JP3863703B2 - Hydrogen storage alloy electrode and alkaline storage battery - Google Patents

Hydrogen storage alloy electrode and alkaline storage battery Download PDF

Info

Publication number
JP3863703B2
JP3863703B2 JP2000187192A JP2000187192A JP3863703B2 JP 3863703 B2 JP3863703 B2 JP 3863703B2 JP 2000187192 A JP2000187192 A JP 2000187192A JP 2000187192 A JP2000187192 A JP 2000187192A JP 3863703 B2 JP3863703 B2 JP 3863703B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alkaline
alloy electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000187192A
Other languages
Japanese (ja)
Other versions
JP2002008663A (en
Inventor
克彦 新山
育幸 原田
忠佳 田中
義典 松浦
礼造 前田
俊之 能間
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000187192A priority Critical patent/JP3863703B2/en
Publication of JP2002008663A publication Critical patent/JP2002008663A/en
Application granted granted Critical
Publication of JP3863703B2 publication Critical patent/JP3863703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
この発明は、ニッケル−水素蓄電池等のアルカリ蓄電池及びこのアルカリ蓄電池の負極に使用される水素吸蔵合金電極に関するものであり、水素吸蔵合金電極を改善し、アルカリ蓄電池における高温での保存特性を高めるようにした点に特徴を有するものである。
【0002】
【従来の技術】
従来より、アルカリ蓄電池の一つとして、その負極に水素吸蔵合金電極を使用したニッケル−水素蓄電池が知られている。
【0003】
そして、近年においては、このような水素吸蔵合金電極を負極に使用したアルカリ蓄電池が電動自転車の電源等に使用されるようになり、このため、このアルカリ蓄電池におけるサイクル寿命や、高温での保存特性を向上させることが要望されている。
【0004】
そして、このようなアルカリ蓄電池においては様々な改善が行われており、例えば、特開平9−3584号公報に示されるように、負極に使用する水素吸蔵合金に希土類塩化合物を添加させたり、特開平10−125350号公報に示されるように、酢酸ナトリウムやリン酸カリウム等の塩を正極やアルカリ電解液に添加させて、アルカリ蓄電池のサイクル寿命を向上させるようにしたものが提案されている。
【0005】
しかし、これらの公報に示されるアルカリ蓄電池においても、高温で保存した場合に自己放電が生じて、次第に容量が低下するという問題があった。
【0006】
【発明が解決しようとする課題】
この発明は、負極に水素吸蔵合金電極を用いたアルカリ蓄電池における上記のような問題を解決することを課題とするものであり、このアルカリ蓄電池を高温で保存した場合に、水素吸蔵合金電極を用いた負極において自己放電反応が生じるのを抑制し、高温での保存特性に優れたアルカリ蓄電池が得られるようにすることを課題とするものである。
【0007】
【課題を解決するための手段】
この発明における水素吸蔵合金電極においては、上記のような課題を解決するため、水素吸蔵合金を用いた水素吸蔵合金電極において、アルカリ金属の酢酸塩を添加させるようにしたものである。
【0008】
