JPS62287568A - Manufacture of alkaline storage battery - Google Patents

Manufacture of alkaline storage battery

Info

Publication number
JPS62287568A
JPS62287568A JP61129647A JP12964786A JPS62287568A JP S62287568 A JPS62287568 A JP S62287568A JP 61129647 A JP61129647 A JP 61129647A JP 12964786 A JP12964786 A JP 12964786A JP S62287568 A JPS62287568 A JP S62287568A
Authority
JP
Japan
Prior art keywords
cadmium
battery
electrode
hydrogen
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61129647A
Other languages
Japanese (ja)
Other versions
JPH0754701B2 (en
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61129647A priority Critical patent/JPH0754701B2/en
Publication of JPS62287568A publication Critical patent/JPS62287568A/en
Publication of JPH0754701B2 publication Critical patent/JPH0754701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To simplify a manufacturing process as well as to aim at improvement in capacity and charging pressure characteristics, by adding a hydrogen storage alloy absorbing hydrogen in advance at the time of manufacture of a cadmium electrode. CONSTITUTION:A cadmium electrode, adding a hydrogen storage alloy absorbing hydrogen in a starting material of the cadmium electrode consisting of cadmium oxide of cadmium hydroxide or the like, is built in a battery. With this constitution, a checmical conversion process before battery assembling is omitted and simplified, and even if a charging product by chemical conversion is none, the hydrogen storage alloy prevents any capacity drop due to negative electrode, thus a discharge characteristic is improvable.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、アルカリ蓄電池の製造法、とくに改良された
負極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 3. DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing alkaline storage batteries, and in particular to an improved negative electrode.

従来の技術 各種の電源として、蓄電池が広く使われている。Conventional technology Storage batteries are widely used as various power sources.

蓄電池には、大別して鉛蓄電池とアルカリ蓄電池があり
、アルカリ蓄電池の代表的な系は、ニッケルーカドミウ
ム蓄電池である。
Storage batteries can be broadly classified into lead storage batteries and alkaline storage batteries, and a typical type of alkaline storage battery is a nickel-cadmium storage battery.

このニッケルーカドミウム蓄電池は、焼結式電極の開発
と密閉形構造の完成によって実用の範囲が広がった。焼
結式電極は、充放電特性の向上を可能にし、長寿命をも
たらした。また、密閉化は、取扱いの容易さと信頼性の
向上を可能にした。
The scope of practical use of this nickel-cadmium storage battery has expanded with the development of sintered electrodes and the completion of a sealed structure. Sintered electrodes enable improved charging and discharging characteristics and provide a longer lifespan. Also, hermeticity enabled ease of handling and improved reliability.

ところで、この密閉化の手段としては、電池内に触媒を
設け、発生する酸素と水素を水にもどす方式があるが、
やはり、いわゆるノイマン方式といわれる負極により正
極からの酸素を取り込んでガス発生を抑制する手段が最
も有効で広く採用されている。
By the way, as a means of sealing, there is a method of installing a catalyst inside the battery and converting the generated oxygen and hydrogen back into water.
As expected, the so-called Neumann method, which suppresses gas generation by taking in oxygen from the positive electrode using the negative electrode, is the most effective and widely adopted method.

すなわち、ニッケルーカドミウム蓄電池を例にするとカ
ドミウム極は、ニッケル極よりも多くの容量を持たせて
おき、ニッケル極が完全に充電されて酸素ガスが発生し
ても、カドミウム極に生成されているカドミウムと反応
して酸化カドミウム、さらには水酸化カドミウムに変化
して、酸素ガスの電池内への蓄積は大きくは進まない。
In other words, using a nickel-cadmium storage battery as an example, the cadmium electrode is made to have a larger capacity than the nickel electrode, and even if the nickel electrode is fully charged and oxygen gas is generated, the cadmium electrode will not generate oxygen gas. Oxygen gas reacts with cadmium and changes to cadmium oxide and then cadmium hydroxide, and the accumulation of oxygen gas in the battery does not proceed significantly.

また、カドミウム極にはなお、未充電状態の水酸化カド
ミウムを持たせているので、酸素ガスとの反応が若干遅
れてもカドミウム極から水素が発生することは原理的に
はない。したがって、電池内のガス圧は低く押えられて
密閉化が可能になる。
Furthermore, since the cadmium electrode still contains uncharged cadmium hydroxide, hydrogen is not generated from the cadmium electrode in principle even if the reaction with oxygen gas is slightly delayed. Therefore, the gas pressure inside the battery is kept low, making it possible to seal the battery.

さらに、カドミウム極には、正極よりも多くの放電可能
な容量を持たせ、たとえば、高率放電や低温での放電な
どで正極よりも放電時での利用率が減少してもカドミウ
ム極で容量が低下しないように配慮している。
Furthermore, the cadmium electrode has a larger discharge capacity than the positive electrode, so even if the utilization rate during discharge is lower than that of the positive electrode due to high-rate discharge or low-temperature discharge, the cadmium electrode has a larger discharge capacity than the positive electrode. We are taking care to ensure that this does not decrease.

したがって、正極は完全に放電した状態で電池に組込む
際にも、カドミウム極には一部充電状態の活物質、つま
りカドミウムを存在させておくことが必要である。
Therefore, even when the positive electrode is assembled into a battery in a completely discharged state, it is necessary to have a partially charged active material, that is, cadmium, present in the cadmium electrode.

発明が解決しようとする問題点 そのために、たとえば、酸化カドミウムを主材料とした
ペースト式カドミウム極を用いる場合に、あらかじめ、
この電極の一部を化成して(充電して)カドミウムを形
成し、水洗、乾燥工程を加えてから電池に組込んでいた
。このような煩雑さをさけるために、金属カドミウムの
混合が試みられているが、充電で得られるカドミウムと
異なり、すぐれた放電性能が得られないので広く採用す
る段階に到っていない。
Problems to be Solved by the Invention For this purpose, for example, when using a paste-type cadmium electrode mainly made of cadmium oxide, it is necessary to
A portion of this electrode was chemically converted (charged) to form cadmium, washed with water, and dried before being incorporated into a battery. In order to avoid such complications, attempts have been made to mix metal cadmium, but unlike cadmium obtained by charging, excellent discharge performance cannot be obtained, so it has not reached the stage of widespread adoption.

本発明は、ノイマン方式で密閉化する電池の負極とくに
カドミウム極について、電池に組立てる前の一部充電、
水洗、乾燥の工程を省略し、このような化成工程を行な
わずに、電池に組込むことが可能な負極の製造法を提供
する。
The present invention provides a method for partially charging the negative electrode, particularly the cadmium electrode, of a battery that is sealed using the Neumann method before assembling it into a battery.
To provide a method for producing a negative electrode that can be incorporated into a battery without water washing and drying steps and without performing such a chemical conversion step.

問題点を解決するための手段 負極とくにカドミウム極について、酸化カドミウムある
いは水酸化カドミウムなどカドミウム極の出発材料に水
素を吸蔵した水素吸蔵合金を加え、この状態で電池に組
み込むことによシ、電池組立て前の負極の化成工程を省
略したものである。また、放電に際しては、化成による
充電生成物(カドミウム)が存在し彦くても、この水素
を吸蔵した水素貯蔵合金が、負極による容量低下を防止
し、優れた放電特性を持つ電池になる。
Means for solving the problem Regarding the negative electrode, especially the cadmium electrode, a hydrogen storage alloy that stores hydrogen is added to the starting material of the cadmium electrode, such as cadmium oxide or cadmium hydroxide, and the battery is assembled in this state by incorporating it into the battery. The previous negative electrode formation step is omitted. Furthermore, during discharging, even if charge products (cadmium) are present due to chemical formation, the hydrogen storage alloy that absorbs this hydrogen prevents the capacity from decreasing due to the negative electrode, resulting in a battery with excellent discharge characteristics.

このように、本発明では、水素貯蔵合金は、負極の化成
を省略したことによる負極容量低下に起因する放電の終
了を防ぐのであるから、その添加量は、カドミウム極の
容量に対して30重量%以下でよい。
In this way, in the present invention, the hydrogen storage alloy prevents the termination of discharge caused by a decrease in negative electrode capacity due to omission of negative electrode formation, so the amount added is 30% by weight relative to the capacity of the cadmium electrode. % or less is sufficient.

また、水素吸蔵合金に水素を吸蔵させて後に、空気に接
触させると急激な酸化を発生することがあるので、酸化
カドミウムや水酸化カドミウムと混合する際には、水素
気流中やアルゴン気流中など酸素を含まない雰囲気中で
行なうことが好ましい。さらにまた、一般的にはカドミ
ウム電極の製法は、ペースト式が適しているので、ペー
ストにした後は、空気中において電極の製造を行なって
もよい。
In addition, if a hydrogen-absorbing alloy is allowed to absorb hydrogen and then comes into contact with air, rapid oxidation may occur. Preferably, this is carried out in an oxygen-free atmosphere. Furthermore, since a paste method is generally suitable for manufacturing cadmium electrodes, the electrodes may be manufactured in air after being made into a paste.

作用 なお、このようにカドミウム活物質と水素貯蔵合金を混
合して用いることは、すでに提案されている。しかしそ
の目的は、カドミウム主体で水素貯蔵合金を加える際に
は、電池内に発生する水素をこの水素貯蔵合金で吸蔵し
て電池内圧の増加を抑制することが目的である。したが
ってその水素貯蔵合金は、本発明と異なり水素を吸蔵し
ない状態で用いることになる。
Function: The use of a mixture of a cadmium active material and a hydrogen storage alloy as described above has already been proposed. However, when a cadmium-based hydrogen storage alloy is added, the purpose is to absorb the hydrogen generated within the battery with the hydrogen storage alloy, thereby suppressing an increase in the internal pressure of the battery. Therefore, unlike the present invention, the hydrogen storage alloy is used without storing hydrogen.

一方、水素貯蔵合金が主体の場合のカドミウムの役割は
、電池内で正極から発生する酸素の吸収や水素貯蔵合金
の酸化の抑制であり、本発明の目的とは明らかに異なる
On the other hand, when the hydrogen storage alloy is the main component, the role of cadmium is to absorb oxygen generated from the positive electrode in the battery and to suppress oxidation of the hydrogen storage alloy, which is clearly different from the purpose of the present invention.

実施例 市販の酸化カドミウムに対して、ポリビルアルコールの
3%エチレングリコール溶液を加えて、十分局拌しつつ
、100°Cに加熱する。ついで雰囲気をアルゴン中に
移して、あらかじめ水素を吸蔵した水素貯蔵合金、この
実施例ではMnNi5.BMnO,4A6o、2cOo
、6−Haの360メツシュ通過の粉末を重量比で酸化
カドミウム80部に対して20部加え、十分攪拌してペ
ーストの状態を保つ。
Example A 3% solution of polyvinyl alcohol in ethylene glycol is added to commercially available cadmium oxide, and the mixture is heated to 100°C while thoroughly stirring. The atmosphere is then transferred to argon and the hydrogen storage alloy, in this example MnNi5. BMnO, 4A6o, 2cOo
, 20 parts by weight of 6-Ha powder that passed through 360 meshes was added to 80 parts of cadmium oxide, and the mixture was sufficiently stirred to maintain a paste state.

芯材として、厚さ0.1511+jf、孔径1.BmM
、孔の占める面積の割合65%のニッケルメッキした鉄
の孔あき板を用い、これに前記ペーストラ十分塗着せし
め、スリットを通すことにより厚さを平均0.67門に
調整した。120′Cの2時間加熱、乾燥後に、軽く加
圧して平均0.6211Nの厚さにした。
As a core material, the thickness is 0.1511+jf, the hole diameter is 1. BmM
A perforated plate of nickel-plated iron having an area occupied by 65% of the holes was used, and the above-mentioned Paster was sufficiently applied to the plate, and the thickness was adjusted to an average of 0.67 mm by passing the paste through slits. After heating at 120'C for 2 hours and drying, light pressure was applied to give an average thickness of 0.6211N.

電池としては、単2形とした。したがって、この水素吸
蔵合金を含むカドミウム極を、幅38朋。
The batteries were AA size. Therefore, the width of the cadmium electrode containing this hydrogen storage alloy is 38 mm.

長さ260MMに裁断し、リード板を2ケ所スポツト溶
接により取り付けた。相手極としては公知の焼結式ニッ
ケル極をえらび、同じく幅は38M。
It was cut to a length of 260 mm, and lead plates were attached at two locations by spot welding. A well-known sintered nickel electrode was selected as the mating electrode, and the width was also 38M.

長さは220flの大きさとした。この場合も2ケ所に
リード板を取り付けた。電解液としては、比重1.20
のか性カリ水溶液に水酸化リチウムを20 f!/(l
溶解して用い、これをセパレータとシテ用いているボリ
アミド不織布に含浸、添加して単2形電池を構成したこ
の電池をムとする。この電池の公称容量は2.5ムhで
ある。
The length was 220 fl. In this case as well, lead plates were attached at two locations. As an electrolyte, the specific gravity is 1.20
Add lithium hydroxide to a caustic potassium aqueous solution at 20 f! /(l
This battery is used after being dissolved and impregnated and added to a polyamide nonwoven fabric used as a separator to construct an AA battery. The nominal capacity of this battery is 2.5 μh.

つぎに比較のために、カドミウム極を用い、その一部を
あらかじめ化成により充電し、水洗、乾燥して電池人と
同様にニッケル極(長さ1951jf)と組合わせて電
池を構成したこの電池iBとする。
Next, for comparison, this battery iB was constructed using a cadmium electrode, a part of which was charged by chemical formation, washed with water, dried, and combined with a nickel electrode (length 1951jf) in the same way as the battery man. shall be.

その公称容量は2.2 Ahである。Its nominal capacity is 2.2 Ah.

まず、人、B各電池の電流容量特性を室温(25°C)
および低温(0°C)で調べ、図に示した。
First, the current capacity characteristics of the human and B batteries were measured at room temperature (25°C).
and low temperature (0°C) and are shown in the figure.

図に示した水素吸蔵合金を含む電池Aでは、負極の容量
が大きいので、ニッケル極の充てん容量が太きくなシ、
放電容量は犬である。また、電池Bとともにいずれの放
電条件でもニッケル極律則であることを確認した。なお
、図には示していないが、46°Cでの放電でもすべて
ニッケル極律則であった。
In battery A shown in the figure, which includes a hydrogen storage alloy, the capacity of the negative electrode is large, so the filling capacity of the nickel electrode is not large.
Discharge capacity is a dog. In addition, it was confirmed that the nickel polarity rule was observed under all discharge conditions as well as for battery B. Although not shown in the figure, all discharges at 46° C. were based on the nickel polar rule.

つぎに、両電池の充電時での酸素ガス吸収能を比較した
。周囲温度0’C,ICの電流で充電を行なったところ
電池人の最高内圧は4.6 kg /crl 、電池B
でもほぼ同じ値全示し、また、その後O,SCで放電を
行ない、この条件で充放電を10回くり返したところ、
電池人では充電時での最高内圧は、4.5〜5に9/a
/iの範囲であったが、電池Bではこれよりも0.3〜
o、s kg /di高い圧力になり、放電時でもこの
圧力を示していたので、これは水素に起因することが推
定された。電池人では水素吸蔵合金が存在しているので
、このような水素の蓄積はなかった。
Next, the oxygen gas absorption ability of both batteries during charging was compared. When charging with an IC current at an ambient temperature of 0'C, the maximum internal pressure of the battery was 4.6 kg/crl, battery B
However, all the values were almost the same, and after that, I discharged at O and SC and repeated charging and discharging under these conditions 10 times.
The maximum internal pressure during charging for batteries is 4.5 to 5 to 9/a.
/i, but battery B has a range of 0.3 to
Since the pressure was high by 0, s kg/di and this pressure was maintained even during discharge, it was assumed that this was caused by hydrogen. There was no such accumulation of hydrogen in the battery due to the presence of hydrogen-absorbing alloys.

最後に自己放電を調べるために、充電後の電池を46°
Cで放置した。放置1ケ月で、いずれもニッケル極によ
る容量低下が約25%を示し、いずれも負極は問題がな
かった。
Finally, to check self-discharge, hold the battery at 46° after charging.
I left it at C. After being left alone for one month, the capacity reduction due to the nickel electrode was approximately 25% in all cases, and there were no problems with the negative electrode in either case.

発明の効果 以上詳述したように、カドミウム極を製造する際に、あ
らかじめ水素を吸蔵した水素貯蔵合金を添加し、電極製
造後に化成することなく、ただちに電池に組込んでも、
従来の部分化成−水洗−乾燥工程を加えたカドミウム極
を用いた電池に比較して、そん色はなく、製造工程は簡
易化し、容量。
Effects of the Invention As detailed above, when manufacturing a cadmium electrode, even if a hydrogen storage alloy that absorbs hydrogen is added in advance and is incorporated into a battery immediately without chemical conversion after the electrode is manufactured,
Compared to batteries using conventional cadmium electrodes that require a partial chemical formation process, washing with water, and drying, the manufacturing process is simplified and the capacity is increased.

充電圧力特性などはむしろすぐれた電池系を提供できる
It can provide a battery system with rather excellent charging pressure characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に示した電池人、Bの電流容量特性
を示す図である。 電池人・・・・・・水素を吸蔵した水素貯蔵合金を含む
電池、電池B・・・・・・従来の電池。
The figure is a diagram showing the current capacity characteristics of battery B shown in the embodiment of the present invention. Battery person: A battery containing a hydrogen storage alloy that absorbs hydrogen, Battery B: A conventional battery.

Claims (3)

【特許請求の範囲】[Claims] (1)酸化カドミウム、水酸化カドミウムから選んだ少
なくとも1種に、水素を吸蔵した水素貯蔵合金を加えて
電極を製造し、これに化成を施すことなく電池に組込む
ことを特徴とするアルカリ蓄電池の製造法。
(1) An alkaline storage battery characterized in that an electrode is manufactured by adding a hydrogen storage alloy that absorbs hydrogen to at least one selected from cadmium oxide and cadmium hydroxide, and the electrode is incorporated into a battery without chemical formation. Manufacturing method.
(2)酸化カドミウム又は水酸化カドミウムと水素を吸
蔵した水素貯蔵合金との混合を酸素を含まない雰囲気中
で行なうことを特徴とする特許請求の範囲第1項記載の
アルカリ蓄電池の製造法。
(2) A method for producing an alkaline storage battery according to claim 1, characterized in that cadmium oxide or cadmium hydroxide and a hydrogen storage alloy that absorbs hydrogen are mixed in an oxygen-free atmosphere.
(3)水素貯蔵合金の添加量は30重量%以下であるこ
とを特徴とする特許請求の範囲第1項記載のアルカリ蓄
電池の製造法。
(3) The method for producing an alkaline storage battery according to claim 1, wherein the amount of hydrogen storage alloy added is 30% by weight or less.
JP61129647A 1986-06-04 1986-06-04 Manufacturing method of alkaline storage battery Expired - Lifetime JPH0754701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61129647A JPH0754701B2 (en) 1986-06-04 1986-06-04 Manufacturing method of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61129647A JPH0754701B2 (en) 1986-06-04 1986-06-04 Manufacturing method of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS62287568A true JPS62287568A (en) 1987-12-14
JPH0754701B2 JPH0754701B2 (en) 1995-06-07

Family

ID=15014688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61129647A Expired - Lifetime JPH0754701B2 (en) 1986-06-04 1986-06-04 Manufacturing method of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0754701B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043233A (en) * 1989-03-10 1991-08-27 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
USRE34471E (en) * 1989-03-10 1993-12-07 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
US10614968B2 (en) 2016-01-22 2020-04-07 The Regents Of The University Of California High-voltage devices
US10622163B2 (en) 2016-04-01 2020-04-14 The Regents Of The University Of California Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
US10648958B2 (en) 2011-12-21 2020-05-12 The Regents Of The University Of California Interconnected corrugated carbon-based network
US10655020B2 (en) 2015-12-22 2020-05-19 The Regents Of The University Of California Cellular graphene films
US10734167B2 (en) 2014-11-18 2020-08-04 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US10847852B2 (en) 2014-06-16 2020-11-24 The Regents Of The University Of California Hybrid electrochemical cell
US10938021B2 (en) 2016-08-31 2021-03-02 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
US11004618B2 (en) 2012-03-05 2021-05-11 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
US11133134B2 (en) 2017-07-14 2021-09-28 The Regents Of The University Of California Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34471E (en) * 1989-03-10 1993-12-07 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
US5043233A (en) * 1989-03-10 1991-08-27 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
US10648958B2 (en) 2011-12-21 2020-05-12 The Regents Of The University Of California Interconnected corrugated carbon-based network
US11397173B2 (en) 2011-12-21 2022-07-26 The Regents Of The University Of California Interconnected corrugated carbon-based network
US11004618B2 (en) 2012-03-05 2021-05-11 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11915870B2 (en) 2012-03-05 2024-02-27 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11257632B2 (en) 2012-03-05 2022-02-22 The Regents Of The University Of California Capacitor with electrodes made of an interconnected corrugated carbon-based network
US11569538B2 (en) 2014-06-16 2023-01-31 The Regents Of The University Of California Hybrid electrochemical cell
US10847852B2 (en) 2014-06-16 2020-11-24 The Regents Of The University Of California Hybrid electrochemical cell
US10734167B2 (en) 2014-11-18 2020-08-04 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US11810716B2 (en) 2014-11-18 2023-11-07 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (ICCN) composite
US11118073B2 (en) 2015-12-22 2021-09-14 The Regents Of The University Of California Cellular graphene films
US11891539B2 (en) 2015-12-22 2024-02-06 The Regents Of The University Of California Cellular graphene films
US10655020B2 (en) 2015-12-22 2020-05-19 The Regents Of The University Of California Cellular graphene films
US10614968B2 (en) 2016-01-22 2020-04-07 The Regents Of The University Of California High-voltage devices
US10892109B2 (en) 2016-01-22 2021-01-12 The Regents Of The University Of California High-voltage devices
US11842850B2 (en) 2016-01-22 2023-12-12 The Regents Of The University Of California High-voltage devices
US11961667B2 (en) 2016-03-23 2024-04-16 The Regents Of The University Of California Devices and methods for high voltage and solar applications
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
US10622163B2 (en) 2016-04-01 2020-04-14 The Regents Of The University Of California Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
US11791453B2 (en) 2016-08-31 2023-10-17 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US10938021B2 (en) 2016-08-31 2021-03-02 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US11133134B2 (en) 2017-07-14 2021-09-28 The Regents Of The University Of California Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems

Also Published As

Publication number Publication date
JPH0754701B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP3097347B2 (en) Nickel-metal hydride battery
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JPS62287568A (en) Manufacture of alkaline storage battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JPH04212269A (en) Alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP3255369B2 (en) Hydride rechargeable battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JPH05151990A (en) Chemical formation method for sealed type nickel-hydrogen storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP2001102085A (en) Formation method of airtight type nickel-hydrogen storage battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JPH06290776A (en) Manufacture of alkaline secondary battery
JPH05275082A (en) Forming method for sealed nickel-hydrogen storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same
JPH03289059A (en) Metal-hydrogen alkaline battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP2553902B2 (en) Alkaline secondary battery
JP3863703B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP2001035526A (en) Nickel hydrogen storage battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate