%以上であることを特徴とする請求
項7に記載の2次電池用水素貯蔵合金陰極の製造方法。
13. The vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese constituting the alloy components are characterized in that the purity of each element component used in the production of the alloy is 99.5% or more. The method for producing a hydrogen storage alloy cathode for a secondary battery according to claim 7.
【請求項14】 前記陰極材の表面に炭素物質を被覆す
る段階が、ポリテトラフルオロエチレン懸濁液と炭素物
質を混合した溶液に前記陰極材を浸漬する段階と、 前記浸漬された陰極材を乾燥させる段階とを含むことを
特徴とする請求項7に記載の2次電池用水素貯蔵合金陰
極の製造方法。
14. The step of coating the surface of the cathode material with a carbon material comprises the step of immersing the cathode material in a solution in which a polytetrafluoroethylene suspension and a carbon material are mixed, and the immersed cathode material. The method for producing a hydrogen storage alloy cathode for a secondary battery according to claim 7, further comprising a step of drying.
【請求項15】 前記陰極材の表面に炭素物質が、0.
05〜0.5mg/cm2 で被覆されることを特徴とす
る請求項7に記載の2次電池用水素貯蔵合金陰極の製造
方法。
15. A carbon material is formed on the surface of the cathode material in an amount of 0.
The method for producing a hydrogen storage alloy cathode for a secondary battery according to claim 7, wherein the cathode is coated with 05 to 0.5 mg / cm 2 .
【請求項16】 前記陰極材の表面に炭素物質が、0.
05〜0.5mg/cm2 で被覆されることを特徴とす
る請求項14に記載の2次電池用水素貯蔵合金陰極の製
造方法。
16. The carbonaceous material on the surface of the cathode material is
The method for producing a hydrogen storage alloy cathode for a secondary battery according to claim 14, wherein the cathode is coated with 05-0.5 mg / cm 2 .
【請求項17】 前記炭素物質が、ファーネスブラッ
ク、アセチレンブラックおよびグラファイトの中のいず
れか一つであることを特徴とする請求項7に記載の2次
電池用水素貯蔵合金陰極の製造方法。
17. The method for manufacturing a hydrogen storage alloy cathode for a secondary battery according to claim 7, wherein the carbon material is one of furnace black, acetylene black, and graphite.
【請求項18】 前記炭素物質が、ファーネスブラッ
ク、アセチレンブラックおよびグラファイトの中のいず
れか一つであることを特徴とする請求項14に記載の2
次電池用水素貯蔵合金陰極の製造方法。
18. The carbon material according to claim 14, wherein the carbon material is any one of furnace black, acetylene black and graphite.
Manufacturing method of hydrogen storage alloy cathode for secondary battery.
【請求項19】 純度99.5%以上のバナジウム、チ
タン、ジルコニウム、ニッケル、クロム、コバルトおよ
びマンガンを使用して合金化したAB2 系水素貯蔵合金
を粉末状態に形成して基材上に充電圧着して形成した陰
極材を焼結後、炭素物質の混合されたポリテトラフルオ
ロエチレン懸濁液に浸漬および乾燥させてその表面に
0.05〜0.5mg/cm2 の範囲で炭素物質を被覆
させて形成した水素貯蔵合金陰極を具備したことを特徴
とする2次電池。
19. An AB 2 type hydrogen storage alloy alloyed with vanadium, titanium, zirconium, nickel, chromium, cobalt and manganese having a purity of 99.5% or more is formed in a powder state and charged on a substrate. After the pressure-bonded cathode material is sintered, it is immersed in a polytetrafluoroethylene suspension mixed with a carbon material and dried to deposit a carbon material on its surface in the range of 0.05 to 0.5 mg / cm 2. A secondary battery comprising a hydrogen storage alloy cathode formed by coating.
【請求項20】 前記炭素物質が、ファーネスブラッ
ク、アセチレンブラックおよびグラファイトの中のいず
れか一つであることを特徴とする請求項19に記載の2
次電池。
20. The carbon material according to claim 19, wherein the carbon material is any one of furnace black, acetylene black and graphite.
Next battery.
JP8061424A 1995-03-17 1996-03-18 Hydrogen storage alloy cathode and its preparation Pending JPH08264174A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR95P5611 1995-03-17
KR19950005611 1995-03-17

Publications (1)

Publication Number Publication Date
JPH08264174A true JPH08264174A (en) 1996-10-11

Family

ID=19410004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8061424A Pending JPH08264174A (en) 1995-03-17 1996-03-18 Hydrogen storage alloy cathode and its preparation

Country Status (5)

Country Link
JP (1) JPH08264174A (en)
KR (1) KR960036177A (en)
CN (1) CN1135099A (en)
DE (1) DE19610523A1 (en)
FR (1) FR2735618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149445A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Negative electrode material for metal battery, metal battery including negative electrode material for metal battery, and method for manufacturing negative electrode material for metal battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2130996B1 (en) * 1997-05-19 2000-03-01 Tudor Acumulador PROCEDURE FOR THE MANUFACTURE OF NEGATIVE ELECTRODES FOR ALKALINE ELECTRIC ACCUMULATORS AND ELECTRODE OBTAINED.
KR100477718B1 (en) * 1997-07-28 2005-05-16 삼성에스디아이 주식회사 Hydrogen storage alloy for nickel hydrogen battery
JP4990473B2 (en) * 2000-08-16 2012-08-01 オヴォニック バッテリー カンパニー インコーポレイテッド High power nickel-metal hydride battery and high power alloy / electrode used therefor
EP3608998A1 (en) * 2018-08-08 2020-02-12 Robert Bosch GmbH Method for fabricating a cathodic electrode for a solid-state battery
CN113285079A (en) * 2021-04-21 2021-08-20 上海电力大学 Double-heteroatom-doped CoFe/SNC composite material and preparation and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677450B2 (en) * 1986-06-13 1994-09-28 松下電器産業株式会社 Sealed nickel-hydrogen battery
US5185221A (en) * 1992-02-06 1993-02-09 Gates Energy Products, Inc. Metal hydride electrode and electrochemical cell
JP3071026B2 (en) * 1992-03-31 2000-07-31 三洋電機株式会社 Metal hydride storage battery
JP3229672B2 (en) * 1992-10-23 2001-11-19 三洋電機株式会社 Metal hydride storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149445A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Negative electrode material for metal battery, metal battery including negative electrode material for metal battery, and method for manufacturing negative electrode material for metal battery

Also Published As

Publication number Publication date
CN1135099A (en) 1996-11-06
FR2735618A1 (en) 1996-12-20
KR960036177A (en) 1996-10-28
DE19610523A1 (en) 1996-09-19

Similar Documents

Publication Publication Date Title
US5032475A (en) Nickel-metal hydride secondary cell
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
JPS62287568A (en) Manufacture of alkaline storage battery
Lee et al. Self-discharge behaviour of sealed Ni-MH batteries using MmNi3. 3+ xCo0. 7Al1. 0− x anodes
Kaiya et al. Improvement in cycle life performance of high capacity nickel-metal hydride battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH0447676A (en) Manufacture of sealed storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3429684B2 (en) Hydrogen storage electrode
JP2875822B2 (en) Method for manufacturing nickel-hydrogen secondary battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same
JPH09293501A (en) Manufacture of hydrogen storage alloy electrode
JPS62154582A (en) Manufacture of sealed metal oxide-hydrogen storage battery
JP2000200599A (en) Alkaline secondary battery
JPH07192732A (en) Nickel electrode for alkaline storage battery
JP2000188125A (en) Manufacture of sealed alkaline storage battery
JP2000353542A (en) Alkaline storage battery