また、この発明におけるアルカリ蓄電池においては、上記のようにアルカリ金属の酢酸塩を添加させた水素吸蔵合金電極を負極に用いるようにしたものである。
【0009】
そして、この発明におけるアルカリ蓄電池のように、アルカリ金属の酢酸塩を添加させた水素吸蔵合金電極をその負極に用いると、このアルカリ金属の酢酸塩によって水素吸蔵合金電極における水素吸蔵合金とアルカリ電解液とが反応するのが抑制され、高温で保存した場合においても自己放電反応が生じるのが防止され、アルカリ蓄電池における高温での保存特性が向上する。
【0010】
ここで、水素吸蔵合金電極に添加させるアルカリ金属の酢酸塩については特に限定されないが、水素吸蔵合金電極における水素吸蔵合金とアルカリ電解液とが反応するのを抑制して、アルカリ蓄電池における高温での保存特性をより向上させるためには、上記のアルカリ金属として、リチウム、ナトリウム、カリウムから選択される1種以上を用いることが好ましい。
【0011】
また、水素吸蔵合金電極にアルカリ金属の酢酸塩を添加させるにあたって、アルカリ金属の酢酸塩を添加させる量が少ないと、水素吸蔵合金電極における水素吸蔵合金とアルカリ電解液とが反応するのを十分に抑制することができなくなる。一方、アルカリ金属の酢酸塩を添加させる量が多くなり過ぎると、水素吸蔵合金電極における水素吸蔵合金の量が相対的に減少するため、水素吸蔵合金の単位重量当たりの充電量が大きくなって、自己放電が進行しやすくなる。このため、水素吸蔵合金と金属の酢酸塩とを合わせた重量に対する金属の酢酸塩の重量を、0.05〜10重量%の範囲にすることが好ましい。
【0012】
【実施例】
以下、この発明に係る水素吸蔵合金電極及びアルカリ蓄電池について実施例を挙げて具体的に説明すると共に、この実施例におけるアルカリ蓄電池においては、高温で保存した場合における自己放電が抑制されて、高温での保存特性が向上することを、比較例を挙げて明らかにする。なお、この発明における水素吸蔵合金電極及びアルカリ蓄電池は、特に、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0013】
(実施例1)
実施例1においては、組成式MmNi3.2 Co1.0 Al0.2 Mn0.6 で表される平均粒径が50μmになった水素吸蔵合金粉末95重量部に対して酢酸リチウム粉末を5重量部の割合で加えて混合し、この混合物に対して結着剤としてポリエチレンオキシドを1.0重量部加えると共に少量の水を加え、これらを混合してペーストを調製した。
【0014】
そして、このペーストをニッケルメッキしたパンチングメタルの両面に均一に塗布し、これを乾燥させた後、圧延して水素吸蔵合金電極を作製した。なお、この水素吸蔵合金電極においては、上記の水素吸蔵合金と酢酸リチウムとを合わせた重量に対する酢酸リチウムの重量が5重量%になっている。
【0015】
そして、このように作製した水素吸蔵合金電極を負極に使用して、図1に示すような、円筒型で電池容量が約1Ahになったアルカリ蓄電池を作製した。
【0016】
ここで、正極としては、硝酸コバルトと硝酸亜鉛とを加えた硝酸ニッケル水溶液を、多孔度85%のニッケル焼結基板に化学含浸法により含浸させて作製した焼結式ニッケル極を使用し、またセパレータには耐アルカリ性の不織布を用いると共に、アルカリ電解液には6規定の水酸化カリウム水溶液を使用した。
【0017】
そして、アルカリ蓄電池を作製するにあたっては、図1に示すように、正極1と負極2との間にセパレータ3を介在させてスパイラル状に巻き取り、これを負極缶4内に収容させた後、負極缶4内に上記のアルカリ電解液を注液して封口し、正極1を正極リード5を介して封口蓋6に接続させると共に、負極2を負極リード7を介して負極缶4に接続させ、負極缶4と封口蓋6とを絶縁パッキン8により電気的に絶縁させると共に、封口蓋6と正極外部端子9との間にコイルスプリング10を設け、電池の内圧が異常に上昇した場合は、このコイルスプリング10が圧縮されて電池内部のガスが大気に放出されるようにした。
【0018】
(実施例2)
この実施例2においては、水素吸蔵合金電極を作製するにあたり、実施例1と同じ水素吸蔵合金粉末95重量部に対して、酢酸ナトリウム粉末を5重量部の割合で加え、それ以外は、上記の実施例1の場合と同様にして、水素吸蔵合金電極を作製すると共に、この水素吸蔵合金電極を用いてアルカリ蓄電池を作製した。
【0019】
(実施例3)
この実施例3においては、水素吸蔵合金電極を作製するにあたり、実施例1と同じ水素吸蔵合金粉末95重量部に対して、酢酸カリウム粉末を5重量部の割合で加え、それ以外は、上記の実施例1の場合と同様にして、水素吸蔵合金電極を作製すると共に、この水素吸蔵合金電極を用いてアルカリ蓄電池を作製した。
【0020】
(比較例1)
この比較例1においては、水素吸蔵合金電極を作製するにあたり、実施例1と同じ水素吸蔵合金粉末を用いる一方、この水素吸蔵合金粉末に対して酢酸リチウム粉末を加えないようにし、それ以外は、上記の実施例1の場合と同様にして、水素吸蔵合金電極を作製すると共に、この水素吸蔵合金電極を用いてアルカリ蓄電池を作製した。
【0021】
(比較例2)
この比較例2においては、水素吸蔵合金電極を作製するにあたり、実施例1と同じ水素吸蔵合金粉末95重量部に対して、酢酸イッテルビウム粉末を5重量部の割合で加え、それ以外は、上記の実施例1の場合と同様にして、水素吸蔵合金電極を作製すると共に、この水素吸蔵合金電極を用いてアルカリ蓄電池を作製した。
【0022】
(比較例3)
この比較例3においては、上記の比較例1の場合と同様に、水素吸蔵合金粉末に対して酢酸リチウム粉末を加えないようにして、水素吸蔵合金電極を作製した。
【0023】
そして、この水素吸蔵合金電極を用いてアルカリ蓄電池を作製するにあたり、上記の6規定の水酸化カリウム水溶液からなるアルカリ電解液に、上記の実施例2において水素吸蔵合金粉末に対して加えた量と同じ量の酢酸ナトリウム粉末を溶解させたアルカリ電解液を用い、それ以外は、上記の実施例1の場合と同様にしてアルカリ蓄電池を作製した。
【0024】
次に、上記のようにして作製した実施例1〜3及び比較例1〜3の各アルカリ蓄電池を、25℃の雰囲気中において、100mAの定電流で16時間充電させた後、200mAの定電流で1.0Vまで放電させ、これを1サイクルとして充放電を10サイクル行い、10サイクル目の放電容量Q10を測定した。
【0025】
そして、このように10サイクルの充放電を行った各アルカリ蓄電池を25℃の雰囲気中において100mAの定電流で16時間充電させた後、各アルカリ蓄電池を50℃の高温雰囲気中において2週間保存させた。その後、上記の各アルカリ蓄電池を25℃にして、200mAの定電流で1.0Vまで放電させて、11サイクル目の放電容量Q11を測定し、上記の10サイクル目の放電容量Q10に対する11サイクル目の放電容量Q11の比率[=(Q11/Q10)×100]を求め、これを自己放電特性として下記の表1に示した。
【0026】
【表1】

Figure 0003863703
【0027】
この結果から明らかなように、水素吸蔵合金粉末に、酢酸リチウム粉末や酢酸ナトリウム粉末や酢酸カリウム粉末を添加させて作製した水素吸蔵合金電極を用いた実施例1〜3の各アルカリ蓄電池は、水素吸蔵合金粉末に酢酸リチウム粉末や酢酸ナトリウム粉末や酢酸カリウム粉末を添加させないで作製した水素吸蔵合金電極を用いた比較例1のアルカリ蓄電池や、水素吸蔵合金粉末にアルカリ金属以外の酢酸塩である酢酸イッテルビウム粉末を添加させて作製した水素吸蔵合金電極を用いた比較例2のアルカリ蓄電池や、酢酸ナトリウム粉末を水素吸蔵合金電極に添加させないでアルカリ電解液に溶解させた比較例3のアルカリ蓄電池に比べて、上記の自己放電特性の値が高くなっており、高温で保存させた場合における自己放電が抑制された。
【0028】
なお、上記の実施例1〜3の各アルカリ蓄電池において、水素吸蔵合金電極に添加させたアルカリ金属の酢酸塩の一部は、アルカリ電解液の水酸化カリウム水溶液には溶解するが、アルカリ金属の酢酸塩の多くは水素吸蔵合金電極に残っていた。
【0029】
(実施例2・1〜2・11)
実施例2・1〜2・11においては、水素吸蔵合金電極を作製するにあたり、上記の実施例2の場合と同様に、上記の水素吸蔵合金粉末に対して酢酸ナトリウム粉末を加えるようにし、上記の水素吸蔵合金粉末と酢酸ナトリウム粉末との割合を、実施例2の場合とは異ならせ、水素吸蔵合金粉末と酢酸ナトリウム粉末との重量比を、実施例2・1では99.97:0.03、実施例2・2では99.96:0.04、実施例2・3では99.95:0.05、実施例2・4では99.9:0.1、実施例2・5では99:1、実施例2・6では97:3、実施例2・7では93:7、実施例2・8では91:9、実施例2・9では90:10、実施例2・10では88:12、実施例2・11では86:14にし、それ以外は、上記の実施例2の場合と同様にして、各水素吸蔵合金電極を作製し、またこのように作製した各水素吸蔵合金電極を負極に用いて各アルカリ蓄電池を作製した。なお、この実施例2・1〜2・11の各アルカリ蓄電池における水素吸蔵合金電極において、水素吸蔵合金と酢酸ナトリウムとを合わせた重量に対する酢酸ナトリウムの重量比率W(重量%)を下記の表2に示した。
【0030】
そして、このようにして作製した実施例2・1〜2・11の各アルカリ蓄電池についても、上記の場合と同様にして自己放電特性を求め、上記の実施例2のアルカリ蓄電池と合わせて、その結果を下記の表2に示した。
【0031】
【表2】
Figure 0003863703
【0032】
この結果から明らかなように、水素吸蔵合金電極に酢酸ナトリウムを添加させるにあたり、水素吸蔵合金と酢酸ナトリウムとを合わせた重量に対する酢酸ナトリウムの重量比率Wが0.05〜10重量%の範囲になった水素吸蔵合金電極を用いた実施例2、2・3〜2・9の各アルカリ蓄電池は、上記の重量比率Wが0.05〜10重量%の範囲外になったアルカリ蓄電池に比べて、自己放電特性の値が高くなっており、高温で保存させた場合における自己放電がより一層抑制されるようになった。
【0033】
【発明の効果】
以上詳述したように、この発明においては、水素吸蔵合金電極にアルカリ金属の酢酸塩を添加させ、このようにアルカリ金属の酢酸塩が添加された水素吸蔵合金電極をアルカリ蓄電池の負極に用いるようにしたため、水素吸蔵合金電極に添加させたアルカリ金属の酢酸塩によって、水素吸蔵合金電極における水素吸蔵合金とアルカリ電解液とが反応するのが抑制され、このアルカリ蓄電池を高温で保存した場合においても自己放電反応が生じるのが防止され、アルカリ蓄電池における高温での保存特性が向上した。
【図面の簡単な説明】
【図1】この発明の実施例及び比較例において作製したアルカリ蓄電池の概略断面図である。
【符号の説明】
1 正極
2 負極(水素吸蔵合金電極)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline storage battery such as a nickel-hydrogen storage battery and a hydrogen storage alloy electrode used for a negative electrode of the alkaline storage battery, and improves the storage characteristic of the alkaline storage battery at high temperatures by improving the hydrogen storage alloy electrode. It is characterized by the points.
[0002]
[Prior art]
Conventionally, as one of alkaline storage batteries, a nickel-hydrogen storage battery using a hydrogen storage alloy electrode for its negative electrode is known.
[0003]
In recent years, alkaline storage batteries using such a hydrogen storage alloy electrode as a negative electrode have come to be used as power sources for electric bicycles, etc. Therefore, the cycle life and storage characteristics at high temperatures of this alkaline storage battery have come to be used. There is a demand for improving this.
[0004]
Various improvements have been made in such alkaline storage batteries. For example, as shown in JP-A-9-3588, a rare earth salt compound can be added to a hydrogen storage alloy used for a negative electrode, As disclosed in Japanese Laid-Open Patent Publication No. 10-125350, there has been proposed one in which a salt such as sodium acetate or potassium phosphate is added to a positive electrode or an alkaline electrolyte so as to improve the cycle life of the alkaline storage battery.
[0005]
However, the alkaline storage batteries shown in these publications also have a problem that self-discharge occurs when stored at a high temperature, and the capacity gradually decreases.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems in an alkaline storage battery using a hydrogen storage alloy electrode as a negative electrode. When the alkaline storage battery is stored at a high temperature, the hydrogen storage alloy electrode is used. It is an object of the present invention to suppress the occurrence of a self-discharge reaction in a negative electrode and to obtain an alkaline storage battery having excellent storage characteristics at high temperatures.
[0007]
[Means for Solving the Problems]
In the hydrogen storage alloy electrode according to the present invention, in order to solve the above-described problems, an alkali metal acetate is added to the hydrogen storage alloy electrode using the hydrogen storage alloy.
[0008]
In the alkaline storage battery according to the present invention, a hydrogen storage alloy electrode to which an alkali metal acetate is added as described above is used for the negative electrode.
[0009]
Then, when a hydrogen storage alloy electrode to which an alkali metal acetate is added is used for the negative electrode as in the alkaline storage battery of the present invention, the hydrogen storage alloy and the alkaline electrolyte in the hydrogen storage alloy electrode are obtained by the alkali metal acetate. Reaction is suppressed, the self-discharge reaction is prevented from occurring even when stored at a high temperature, and the storage characteristics at a high temperature in an alkaline storage battery are improved.
[0010]
Here, the alkali metal acetate to be added to the hydrogen storage alloy electrode is not particularly limited, but the reaction between the hydrogen storage alloy and the alkaline electrolyte in the hydrogen storage alloy electrode is suppressed, and the alkali storage battery is heated at a high temperature. In order to further improve the storage characteristics, it is preferable to use at least one selected from lithium, sodium, and potassium as the alkali metal.
[0011]
Further, when to add the alkali metal acetate to the hydrogen-absorbing alloy electrode, if the amount of adding an alkali metal acetate is small, thoroughly, the hydrogen storage alloy and an alkaline electrolyte solution in the hydrogen absorbing alloy electrode from reacting It cannot be suppressed. On the other hand, if the amount of alkali metal acetate added is too large, the amount of hydrogen storage alloy in the hydrogen storage alloy electrode is relatively reduced, so the amount of charge per unit weight of the hydrogen storage alloy is increased, Self-discharge tends to proceed. For this reason, it is preferable that the weight of the metal acetate with respect to the total weight of the hydrogen storage alloy and the metal acetate is in the range of 0.05 to 10% by weight.
[0012]
【Example】
Hereinafter, the hydrogen storage alloy electrode and the alkaline storage battery according to the present invention will be specifically described with reference to examples, and in the alkaline storage battery in this example, self-discharge when stored at high temperature is suppressed, and at high temperature. It will be clarified with a comparative example that the storage characteristics of the are improved. In addition, the hydrogen storage alloy electrode and the alkaline storage battery in the present invention are not particularly limited to those shown in the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention.
[0013]
Example 1
In Example 1, lithium acetate powder was added at a ratio of 5 parts by weight to 95 parts by weight of hydrogen storage alloy powder having an average particle size of 50 μm represented by the composition formula MmNi 3.2 Co 1.0 Al 0.2 Mn 0.6. After mixing, 1.0 part by weight of polyethylene oxide as a binder was added to this mixture and a small amount of water was added, and these were mixed to prepare a paste.
[0014]
And this paste was uniformly apply | coated to both surfaces of the punching metal which carried out nickel plating, and after drying this, it rolled and produced the hydrogen storage alloy electrode. In this hydrogen storage alloy electrode, the weight of lithium acetate with respect to the total weight of the hydrogen storage alloy and lithium acetate is 5% by weight.
[0015]
Then, using the hydrogen storage alloy electrode prepared in this manner as a negative electrode, an alkaline storage battery having a cylindrical shape and a battery capacity of about 1 Ah as shown in FIG. 1 was prepared.
[0016]
Here, as the positive electrode, a sintered nickel electrode prepared by impregnating an aqueous nickel nitrate solution containing cobalt nitrate and zinc nitrate into a nickel sintered substrate having a porosity of 85% by a chemical impregnation method is used. An alkaline resistant nonwoven fabric was used for the separator, and a 6N aqueous potassium hydroxide solution was used for the alkaline electrolyte.
[0017]
And in producing the alkaline storage battery, as shown in FIG. 1, the separator 3 is interposed between the positive electrode 1 and the negative electrode 2 and wound in a spiral shape, and this is accommodated in the negative electrode can 4. The alkaline electrolyte is poured into the negative electrode can 4 and sealed, the positive electrode 1 is connected to the sealing lid 6 via the positive electrode lead 5, and the negative electrode 2 is connected to the negative electrode can 4 via the negative electrode lead 7. When the negative electrode can 4 and the sealing lid 6 are electrically insulated by the insulating packing 8 and the coil spring 10 is provided between the sealing lid 6 and the positive electrode external terminal 9, the internal pressure of the battery rises abnormally. The coil spring 10 was compressed so that the gas inside the battery was released to the atmosphere.
[0018]
(Example 2)
In this Example 2, in preparing the hydrogen storage alloy electrode, sodium acetate powder was added at a ratio of 5 parts by weight with respect to 95 parts by weight of the same hydrogen storage alloy powder as in Example 1, and other than the above, In the same manner as in Example 1, a hydrogen storage alloy electrode was produced, and an alkaline storage battery was produced using this hydrogen storage alloy electrode.
[0019]
Example 3
In this Example 3, in preparing the hydrogen storage alloy electrode, potassium acetate powder was added at a ratio of 5 parts by weight with respect to 95 parts by weight of the same hydrogen storage alloy powder as in Example 1, and other than that, In the same manner as in Example 1, a hydrogen storage alloy electrode was produced, and an alkaline storage battery was produced using this hydrogen storage alloy electrode.
[0020]
(Comparative Example 1)
In Comparative Example 1, the same hydrogen storage alloy powder as in Example 1 was used to produce the hydrogen storage alloy electrode, while lithium acetate powder was not added to the hydrogen storage alloy powder. In the same manner as in Example 1 above, a hydrogen storage alloy electrode was produced, and an alkaline storage battery was produced using this hydrogen storage alloy electrode.
[0021]
(Comparative Example 2)
In Comparative Example 2, in preparing the hydrogen storage alloy electrode, ytterbium acetate powder was added at a ratio of 5 parts by weight with respect to 95 parts by weight of the same hydrogen storage alloy powder as in Example 1, and other than that, In the same manner as in Example 1, a hydrogen storage alloy electrode was produced, and an alkaline storage battery was produced using this hydrogen storage alloy electrode.
[0022]
(Comparative Example 3)
In Comparative Example 3, as in the case of Comparative Example 1 described above, a hydrogen storage alloy electrode was produced by not adding lithium acetate powder to the hydrogen storage alloy powder.
[0023]
And in producing an alkaline storage battery using this hydrogen storage alloy electrode, the amount added to the hydrogen storage alloy powder in Example 2 above to the alkaline electrolyte composed of the above 6 N aqueous potassium hydroxide solution; An alkaline storage battery was produced in the same manner as in Example 1 except that an alkaline electrolyte in which the same amount of sodium acetate powder was dissolved was used.
[0024]
Next, the alkaline storage batteries of Examples 1 to 3 and Comparative Examples 1 to 3 prepared as described above were charged at a constant current of 100 mA for 16 hours in an atmosphere at 25 ° C., and then a constant current of 200 mA. Then, this was discharged to 1.0 V, and this was regarded as one cycle, and charging / discharging was performed 10 cycles, and the discharge capacity Q10 at the 10th cycle was measured.
[0025]
And after charging each alkaline storage battery having been charged and discharged for 10 cycles in a 25 ° C. atmosphere at a constant current of 100 mA for 16 hours, each alkaline storage battery was stored in a high temperature atmosphere at 50 ° C. for 2 weeks. It was. Thereafter, each alkaline storage battery is set to 25 ° C. and discharged to 1.0 V at a constant current of 200 mA, the discharge capacity Q11 at the 11th cycle is measured, and the 11th cycle relative to the discharge capacity Q10 at the 10th cycle is measured. The ratio [= (Q11 / Q10) × 100] of the discharge capacity Q11 was determined and this is shown in Table 1 below as the self-discharge characteristics.
[0026]
[Table 1]
Figure 0003863703
[0027]
As is apparent from the results, each of the alkaline storage batteries of Examples 1 to 3 using a hydrogen storage alloy electrode prepared by adding lithium acetate powder, sodium acetate powder, or potassium acetate powder to the hydrogen storage alloy powder was The alkaline storage battery of Comparative Example 1 using a hydrogen storage alloy electrode prepared without adding lithium acetate powder, sodium acetate powder or potassium acetate powder to the storage alloy powder, or acetic acid which is an acetate other than alkali metal in the hydrogen storage alloy powder Compared to the alkaline storage battery of Comparative Example 2 using a hydrogen storage alloy electrode prepared by adding ytterbium powder and the alkaline storage battery of Comparative Example 3 dissolved in an alkaline electrolyte without adding sodium acetate powder to the hydrogen storage alloy electrode The above self-discharge characteristics are high, and self-discharge is suppressed when stored at high temperatures. It was.
[0028]
In each of the alkaline storage batteries of Examples 1 to 3, a part of the alkali metal acetate added to the hydrogen storage alloy electrode is dissolved in the potassium hydroxide aqueous solution of the alkaline electrolyte. Most of the acetate remained on the hydrogen storage alloy electrode.
[0029]
(Examples 2 · 1 to 2 · 11)
In Examples 2 and 1 to 2 and 11, when producing a hydrogen storage alloy electrode, sodium acetate powder was added to the hydrogen storage alloy powder in the same manner as in Example 2 above. The ratio of the hydrogen storage alloy powder and sodium acetate powder of Example 2 was different from that of Example 2, and the weight ratio of the hydrogen storage alloy powder and sodium acetate powder was 99.97: 0. 03, 99.96: 0.04 in Examples 2 and 2, 99.95: 0.05 in Examples 2 and 3, 99.9: 0.1 in Examples 2 and 4, and 29.5 in Examples 2 and 5 99: 1, 97: 3 in Examples 2 and 6, 93: 7 in Examples 2 and 7, 91: 9 in Examples 2 and 8, 90:10 in Examples 2 and 9, and in Examples 2 and 10 88:12, 86:14 in Examples 2 and 11, otherwise the above example If the in the same, to prepare each of the hydrogen absorbing alloy electrode, also taken to fabricate each of alkaline storage batteries using the hydrogen absorbing alloy electrode prepared in this way the negative electrode. In addition, in the hydrogen storage alloy electrodes in the alkaline storage batteries of Examples 2 to 1 and 11, the weight ratio W (% by weight) of sodium acetate to the combined weight of the hydrogen storage alloy and sodium acetate is shown in Table 2 below. It was shown to.
[0030]
And about each alkaline storage battery of Example 2 * 1-2 * 11 produced in this way, the self-discharge characteristic is calculated | required like said case, and together with the alkaline storage battery of said Example 2, The results are shown in Table 2 below.
[0031]
[Table 2]
Figure 0003863703
[0032]
As is apparent from this result, when sodium acetate is added to the hydrogen storage alloy electrode, the weight ratio W of sodium acetate to the combined weight of the hydrogen storage alloy and sodium acetate is in the range of 0.05 to 10% by weight. Each of the alkaline storage batteries of Examples 2, 2, 3 to 2 and 9 using the hydrogen storage alloy electrode was compared with the alkaline storage battery in which the weight ratio W was outside the range of 0.05 to 10% by weight. The value of the self-discharge characteristic is high, and the self-discharge when stored at a high temperature is further suppressed.
[0033]
【The invention's effect】
As described above in detail, in the present invention, by adding an alkali metal acetate to the hydrogen-absorbing alloy electrode, as used in this way the hydrogen absorbing alloy electrode alkali metal acetate is added to the negative electrode of an alkaline storage battery Therefore, the alkali metal acetate added to the hydrogen storage alloy electrode suppresses the reaction between the hydrogen storage alloy and the alkaline electrolyte in the hydrogen storage alloy electrode, and even when this alkaline storage battery is stored at a high temperature. The self-discharge reaction is prevented from occurring, and the high temperature storage characteristics of the alkaline storage battery are improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of alkaline storage batteries produced in Examples and Comparative Examples of the present invention.
[Explanation of symbols]
1 Positive electrode 2 Negative electrode (hydrogen storage alloy electrode)

Claims (4)

水素吸蔵合金を用いた水素吸蔵合金電極において、アルカリ金属の酢酸塩を添加させたことを特徴とする水素吸蔵合金電極。A hydrogen storage alloy electrode using a hydrogen storage alloy, wherein an alkali metal acetate is added. 請求項1に記載した水素吸蔵合金電極において、上記のアルカリ金属がリチウム、ナトリウム、カリウムから選択される1種以上であることを特徴とする水素吸蔵合金電極。  2. The hydrogen storage alloy electrode according to claim 1, wherein the alkali metal is at least one selected from lithium, sodium, and potassium. 請求項1又は2に記載した水素吸蔵合金電極において、水素吸蔵合金と金属の酢酸塩とを合わせた重量に対する金属の酢酸塩の重量が0.05〜10重量%であることを特徴とする水素吸蔵合金電極。The hydrogen storage alloy electrode according to claim 1 or 2, wherein the weight of the metal acetate is 0.05 to 10% by weight with respect to the total weight of the hydrogen storage alloy and the metal acetate. Occlusion alloy electrode. 請求項1〜3の何れか1項に記載した水素吸蔵合金電極を負極に用いたことを特徴とするアルカリ蓄電池。  An alkaline storage battery using the hydrogen storage alloy electrode according to any one of claims 1 to 3 as a negative electrode.
JP2000187192A 2000-06-22 2000-06-22 Hydrogen storage alloy electrode and alkaline storage battery Expired - Fee Related JP3863703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187192A JP3863703B2 (en) 2000-06-22 2000-06-22 Hydrogen storage alloy electrode and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187192A JP3863703B2 (en) 2000-06-22 2000-06-22 Hydrogen storage alloy electrode and alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2002008663A JP2002008663A (en) 2002-01-11
JP3863703B2 true JP3863703B2 (en) 2006-12-27

Family

ID=18687212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187192A Expired - Fee Related JP3863703B2 (en) 2000-06-22 2000-06-22 Hydrogen storage alloy electrode and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3863703B2 (en)

Also Published As

Publication number Publication date
JP2002008663A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
EP2234189A1 (en) Alkaline storage battery system with partial charge-discharge
JP2003249222A (en) Nickel/hydrogen storage battery
JP3744716B2 (en) Sealed alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2000067910A (en) Sealed alkaline zing storage battery
JP3863703B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP2004281289A (en) Alkaline storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP4215407B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP3098948B2 (en) Hydrogen storage alloy-containing composition and electrode using the same
JP4236399B2 (en) Alkaline storage battery
JP3481095B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3568337B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP3744734B2 (en) Nickel / hydrogen storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH0613077A (en) Hydrogen storage electrode
JP3789702B2 (en) Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery
JP3547980B2 (en) Nickel-hydrogen storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees