JPH0754701B2 - Manufacturing method of alkaline storage battery - Google Patents

Manufacturing method of alkaline storage battery

Info

Publication number
JPH0754701B2
JPH0754701B2 JP61129647A JP12964786A JPH0754701B2 JP H0754701 B2 JPH0754701 B2 JP H0754701B2 JP 61129647 A JP61129647 A JP 61129647A JP 12964786 A JP12964786 A JP 12964786A JP H0754701 B2 JPH0754701 B2 JP H0754701B2
Authority
JP
Japan
Prior art keywords
cadmium
battery
electrode
hydrogen
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61129647A
Other languages
Japanese (ja)
Other versions
JPS62287568A (en
Inventor
勉 岩城
良夫 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61129647A priority Critical patent/JPH0754701B2/en
Publication of JPS62287568A publication Critical patent/JPS62287568A/en
Publication of JPH0754701B2 publication Critical patent/JPH0754701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池の製造法、とくに改良された
負極に関するものである。
TECHNICAL FIELD The present invention relates to a method of manufacturing an alkaline storage battery, and more particularly to an improved negative electrode.

従来の技術 各種の電源として、蓄電池が広く使われている。蓄電池
には、大別して鉛蓄電池とアルカリ蓄電池があり、アル
カリ蓄電池の代表的な系は、ニッケル−カドミウム蓄電
池である。
2. Description of the Related Art Storage batteries are widely used as various power sources. Storage batteries are roughly classified into lead storage batteries and alkaline storage batteries, and a typical system of alkaline storage batteries is a nickel-cadmium storage battery.

このニッケル−カドミウム蓄電池は、焼結式電極の開発
と密閉形構造の完成によって実用の範囲が広がった。焼
結式電極は、充放電特性の向上を可能にし、長寿命をも
たらした。また、密閉化は、取扱いの容易さと信頼性の
向上を可能にした。
This nickel-cadmium storage battery has expanded its range of practical use due to the development of a sintered electrode and the completion of a sealed structure. Sintered electrodes made it possible to improve charge / discharge characteristics and provide a long service life. In addition, the sealed structure has made it easier to handle and improve reliability.

ところで、この密閉化の手段としては、電池内に触媒を
設け、発生する酸素と水素を水にもどす方式があるが、
いわゆるノイマン方式といわれる負極により正極からの
酸素を取り込んでガス発生を抑制する手段が最も有効で
広く採用されている。
By the way, as a means for this sealing, there is a system in which a catalyst is provided in the battery and generated oxygen and hydrogen are returned to water.
The so-called Neumann method is the most effective and widely adopted means for suppressing gas generation by taking in oxygen from the positive electrode by means of a negative electrode.

すなわち、ニッケル−カドミウム蓄電池を例にするとカ
ドミウム極は、ニッケル極よりも多くの容量を持たせて
おき、ニッケル極が完全に充電されて酸素ガスが発生し
ても、カドミウム極に生成されているカドミウムと反応
して酸化カドミウム、さらには水酸化カドミウムに変化
して、酸素ガスの電池内への蓄積は大きくは進まない。
また、カドミウム極にはなお、未充電状態の水酸化カド
ミウムを持たせているので、酸素ガスとの反応が若干遅
れてもカドミウム極から水素が発生することは原理的に
はない。したがって、電池内のガス圧は低く押えられて
密閉化が可能になる。
That is, taking a nickel-cadmium storage battery as an example, the cadmium electrode has a larger capacity than the nickel electrode, and even if the nickel electrode is completely charged and oxygen gas is generated, it is generated in the cadmium electrode. It reacts with cadmium and changes to cadmium oxide and further to cadmium hydroxide, and the accumulation of oxygen gas in the battery does not proceed significantly.
In addition, since the cadmium electrode still has cadmium hydroxide in an uncharged state, even if the reaction with oxygen gas is slightly delayed, hydrogen is not generated from the cadmium electrode in principle. Therefore, the gas pressure in the battery is suppressed low, and the battery can be hermetically sealed.

さらに、カドミウム極には、正極よりも多くの放電可能
な容量を持たせ、たとえば、高率放電や低温での放電な
どで正極よりも放電時での利用率が減少してもカドミウ
ム極で容量が低下しないように配慮している。
In addition, the cadmium electrode has a larger dischargeable capacity than the positive electrode, so that the capacity of the cadmium electrode can be reduced even if the utilization rate at the time of discharge is lower than that of the positive electrode due to high rate discharge or low temperature discharge. Is taken into consideration so that it does not decrease.

したがって、正極は完全に放電した状態で電池に組込む
際にも、カドミウム極には一部充電状態の活物質、つま
りカドミウムを存在させておくことが必要である。
Therefore, even when the positive electrode is assembled into a battery in a completely discharged state, it is necessary to allow the cadmium electrode to have a partially charged active material, that is, cadmium.

発明が解決しようとする問題点 そのために、たとえば、酸化カドミウムを主材料とした
ペースト式カドミウム極を用いる場合に、あらかじめ、
この電極の一部を化成して(充電して)カドミウムを形
成し、水洗,乾燥工程を加えてから電池に組込んでい
た。このような煩雑さをさけるために、金属カドミウム
の混合が試みられているが、充電で得られるカドミウム
と異なり、すぐれた放電性能が得られないので広く採用
する段階に到っていない。
Problems to be Solved by the Invention Therefore, for example, when using a paste type cadmium electrode whose main material is cadmium oxide,
A part of this electrode was formed (charged) to form cadmium, washed with water and dried, and then incorporated into the battery. In order to avoid such complication, attempts have been made to mix metal cadmium, but unlike cadmium obtained by charging, excellent discharge performance cannot be obtained, and it has not reached the stage of widespread adoption.

本発明は、ノイマン方式で密閉化する電池の負極とくに
カドミウム極について、電池に組立てる前の一部充電,
水洗,乾燥の工程を省略し、このような化成工程を行な
わずに、電池に組込むことが可能な負極の製造法を提供
する。
The present invention relates to the negative electrode of a battery sealed by the Neumann method, in particular, the cadmium electrode, partially charged before being assembled into the battery,
(EN) Provided is a method for producing a negative electrode which can be incorporated in a battery by omitting the steps of washing and drying and performing such a chemical conversion step.

問題点を解決するための手段 本発明は、負極とくにカドミウム極について、酸化カド
ミウムあるいは水酸化カドミウムなどカドミウム極の出
発材料に水素を吸蔵した水素吸蔵合金を加え、この状態
で電池に組み込むことにより、電池組立て前の負極の化
成工程を省略したものである。また、放電に際しては、
化成による充電生成物(カドミウム)が存在しなくて
も、この水素を吸蔵した水素貯蔵合金が、負極による容
量低下を防止し、優れた放電特性を持つ電池になる。
Means for solving the problem The present invention, for the negative electrode, especially the cadmium electrode, by adding a hydrogen storage alloy that has absorbed hydrogen to the starting material of the cadmium electrode such as cadmium oxide or cadmium hydroxide, by incorporating in this state in the battery, The process of forming the negative electrode before assembling the battery is omitted. Also, when discharging,
Even if there is no charge product (cadmium) due to chemical formation, this hydrogen storage alloy that occludes hydrogen prevents the capacity from decreasing due to the negative electrode and provides a battery with excellent discharge characteristics.

このように、本発明では、水素貯蔵合金は、負極の化成
を省略したことによる負極容量低下に起因する放電の終
了を防ぐのであるから、その添加量は、カドミウム極の
容量に対して30重量%以下でよい。
Thus, in the present invention, the hydrogen storage alloy is to prevent the end of discharge due to the negative electrode capacity reduction due to omitting the formation of the negative electrode, the addition amount is 30 wt% with respect to the capacity of the cadmium electrode. % Or less.

また、水素吸蔵合金に水素を吸蔵させて後に、空気に接
触させると急激な酸化を発生することがあるので、酸化
カドミウムや水酸化カドミウムと混合する際には、水素
気流中やアルゴン気流中など酸素を含まない雰囲気中で
行なうことが好ましい。さらにまた、一般的にはカドミ
ウム電極の製法は、ペースト式が適しているので、ペー
ストにした後は、空気中において電極の製造を行なって
もよい。
Also, when hydrogen is absorbed in a hydrogen-absorbing alloy and then brought into contact with air, rapid oxidation may occur, so when mixing with cadmium oxide or cadmium hydroxide, in a hydrogen stream or argon stream, etc. It is preferable to carry out in an atmosphere containing no oxygen. Furthermore, since a paste method is generally suitable for a method for producing a cadmium electrode, the electrode may be produced in the air after forming the paste.

作用 なお、このようにカドミウム活物質と水素貯蔵合金を混
合して用いることは、すでに提案されている。しかしそ
の目的は、カドミウム主体で水素貯蔵合金を加える際に
は、電池内に発生する水素をこの水素貯蔵合金で吸蔵し
て電池内圧の増加を抑制することが目的である。したが
ってその水素貯蔵合金は、本発明と異なり水素を吸蔵し
ない状態で用いることになる。
Action It has been already proposed to mix and use the cadmium active material and the hydrogen storage alloy as described above. However, the purpose is to suppress the increase in the internal pressure of the battery by storing hydrogen generated in the battery in the hydrogen storage alloy when adding the hydrogen storage alloy mainly containing cadmium. Therefore, unlike the present invention, the hydrogen storage alloy is used in a state in which it does not store hydrogen.

一方、水素貯蔵合金が主体の場合のカドミウムの役割
は、電池内で正極から発生する酸素の吸収や水素貯蔵合
金の酸化の抑制であり、本発明の目的とは明らかに異な
る。
On the other hand, when the hydrogen storage alloy is the main constituent, the role of cadmium is to absorb oxygen generated from the positive electrode in the battery and to suppress the oxidation of the hydrogen storage alloy, which is clearly different from the object of the present invention.

実施例 市販の酸化カドミウムに対して、ポリビニルアルコール
の3%エチレングリコール溶液を加えて、十分撹拌しつ
つ、100℃に加熱する。ついで雰囲気をアルゴン中に移
して、あらかじめ水素を吸蔵した水素貯蔵合金、この実
施例ではMmNi3.8Mn0.4Al0.2Co0.6-H4の360メッシュ通過
の粉末を重量比で酸化カドミウム80部に対して20部加
え、十分撹拌してペーストの状態を保つ。
Example To a commercially available cadmium oxide, a 3% ethylene glycol solution of polyvinyl alcohol was added, and the mixture was heated to 100 ° C. with sufficient stirring. Then, the atmosphere was moved to argon, and a hydrogen storage alloy in which hydrogen was previously occluded, in this example, a powder of MmNi 3.8 Mn 0.4 Al 0.2 Co 0.6 -H 4 that passed through 360 mesh relative to 80 parts of cadmium oxide in a weight ratio. Add 20 parts and stir well to maintain the paste state.

芯材として、厚さ0.15mm,孔径1.8mm,孔の占める面積の
割合55%のニッケルメッキした鉄の孔あき板を用い、こ
れに前記ペーストを十分塗着せしめ、スリットを通すこ
とにより厚さを平均0.67mmに調整した。120℃で2時間
加熱、乾燥後に、軽く加圧して平均0.62mmの厚さにし
た。
As the core material, use a perforated plate of nickel-plated iron with a thickness of 0.15 mm, a hole diameter of 1.8 mm, and a ratio of the area occupied by the holes of 55%, and sufficiently paste the paste on it, Was adjusted to an average of 0.67 mm. After heating at 120 ° C. for 2 hours and drying, light pressure was applied to an average thickness of 0.62 mm.

電池としては、単2形とした。したがって、この水素吸
蔵合金を含むカドミウム極を、幅38mm,長さ260mmに裁断
し、リード板を2ケ所スポット溶接により取り付けた。
相手極としては公知の焼結式ニッケル極をえらび、同じ
く幅は38mm,長さは220mmの大きさとした。この場合も2
ケ所にリード板を取り付けた。電解液としては、比重1.
20のカ性カリ水溶液に水酸化リチウムを20g/l溶解して
用い、これをセパレータとして用いているポリアミド不
織布に含浸,添加して単2形電池を構成したこの電池を
Aとする。この電池の公称容量は2.5Ahである。
The battery was a C type. Therefore, the cadmium electrode containing this hydrogen storage alloy was cut into a width of 38 mm and a length of 260 mm, and lead plates were attached by spot welding at two places.
A well-known sintered nickel electrode was selected as the counter electrode, and the width was 38 mm and the length was 220 mm. Also in this case 2
The lead plate was attached to the place. Specific gravity of the electrolyte is 1.
Lithium hydroxide was dissolved in 20 g of potassium hydroxide solution in an amount of 20 g / l and was impregnated into and added to a polyamide nonwoven fabric used as a separator. The nominal capacity of this battery is 2.5 Ah.

つぎに比較のために、カドミウム極を用い、その一部を
あらかじめ化成により充電し、水洗,乾燥して電池Aと
同様にニッケル極(長さ195mm)と組合わせて電池を構
成したこの電池をBとする。その公称容量は2.2Ahであ
る。
Next, for comparison, a cadmium electrode was used, a part of which was previously charged by chemical conversion, washed with water, dried, and combined with a nickel electrode (length 195 mm) in the same manner as the battery A to form a battery. Let B. Its nominal capacity is 2.2 Ah.

まず、A,B各電池の電流容量特性を室温(25℃)および
低温(0℃)で調べ、図に示した。
First, the current capacity characteristics of each of the A and B batteries were examined at room temperature (25 ° C) and low temperature (0 ° C), and shown in the figure.

図に示した水素吸蔵合金を含む電池Aでは、負極の容量
が大きいので、ニッケル極の充てん容量が大きくなり、
放電容量は大である。また、電池Bとともにいずれの放
電条件でもニッケル正極で容量規制されることを確認し
た。なお、図には示していないが、45℃での放電でもす
べてニッケル正極で容量規制された。
In the battery A containing the hydrogen storage alloy shown in the figure, since the capacity of the negative electrode is large, the packing capacity of the nickel electrode is large,
The discharge capacity is large. It was also confirmed that the capacity of the battery was regulated by the nickel positive electrode under any discharge condition together with the battery B. Although not shown in the figure, the capacity was all regulated by the nickel positive electrode even at discharge at 45 ° C.

つぎに、両電池の充電時での酸素ガス吸収能を比較し
た。周囲温度0℃,1Cの電流で充電を行なったところ電
池Aの最高内圧は4.5Kg/cm2、電池Bでもほぼ同じ値を
示し、また、その後0.5Cで放電を行ない、この条件で充
放電を10回くり返したところ、電池Aでは充電時での最
高内圧は、4.5〜5Kg/cm2の範囲であったが、電池Bでは
これよりも0.3〜0.6Kg/cm2高い圧力になり、放電時でも
この圧力を示していたので、これは水素に起因すること
が推定された。電池Aでは水素吸蔵合金が存在している
ので、このような水素の蓄積はなかった。
Next, the oxygen gas absorption capacities during charging of both batteries were compared. When the battery was charged at a current of 1 ° C and an ambient temperature of 0 ° C, the maximum internal pressure of battery A was 4.5 kg / cm 2 and battery B showed almost the same value. Was repeated 10 times, the maximum internal pressure at the time of charging in Battery A was in the range of 4.5 to 5 Kg / cm 2 , but in Battery B, the pressure was 0.3 to 0.6 Kg / cm 2 higher than this, and discharge It was presumed that this was due to hydrogen, as it showed this pressure even at times. Since the hydrogen storage alloy was present in the battery A, there was no such accumulation of hydrogen.

最後に自己放電を調べるために、充電後の電池を45℃で
放置した。放置1ケ月で、いずれもニッケル極による容
量低下が約25%を示し、いずれも負極は問題がなかっ
た。
Finally, to investigate self-discharge, the charged battery was left at 45 ° C. After one month of standing, the capacity reduction due to the nickel electrode showed about 25%, and there was no problem with the negative electrode.

発明の効果 以上詳述したように、カドミウム極を製造する際に、あ
らかじめ水素を吸蔵した水素貯蔵合金を添加し、電極製
造後に化成することなく、ただちに電池に組込んでも、
従来の部分化成−水洗−乾燥工程を加えたカドミウム極
を用いた電池に比較して、そん色はなく、製造工程は簡
易化し、容量,充電圧力特性などはむしろすぐれた電池
系を提供できる。
Effects of the Invention As described in detail above, when manufacturing a cadmium electrode, by adding a hydrogen storage alloy that has occluded hydrogen in advance, without forming after the electrode production, even immediately assembled in the battery,
Compared with a battery using a cadmium electrode that has been subjected to a conventional partial chemical conversion-washing-drying process, there is no discoloration, the manufacturing process is simplified, and a battery system that is rather superior in capacity and charging pressure characteristics can be provided.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例に示した電池A,Bの電流容量特性を
示す図である。 電池A……水素を吸蔵した水素貯蔵合金を含む電池、電
池B……従来の電池。
The figure shows the current capacity characteristics of the batteries A and B shown in the examples of the present invention. Battery A ... Battery containing hydrogen storage alloy that occludes hydrogen, Battery B ... Conventional battery.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化カドミウム,水酸化カドミウムから選
んだ少なくとも1種に、水素を吸蔵した水素貯蔵合金を
加えて電極を製造し、これに化成を施すことなく電池に
組込むことを特徴とするアルカリ蓄電池の製造法。
1. An alkali produced by adding a hydrogen storage alloy storing hydrogen to at least one selected from cadmium oxide and cadmium hydroxide to produce an electrode, and incorporating the electrode into a battery without chemical conversion. Storage battery manufacturing method.
【請求項2】酸化カドミウム又は水酸化カドミウムと水
素を吸蔵した水素貯蔵合金との混合を酸素を含まない雰
囲気中で行なうことを特徴とする特許請求の範囲第1項
記載のアルカリ蓄電池の製造法。
2. The method for producing an alkaline storage battery according to claim 1, wherein the mixing of cadmium oxide or cadmium hydroxide with a hydrogen storage alloy storing hydrogen is performed in an oxygen-free atmosphere. .
【請求項3】水素貯蔵合金の添加量は30重量%以下であ
ることを特徴とする特許請求の範囲第1項記載のアルカ
リ蓄電池の製造法。
3. The method for producing an alkaline storage battery according to claim 1, wherein the hydrogen storage alloy is added in an amount of 30% by weight or less.
JP61129647A 1986-06-04 1986-06-04 Manufacturing method of alkaline storage battery Expired - Lifetime JPH0754701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61129647A JPH0754701B2 (en) 1986-06-04 1986-06-04 Manufacturing method of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61129647A JPH0754701B2 (en) 1986-06-04 1986-06-04 Manufacturing method of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS62287568A JPS62287568A (en) 1987-12-14
JPH0754701B2 true JPH0754701B2 (en) 1995-06-07

Family

ID=15014688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61129647A Expired - Lifetime JPH0754701B2 (en) 1986-06-04 1986-06-04 Manufacturing method of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0754701B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34471E (en) * 1989-03-10 1993-12-07 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JP2680669B2 (en) * 1989-03-10 1997-11-19 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage battery
KR102071841B1 (en) 2011-12-21 2020-01-31 더 리전트 오브 더 유니버시티 오브 캘리포니아 Interconnected corrugated carbon-based network
CA2866250C (en) 2012-03-05 2021-05-04 Maher F. El-Kady Capacitor with electrodes made of an interconnected corrugated carbon-based network
US10211495B2 (en) 2014-06-16 2019-02-19 The Regents Of The University Of California Hybrid electrochemical cell
WO2016081638A1 (en) 2014-11-18 2016-05-26 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (iccn) composite
CA3006997A1 (en) 2015-12-22 2017-06-29 The Regents Of The University Of California Cellular graphene films
AU2017209117B2 (en) 2016-01-22 2021-10-21 The Regents Of The University Of California High-voltage devices
CA3018568A1 (en) 2016-03-23 2017-09-28 The Regents Of The University Of California Devices and methods for high voltage and solar applications
IL261928B2 (en) 2016-04-01 2023-04-01 Univ California Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
KR102535218B1 (en) 2016-08-31 2023-05-22 더 리전트 오브 더 유니버시티 오브 캘리포니아 Devices Including Carbon-Based Materials and Their Preparation
JP7277965B2 (en) 2017-07-14 2023-05-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア A Simple Route from Carbon Nanodots to Highly Conductive Porous Graphene for Supercapacitor Applications
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems

Also Published As

Publication number Publication date
JPS62287568A (en) 1987-12-14

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JPH0754701B2 (en) Manufacturing method of alkaline storage battery
JPH11238508A (en) Nickel positive electrode for alkaline storage battery and its manufacture
JP2003249222A (en) Nickel/hydrogen storage battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JP4747233B2 (en) Alkaline storage battery
JPH0624148B2 (en) Sealed nickel cadmium storage battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JP3255369B2 (en) Hydride rechargeable battery
JPH1064535A (en) Nickel electrode for alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH01267966A (en) Manufacture of sealed nickel-hydrogen battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP2989877B2 (en) Nickel hydride rechargeable battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP3263603B2 (en) Alkaline storage battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP3342506B2 (en) Hydride secondary battery and method for producing the same
JP2001035526A (en) Nickel hydrogen storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP3863703B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JPH05275082A (en) Forming method for sealed nickel-hydrogen storage battery
JP2968813B2 (en) Method for producing cadmium negative electrode for alkaline storage battery