JP3639494B2 - Nickel-hydrogen storage battery - Google Patents

Nickel-hydrogen storage battery Download PDF

Info

Publication number
JP3639494B2
JP3639494B2 JP2000078746A JP2000078746A JP3639494B2 JP 3639494 B2 JP3639494 B2 JP 3639494B2 JP 2000078746 A JP2000078746 A JP 2000078746A JP 2000078746 A JP2000078746 A JP 2000078746A JP 3639494 B2 JP3639494 B2 JP 3639494B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
nickel
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000078746A
Other languages
Japanese (ja)
Other versions
JP2001266860A (en
Inventor
幹朗 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000078746A priority Critical patent/JP3639494B2/en
Publication of JP2001266860A publication Critical patent/JP2001266860A/en
Application granted granted Critical
Publication of JP3639494B2 publication Critical patent/JP3639494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学的に水素の吸蔵・放出を可逆的に行うことができる水素吸蔵合金からなる負極と、主活物質として水酸化ニッケルを含有する正極と、アルカリ電解液とを備えたニッケル−水素蓄電池に関するものである。
【0002】
【従来の技術】
アルカリ蓄電池は各種の電源として広く使われており、小型電池は各種の携帯用の電子、通信機器に、大型電池は産業用にそれぞれ使われている。この種のアルカリ蓄電池を高容量とするために、水素吸蔵合金電極を用いたニッケル−水素蓄電池が実用化されるようになった。このニッケル−水素蓄電池の正極にはニツケル電極が用いられ、負極には水素吸蔵合金電極が用いられている。このニッケル−水素蓄電池の負極に用いられる水素吸蔵合金としては、Ti−Ni系合金、LaまたはMm(ミッシュメタル)−Ni系合金等が用いられる。
【0003】
上述したようなニッケル−水素蓄電池は高容量であるとともに長寿命にする必要があり、長寿命とするためには水素吸蔵合金の耐食性を向上させる必要がある。そこで、水素吸蔵合金負極にイットリウムあるいはイットリウム化合物を含有させることにより、水素吸蔵合金の酸化による劣化を抑制することが、特開平6−215765号公報にて提案されるようになった。
この特開平6−215765号公報にて提案された水素吸蔵合金負極にあっては、イットリウムあるいはイットリウム化合物の添加効果を充分に発揮させるためには、イットリウムあるいはイットリウム化合物の添加量(水素吸蔵合金100質量部に対して0.1質量部以上)を多くする必要があり、イットリウムあるいはイットリウム化合物は非常に高価であるため、商業性が低いという問題があった。
【0004】
これに対して、イットリウム、イッテルビウムなどの希土類元素の合金表面、負極内部、負極外表面への添加量を少なくするために、アルカリ電解液中にイットリウムイオンと他の希土類元素の少なくとも一種をイオンとして含有させることが、特開平10−106620公報にて提案されるようになった。これにより、希土類元素の少なくとも一種のイオンが水素吸蔵合金負極を構成する粒子表面に均一に分散されて表面に吸着し、負極表面を被覆することで負極の酸化を抑制して、充放電サイクル特性の向上効果を得ることができるというものである。
【0005】
【発明が解決しようとする課題】
ところで、この種の水素吸蔵合金負極を用いたニッケル−水素電池においては、高温(45℃以上)の雰囲気で使用されることがあるため、高温雰囲気での充放電サイクルを繰り返しても、あるいは高温雰囲気で連続充電を行っても、水素吸蔵合金負極が酸化されないようにする必要がある。
【0006】
しかしながら、一般にニッケル−水素電池に用いられるアルカリ電解液の水素イオン濃度(pH)は13程度であって、この程度のpHではイットリウム、イッテルビウムなどの希土類元素は不溶もしくは難溶であるため、上記特開平10−106620公報にて提案されるように添加しても、アルカリ電解液中には少量の希土類元素しか溶解することができず、負極表面をイットリウム、イッテルビウムなどの希土類元素で十分に被覆することが困難であった。このため、イットリウム、イッテルビウムなどの希土類元素の添加効果を十分に発揮することができず、特に、高温雰囲気で使用される場合には、負極の酸化を抑制することができず、充放電サイクル特性が向上しないという問題を生じた。
【0007】
また、水素吸蔵合金にイットリウムおよびイッテルビウムからなる群から選択された少なくとも1つの元素の化合物を0.2〜1.0質量%添加して、低温時の電池特性を向上させることが特開平10−21908号公報に提案されているが、この場合においても、イットリウムおよびイッテルビウムからなる元素の添加量が多くなるため、非常に高価になって商業性が低いとともに、高温雰囲気で使用する場合には、負極の酸化を抑制することができず、充放電サイクル特性が向上しないという問題を生じた。
【0008】
そこで、本発明は上記問題点を解消するためになされたものであって、イットリウムあるいはイッテルビウムの水素吸蔵合金負極への添加量が少量であっても、高温雰囲気で使用した場合でも、酸化抑制効果に優れ、かつサイクル特性に優れたアルカリ蓄電池を提供することを目的とするものである。
【0009】
【課題を解決するための手段およびその作用・効果】
上記目的を達成するため、本発明のアルカリ蓄電池は、表面にイットリウムあるいはイッテルビウムの金属、金属酸化物あるいは金属水酸化物から選択される1種以上の粉末粒子と炭素粉末とを備えた負極と、主活物質として水酸化ニッケルを含有する正極と、アルカリ電解液とを備えるようにしている。
【0010】
炭素粉末は非常に大きな比表面積を有するため、イットリウムあるいはイッテルビウムの金属、金属酸化物あるいは金属水酸化物から選択される1種以上の粉末粒子と炭素粉末とを負極表面に備えるようにすると、非常に大きな比表面積を有する炭素粉末の表面にイットリウムあるいはイッテルビウムの化合物(これらの金属の酸化物あるいは水酸化物)が吸着して、酸素ガス吸収の触媒として作用するため、少量の添加量であっても酸化抑制効果が得られるようになる。
【0011】
この場合、炭素粉末としては比表面積が大きい粉末であれば何でもよいが、活性炭、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック等を用いるのが好ましい。また、イットリウムあるいはイッテルビウムの金属、金属酸化物あるいは金属水酸化物から選択される粉末粒子の添加量は、少なすぎると酸化抑制効果を発揮することができず、多すぎると水素吸蔵合金負極の表面を覆ってしまうことにより、円滑な酸素ガス吸収反応が阻害されるため、水素吸蔵合金の質量に対して1〜10000ppmであることが望ましい。
【0012】
また、イットリウムあるいはイッテルビウムの金属、金属酸化物あるいは金属水酸化物から選択される粉末粒子の平均粒径が大きくなるとサイクル寿命が低下する傾向があったため、その平均粒径(レーザー法による)は5μm以下とすることが望ましい。さらに、イットリウムあるいはイッテルビウムの金属、金属酸化物あるいは金属水酸化物から選択される粉末粒子の比表面積が小さくなるとサイクル寿命が低下する傾向があったため、その比表面積(BET窒素吸着法による)は15m2/g以上とすることが望ましい。
【0013】
【発明の実施の形態】
以下に、本発明のニッケル−水素蓄電池の実施の形態を説明する。
1.水素吸蔵合金の作製
MmNi3.4Co0.8Al0.2Mn0.6(なお、Mmはミッシュメタルである)となるように市販の各金属元素(Mm,Ni,Co,Al,Mn)を秤量して混合する。このものを高周波溶解炉に投入して溶解させた後、鋳型に流し込み、冷却してMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金の塊(インゴット)を作製した。この水素吸蔵合金の塊を粗粉砕した後、不活性ガス雰囲気中で平均粒径が50μm程度になるまで機械的に粉砕して、水素吸蔵合金粉末を作製した。
【0014】
2.水素吸蔵合金塗着極板の作製
上述のようにして作製された水素吸蔵合金粉末99質量%に、結着剤としてポリエチレンオキサイド(PEO)粉末を水素吸蔵合金粉末質量に対して1%と、適量の水を加えて混練して、水素吸蔵合金スラリー▲1▼を作製した。この水素吸蔵合金スラリー▲1▼を、表面にニッケルメッキを施したパンチングメタル等からなる金属芯体の両面に塗着した後、乾燥させ、圧延することにより、水素吸蔵合金塗着極板z1を作製した。なお、水素吸蔵合金スラリー▲1▼の塗着量は圧延後の水素吸蔵合金密度が5g/cm3となるように調整した。
【0015】
一方、上述のようにして作製された水素吸蔵合金粉末99質量%と酸化イットリウム粉末0.5質量%との混合粉末99質量%に、結着剤としてポリエチレンオキサイド(PEO)粉末を水素吸蔵合金粉末質量に対して1質量%と、適量の水を加えて混練して、水素吸蔵合金スラリー▲2▼を作製した。この水素吸蔵合金スラリー▲2▼を、表面にニッケルメッキを施したパンチングメタル等からなる金属芯体の両面に塗着した後、乾燥させ、圧延することにより、水素吸蔵合金塗着極板w1を作製した。なお、水素吸蔵合金スラリー▲2▼の塗着量は圧延後の水素吸蔵合金密度が5g/cm3となるように調整した。
【0016】
3.分散液の作製
ついで、レーザー法による平均粒径が3μmで、BET窒素吸着法による比表面積が20m2/gの酸化イットリウム粉末を用意した後、この酸化イットリウム粉末5質量%と、アセチレンブラック粉末5質量%とを、90質量%のポリビニルアルコール(PVA)の4質量%水溶液に添加混合して分散液αを作製した。
また、同様に、レーザー法による平均粒径が3μmで、BET窒素吸着法による比表面積が20m2/gの酸化イッテルビウム粉末を用意した後、この酸化イッテルビウム粉末5質量%と、アセチレンブラック粉末5質量%とを、90質量%のポリビニルアルコール(PVA)の4質量%水溶液に添加混合して分散液βを作製した。
【0017】
また、アセチレンブラック粉末5質量%を95質量%のポリビニルアルコール(PVA)の4質量%水溶液に添加混合して分散液γを作製した。
さらに、レーザー法による平均粒径が3μmで、BET窒素吸着法による比表面積が20m2/gの酸化イッテルビウム粉末を用意した後、この酸化イッテルビウム粉末5質量%を95質量%のポリビニルアルコール(PVA)の4質量%水溶液に添加混合して分散液δを作製した。
【0018】
4.水素吸蔵合金電極の作製
ついで、上述のようにして作製した分散液αをローラー転写による方法で、上述のように作製した水素吸蔵合金塗着極板z1の両面に塗布し、乾燥させた後、圧延を行って所定の寸法に切断して、被覆材を塗着した水素吸蔵合金電極a〜jを作製した。なお、分散液αの塗布量は水素吸蔵合金質量に対して酸化イットリウムが0.5〜20000ppmとなるように調整して塗布した。ここで、水素吸蔵合金質量に対して酸化イットリウムが0.5ppmとなるように塗布されたものを水素吸蔵合金電極aとした。
【0019】
同様に、酸化イットリウムが1ppmとなるように塗布されたものを水素吸蔵合金電極bとし、5ppmとなるように塗布されたものを水素吸蔵合金電極cとし、10ppmとなるように塗布されたものを水素吸蔵合金電極dとし、100ppmとなるように塗布されたものを水素吸蔵合金電極eとし、500ppmとなるように塗布されたものを水素吸蔵合金電極fとし、1000ppmとなるように塗布されたものを水素吸蔵合金電極gとし、5000ppmとなるように塗布されたものを水素吸蔵合金電極hとし、10000ppmとなるように塗布されたものを水素吸蔵合金電極iとし、20000ppmとなるように塗布されたものを水素吸蔵合金電極jとした。
【0020】
また、上述のようにして作製した分散液βをローラー転写による方法で、上述のように作製した水素吸蔵合金負極板z1の両面に、水素吸蔵合金質量に対して酸化イッテルビウムが5000ppmとなるように塗布し、乾燥させた後、圧延を行い、所定の寸法に切断して、被覆材を塗着した水素吸蔵合金電極kを作製した。
また、上述のようにして作製した分散液γをローラー転写による方法で、上述のように作製した水素吸蔵合金負極板z1の両面に、水素吸蔵合金質量に対してアセチレンブラックが0.5質量%となるように塗布し、乾燥させた後、圧延を行い、所定の寸法に切断して、被覆材を塗着した水素吸蔵合金電極vを作製した。
【0021】
また、上述のようにして作製した水素吸蔵合金塗着極板w1を所定の寸法に切断して、水素吸蔵合金電極wを作製した。
また、上述のようにして作製した分散液δをローラー転写による方法で、上述のように作製した水素吸蔵合金負極板z1の両面に、水素吸蔵合金質量に対して酸化イットリウムが0.5質量%となるように塗布し、乾燥させた後、圧延を行い、所定の寸法に切断して、被覆材を塗着した水素吸蔵合金電極xを作製した。
さらに、上述のようにして作製した水素吸蔵合金塗着極板z1を所定の寸法に切断して、水素吸蔵合金電極zを作製した。
【0022】
3.ニッケル正極の作製
共沈成分として亜鉛を2.5質量%とコバルトを1.0質量%含有する水酸化ニッケル粉末を硫酸コバルト水溶液に投入し、撹拌しながら1モルの水酸化ナトリウム水溶液を徐々に滴下し、反応中のpHを11に調整した後、撹拌を続けて反応させた。この時のpHの監視は自動温度補償付きガラス電極(pHメータ)にて行った。次いで、沈殿物をろ別し、水洗し、真空乾燥して水酸化ニッケル粒子の表面が5質量%の水酸化コバルトで被覆された粉末を得た。
【0023】
ついで、得られた粉末をビーカー中で撹拌しながら、これに25質量%の水酸化ナトリウム水溶液を質量比が1:10となるように加えて含浸させ、8時間撹拌しながら85℃の温度雰囲気で加熱処理することによるアルカリ熱処理を施した後、水洗して、65℃で乾燥した。このアルカリ熱処理により水酸化コバルトの一部が高次化されると共に、ナトリウムが含有される。これにより、水酸化コバルト被覆層中に1質量%のナトリウムを含有する複合体粒子が得られた。
【0024】
ついで、上述のようにして得られた複合体粒子を95質量%と酸化亜鉛3質量%と水酸化コバルト2質量%とからなる混合粉末に、結着剤としてのヒドロキシプロピルセルロースの0.2質量%水溶液を混合粉末の質量に対して50質量%を添加、混合して、正極活物質スラリーを作製した。この後、この正極活物質スラリーをニッケル発泡体(例えば、面密度(目付)が約600g/m2で、多孔度が95%で、厚みが約2mmのもの)からなる発泡ニッケル基板の空孔内に充填し、乾燥させ、圧延を行った後、所定の寸法に切断して、非焼結式ニッケル正極板を得た。なお、正極活物質スラリーの充填量は、圧延後の活物質密度が約2.9g/cm3−voidとなるように調整した。
【0025】
4.ニッケル−水素蓄電池の作製
上述のように作製した各水素吸蔵合金負極板a〜k、v,w,x,zと上述のように作製した非焼結式ニッケル正極板にそれぞれ集電タブを取り付けた後、これらの各極板を厚みが0.2mmのポリプロピレン製不織布からなるセパレータを介して渦巻状に巻回して渦巻状電極群をそれぞれ作製した。この後、各渦巻状極板群をそれぞれAAサイズの有底円筒状の金属外装缶内に挿入し、負極集電タブを外装缶の内底面に溶接するとともに、正極集電タブを封口体の底面に溶接した。ついで、各金属外装缶内にそれぞれアルカリ電解液(LiOHとNaOHを含有した8NのKOH水溶液)を注入した後、封口体で密封して、公称容量が1300mAhのニッケル−水素蓄電池をそれぞれ作製した。
【0026】
なお、水素吸蔵合金負極板aを用いたニッケル−水素蓄電池を電池Aとし、水素吸蔵合金負極板bを用いたニッケル−水素蓄電池を電池Bとし、水素吸蔵合金負極板cを用いたニッケル−水素蓄電池を電池Cとし、水素吸蔵合金負極板dを用いたニッケル−水素蓄電池を電池Dとし、水素吸蔵合金負極板eを用いたニッケル−水素蓄電池を電池Eとし、水素吸蔵合金負極板fを用いたニッケル−水素蓄電池を電池Fとし、水素吸蔵合金負極板gを用いたニッケル−水素蓄電池を電池Gとし、水素吸蔵合金負極板hを用いたニッケル−水素蓄電池を電池Hとし、水素吸蔵合金負極板iを用いたニッケル−水素蓄電池を電池Iとし、水素吸蔵合金負極板jを用いたニッケル−水素蓄電池を電池Jとし、水素吸蔵合金負極板kを用いたニッケル−水素蓄電池を電池Kとした。
【0027】
また、水素吸蔵合金負極板vを用いたニッケル−水素蓄電池を電池Vとし、水素吸蔵合金負極板wを用いたニッケル−水素蓄電池を電池Wとし、水素吸蔵合金負極板xを用いたニッケル−水素蓄電池を電池Xとし、水素吸蔵合金負極板zを用いたニッケル−水素蓄電池を電池Zとした。
また、水素吸蔵合金負極板zを用いて、上述と同様に渦巻状電極群を作製した後、上述と同様にAAサイズの有底円筒状の金属外装缶内に挿入し、負極集電タブを外装缶の内底面に溶接するとともに、正極集電タブを封口体の底面に溶接した。ついで、酸化イットリウムを室温(25℃)で飽和させたアルカリ電解液を注入した後、封口体で密封して、公称容量が1300mAhのニッケル−水素蓄電池を作製した。このニッケル−水素蓄電池を電池Yとした。
【0028】
5.電池試験
(1)活性化
上述のように作製した各電池A〜KおよびV〜Zを、室温(25℃)で130mA(0.1C)の充電々流で16時間充電した後、1時間休止させる。その後、260mA(0.2C)の放電々流で終止電圧が1.0Vになるまで放電させた後、1時間休止させる。この充放電を室温(25℃)で5サイクル繰り返して、各ニッケル−水素蓄電池A〜KおよびV〜Zを活性化した。
【0029】
(2)高温連続充電特性試験
ついで、上述のように活性化した各電池A〜KおよびV〜Zを、室温(25℃)で130mA(0.1C)の充電々流で16時間充電し、室温(25℃)で1時間休止させた後、室温(25℃)で1300mA(1.0C)の放電々流で終止電圧が1.0Vになるまで放電させて、放電時間から室温(25℃)での放電容量を求めて、初期電池容量とした。
【0030】
次に、上述のように初期電池容量を測定した後の各電池A〜KおよびV〜Zを、60℃の恒温槽内に配置し、260mA(0.2C)の充電々流で連続充電を開始した。連続充電を開始してから、2日間隔(1日おき)に恒温槽から各電池A〜KおよびV〜Zを取り出して、室温(25℃)にて3時間放置した後、室温(25℃)で1300mA(1C)の放電々流で終止電圧が1.0Vになるまで放電させて、このときの各電池A〜KおよびV〜Zの放電容量を求めた。
ついで、予め求めた初期電池容量との比率を算出し、その割合が30%以下になった時点で電池寿命として求めると、下記の表1に示すような結果となった。なお、表1の添加量(PPM)、平均粒径(μm)および比表面積(m2/g)は、酸化イットリウムまたは酸化イッテルビウムの添加量(PPM)、平均粒径(μm)および比表面積(m2/g)をそれぞれ示している。
【0031】
【表1】

Figure 0003639494
【0032】
上記表1から明らかなように、アセチレンブラック(炭素粉末)も酸化イットリウムまたは酸化イッテルビウムも無添加の負極板を用いた電池Zの電池寿命が68日で、アセチレンブラック(炭素粉末)のみを負極板の表面に塗布した負極板を用いた電池Vの電池寿命が70日で、酸化イットリウムを負極板に添加した負極板を用いた電池Wの電池寿命が72日で、酸化イットリウムのみを負極板の表面に塗布した負極板を用いた電池Xの電池寿命が74日で、無添加の負極板を用い電解液中に酸化イットリウムを添加した電池Yの電池寿命が72日であることからすると、アセチレンブラック(炭素粉末)のみを添加しても、酸化イットリウムまたは酸化イッテルビウムのみを添加しても、電池寿命がそれほど向上しないことが分かる。
【0033】
これに対して、アセチレンブラック(炭素粉末)と酸化イットリウムまたは酸化イッテルビウムとを同時に負極板の表面に塗布した負極板を用いた電池A〜Kにあっては、電池寿命が80日以上に向上していることが分かる。これは、同時に添加された非常に大きな比表面積を有するアセチレンブラックの表面に酸化イットリウムまたは酸化イッテルビウムが吸着して、酸素ガス吸収の触媒として作用し、結果として、水素吸蔵合金の酸化が抑制されて電池寿命が向上したと考えられる。
【0034】
また、酸化イットリウムまたは酸化イッテルビウムの添加量を1〜10000ppmに制限した電池B〜Iおよび電池Kにあっては、90日〜120日となり、電池寿命が飛躍的に向上していることが分かる。これは、酸化イットリウムまたは酸化イッテルビウムの添加量が1ppm未満であると、添加量が少なすぎて、添加効果を発揮させることができないためである。
逆に、添加量が10000ppmを越えると、酸化イットリウムまたは酸化イッテルビウムが水素吸蔵合金の表面を覆ってしまうことにより、円滑な酸素ガス吸収反応が阻害されるためと考えられる。
なお、表1においては、酸化イッテルビウムの添加量が5000ppmの場合しか示されていないが、酸化イッテルビウムの添加量を変化させても酸化イットリウムの場合とほぼ同様な結果が得られた。
【0035】
6.酸化イットリウムの物性値の検討
レーザー法による平均粒径が10μmで、BET窒素吸着法による比表面積が18m2/gの酸化イットリウム粉末を用意した後、この酸化イットリウム粉末5質量%と、アセチレンブラック粉末5質量%とを、90質量%のポリビニルアルコール(PVA)の4質量%水溶液に添加混合して分散液を作製した後、ローラー転写による方法で、上述のように作製した水素吸蔵合金塗着極板z1の両面に塗布し、乾燥させた後、圧延を行って所定の寸法に切断して、被覆材を塗着した水素吸蔵合金電極lを作製した。
【0036】
同様に、平均粒径が5μmで、比表面積が19m2/gの酸化イットリウム粉末を用いて水素吸蔵合金電極mを作製し、平均粒径が3μmで、比表面積が10m2/gの酸化イットリウム粉末を用いて水素吸蔵合金電極nを作製し、平均粒径が3μmで、比表面積が15m2/gの酸化イットリウム粉末を用いて水素吸蔵合金電極oを作製した。なお、これらの分散液の塗布量は水素吸蔵合金質量に対して酸化イットリウムが5000ppmとなるように調整して塗布した。
【0037】
ついで、各水素吸蔵合金負極板l〜oと上述のように作製した非焼結式ニッケル正極板にそれぞれ集電タブを取り付けた後、これらの各極板を厚みが0.2mmのポリプロピレン製不織布からなるセパレータを介して渦巻状に巻回して渦巻状電極群をそれぞれ作製した。この後、各渦巻状極板群をそれぞれAAサイズの有底円筒状の金属外装缶内に挿入し、各金属外装缶内にそれぞれアルカリ電解液(LiOHとNaOHを含有した8NのKOH水溶液)を注入した後、封口体で密封して、公称容量が1300mAhのニッケル−水素蓄電池L〜Oをそれぞれ作製した。
ついで、これらの各電池L〜Oを用いて、上述と同様に活性化した後、上述と同様な連続充電を行って電池寿命を測定すると、下記の表2に示すような結果となった。なお、表2の添加量(PPM)、平均粒径(μm)および比表面積(m2/g)は、酸化イットリウムの添加量(PPM)、平均粒径(μm)および比表面積(m2/g)をそれぞれ示している。また、表2には上述した電池Hについても併せて示している。
【0038】
【表2】
Figure 0003639494
【0039】
上記表2より明らかなように、酸化イットリウムの平均粒径が5μmを越えると電池寿命が短くなる傾向が認められ、また、酸化イットリウムの比表面積が15m2/gより小さくなると電池寿命が短くなる傾向が認められる。このことから、酸化イットリウムの平均粒径は5μm以下であることが望ましく、酸化イットリウムの比表面積は15m2/g以上であることが望ましいということができる。なお、このことは、酸化イッテルビウムについても同様である。
【0040】
上述したように、本発明においては、アセチレンブラック(炭素粉末)と酸化イットリウムまたは酸化イッテルビウムとを同時に負極板の表面に塗布しているので、非常に大きな比表面積を有するアセチレンブラックの表面に酸化イットリウムまたは酸化イッテルビウムが吸着する。そして、アセチレンブラックの表面に吸着した酸化イットリウムまたは酸化イッテルビウムは酸素ガス吸収の触媒として作用するため、水素吸蔵合金の酸化が抑制され、電池寿命が向上する。
【0041】
なお、上述した実施の形態においては、炭素粉末としてアセチレンブラックを用いる例について説明したが、炭素粉末としては比表面積が大きい粉末であれば何でもよく、活性炭、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック等を用いるのが好ましい。
【0042】
また、上述した実施の形態においては、水素吸蔵合金としてMmNi3.4Co0.8Al0.2Mn0.6を用いる例について説明したが、水素吸蔵合金としてはTi−Ni系あるいはLa(もしくはMm)−Ni系の多元合金から適宜選択して使用することができる。また、上述した実施の形態においては、機械的に粉砕した水素吸蔵合金を用いる例について説明したが、アトマイズ法により作製した水素吸蔵合金を用いてもよい。この場合、アトマイズ法により作製した水素吸蔵合金は比表面積が小さいため、本発明を適用するとさらに効果的である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode made of a hydrogen storage alloy capable of reversibly storing and releasing hydrogen electrochemically, a positive electrode containing nickel hydroxide as a main active material, and a nickel having an alkaline electrolyte. -Relating to hydrogen storage batteries.
[0002]
[Prior art]
Alkaline storage batteries are widely used as various power sources, small batteries are used for various portable electronic and communication devices, and large batteries are used for industrial purposes. In order to increase the capacity of this type of alkaline storage battery, nickel-hydrogen storage batteries using hydrogen storage alloy electrodes have come into practical use. A nickel electrode is used for the positive electrode of the nickel-hydrogen storage battery, and a hydrogen storage alloy electrode is used for the negative electrode. As the hydrogen storage alloy used for the negative electrode of the nickel-hydrogen storage battery, Ti—Ni alloy, La or Mm (Misch metal) —Ni alloy, or the like is used.
[0003]
The nickel-hydrogen storage battery as described above has a high capacity and needs to have a long life, and in order to have a long life, it is necessary to improve the corrosion resistance of the hydrogen storage alloy. Therefore, it has been proposed in Japanese Patent Application Laid-Open No. 6-215765 to suppress deterioration due to oxidation of the hydrogen storage alloy by containing yttrium or an yttrium compound in the negative electrode of the hydrogen storage alloy.
In the hydrogen storage alloy negative electrode proposed in Japanese Patent Application Laid-Open No. 6-215765, the addition amount of yttrium or an yttrium compound (hydrogen storage alloy 100) is required in order to fully exhibit the effect of adding yttrium or an yttrium compound. It is necessary to increase 0.1 parts by mass or more with respect to parts by mass, and yttrium or an yttrium compound is very expensive.
[0004]
On the other hand, in order to reduce the addition amount of rare earth elements such as yttrium and ytterbium to the alloy surface, the inside of the negative electrode, and the outer surface of the negative electrode, at least one of yttrium ions and other rare earth elements is used as ions in the alkaline electrolyte. Inclusion has been proposed in JP-A-10-106620. As a result, at least one kind of ions of rare earth elements are uniformly dispersed on the surface of the particles constituting the hydrogen storage alloy negative electrode and adsorbed on the surface, and the negative electrode surface is coated to suppress oxidation of the negative electrode, and charge / discharge cycle characteristics The improvement effect can be obtained.
[0005]
[Problems to be solved by the invention]
By the way, in a nickel-hydrogen battery using this type of hydrogen storage alloy negative electrode, it may be used in an atmosphere of high temperature (45 ° C. or higher). It is necessary to prevent the hydrogen storage alloy negative electrode from being oxidized even if continuous charging is performed in an atmosphere.
[0006]
However, in general, the hydrogen ion concentration (pH) of an alkaline electrolyte used in a nickel-hydrogen battery is about 13, and rare earth elements such as yttrium and ytterbium are insoluble or sparingly soluble at this pH. Even if added as proposed in Kaihei 10-106620, only a small amount of rare earth elements can be dissolved in the alkaline electrolyte, and the negative electrode surface is sufficiently covered with rare earth elements such as yttrium and ytterbium. It was difficult. For this reason, the effect of adding rare earth elements such as yttrium and ytterbium cannot be sufficiently exerted, and in particular, when used in a high temperature atmosphere, the oxidation of the negative electrode cannot be suppressed, and charge / discharge cycle characteristics. Caused the problem of not improving.
[0007]
It is also possible to improve the battery characteristics at low temperature by adding 0.2 to 1.0% by mass of a compound of at least one element selected from the group consisting of yttrium and ytterbium to the hydrogen storage alloy. In this case, the amount of elements consisting of yttrium and ytterbium is increased, so that it becomes very expensive and low in commerciality, and when used in a high-temperature atmosphere, There was a problem that the oxidation of the negative electrode could not be suppressed and the charge / discharge cycle characteristics were not improved.
[0008]
Therefore, the present invention has been made to solve the above problems, and even if the amount of yttrium or ytterbium added to the hydrogen storage alloy negative electrode is small, even when used in a high-temperature atmosphere, the effect of suppressing oxidation. It is an object of the present invention to provide an alkaline storage battery that is excellent in performance and cycle characteristics.
[0009]
[Means for solving the problems and their functions and effects]
In order to achieve the above object, the alkaline storage battery of the present invention comprises a negative electrode provided on the surface with one or more powder particles selected from yttrium or ytterbium metal, metal oxide or metal hydroxide, and carbon powder, A positive electrode containing nickel hydroxide as a main active material and an alkaline electrolyte are provided.
[0010]
Since carbon powder has a very large specific surface area, it is very difficult to provide one or more powder particles selected from yttrium or ytterbium metal, metal oxide or metal hydroxide and carbon powder on the negative electrode surface. Since yttrium or ytterbium compounds (oxides or hydroxides of these metals) are adsorbed on the surface of carbon powder having a large specific surface area and act as a catalyst for oxygen gas absorption, a small amount is added. As a result, an oxidation inhibiting effect can be obtained.
[0011]
In this case, any carbon powder may be used as long as it has a large specific surface area, but activated carbon, graphite, acetylene black, carbon black, ketjen black, or the like is preferably used. Further, if the amount of powder particles selected from yttrium or ytterbium metal, metal oxide or metal hydroxide is too small, the effect of inhibiting oxidation cannot be exhibited, and if too large, the surface of the hydrogen storage alloy negative electrode As a result, the smooth oxygen gas absorption reaction is hindered. Therefore, the content is preferably 1 to 10,000 ppm with respect to the mass of the hydrogen storage alloy.
[0012]
In addition, since the cycle life tends to decrease as the average particle size of powder particles selected from yttrium or ytterbium metal, metal oxide or metal hydroxide increases, the average particle size (by the laser method) is 5 μm. The following is desirable. Furthermore, since the cycle life tends to decrease when the specific surface area of the powder particles selected from yttrium or ytterbium metal, metal oxide or metal hydroxide is reduced, the specific surface area (by BET nitrogen adsorption method) is 15 m. 2 / g or more is desirable.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the nickel-hydrogen storage battery of the present invention will be described below.
1. Production of Hydrogen Storage Alloy Each commercially available metal element (Mm, Ni, Co, Al, Mn) is weighed and mixed so as to be MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 (Mm is Misch metal). This was put into a high frequency melting furnace and melted, then poured into a mold and cooled to prepare a hydrogen storage alloy lump (ingot) composed of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 . This lump of hydrogen storage alloy was coarsely pulverized and then mechanically pulverized in an inert gas atmosphere until the average particle size became about 50 μm to prepare a hydrogen storage alloy powder.
[0014]
2. Preparation of hydrogen storage alloy-coated electrode plate 99% by mass of the hydrogen storage alloy powder prepared as described above, polyethylene oxide (PEO) powder as a binder, 1% with respect to the mass of the hydrogen storage alloy powder, an appropriate amount Was added and kneaded to prepare a hydrogen storage alloy slurry (1). This hydrogen storage alloy slurry {circle around (1)} is applied to both surfaces of a metal core made of punched metal or the like with nickel plated on the surface, then dried and rolled to obtain a hydrogen storage alloy coated electrode plate z 1. Was made. The coating amount of the hydrogen storage alloy slurry (1) was adjusted so that the density of the hydrogen storage alloy after rolling was 5 g / cm 3 .
[0015]
On the other hand, 99% by mass of the hydrogen storage alloy powder 99% by mass and 0.5% by mass of yttrium oxide powder prepared as described above, and polyethylene oxide (PEO) powder as a binder were added to the hydrogen storage alloy powder. An appropriate amount of water, 1% by mass with respect to the mass, was added and kneaded to prepare a hydrogen storage alloy slurry (2). This hydrogen storage alloy slurry {circle around (2)} is applied to both surfaces of a metal core made of a punching metal or the like whose surface is nickel plated, and then dried and rolled to obtain a hydrogen storage alloy coated electrode plate w 1. Was made. The coating amount of the hydrogen storage alloy slurry (2) was adjusted so that the density of the hydrogen storage alloy after rolling was 5 g / cm 3 .
[0016]
3. Next, after preparing a dispersion, an yttrium oxide powder having an average particle diameter of 3 μm by a laser method and a specific surface area of 20 m 2 / g by a BET nitrogen adsorption method was prepared, and 5% by mass of this yttrium oxide powder and an acetylene black powder 5 The dispersion liquid α was prepared by adding and mixing the mass% with a 4 mass% aqueous solution of 90 mass% polyvinyl alcohol (PVA).
Similarly, after preparing an ytterbium oxide powder having an average particle diameter of 3 μm by a laser method and a specific surface area of 20 m 2 / g by a BET nitrogen adsorption method, 5% by mass of this ytterbium oxide powder and 5% by mass of acetylene black powder % Was added to and mixed with a 4% by mass aqueous solution of 90% by mass polyvinyl alcohol (PVA) to prepare a dispersion β.
[0017]
Further, 5% by mass of acetylene black powder was added to and mixed with a 4% by mass aqueous solution of 95% by mass of polyvinyl alcohol (PVA) to prepare a dispersion γ.
Furthermore, after preparing an ytterbium oxide powder having an average particle diameter of 3 μm by a laser method and a specific surface area of 20 m 2 / g by a BET nitrogen adsorption method, 5% by mass of this ytterbium oxide powder is 95% by mass of polyvinyl alcohol (PVA). A dispersion δ was prepared by adding to and mixing with a 4% by mass aqueous solution.
[0018]
4). Preparation of hydrogen storage alloy electrode Next, the dispersion α prepared as described above was applied to both surfaces of the hydrogen storage alloy coated electrode plate z 1 prepared as described above by a roller transfer method and dried. The hydrogen storage alloy electrodes a to j coated with a coating material were produced by rolling and cutting into predetermined dimensions. The amount of dispersion α applied was adjusted so that the amount of yttrium oxide was 0.5 to 20000 ppm relative to the mass of the hydrogen storage alloy. Here, what was apply | coated so that yttrium oxide might be 0.5 ppm with respect to the hydrogen storage alloy mass was set as the hydrogen storage alloy electrode a.
[0019]
Similarly, a hydrogen storage alloy electrode b was applied so that yttrium oxide was 1 ppm, and a hydrogen storage alloy electrode c was applied so as to be 5 ppm. The hydrogen storage alloy electrode d, which was applied to 100 ppm, was the hydrogen storage alloy electrode e, and the one applied to 500 ppm was the hydrogen storage alloy electrode f, and was applied to 1000 ppm. The hydrogen storage alloy electrode g was applied to 5000 ppm, the hydrogen storage alloy electrode h was applied to 10,000 ppm, the hydrogen storage alloy electrode i was applied to 10,000 ppm, and was applied to 20000 ppm. This was used as a hydrogen storage alloy electrode j.
[0020]
Further, the dispersion β prepared as described above is transferred by roller transfer so that the ytterbium oxide is 5000 ppm on both sides of the hydrogen storage alloy negative electrode plate z 1 prepared as described above with respect to the mass of the hydrogen storage alloy. After being applied to and dried, it was rolled, cut to a predetermined size, and a hydrogen storage alloy electrode k coated with a coating material was produced.
Further, the dispersion γ prepared as described above was transferred by roller transfer to the hydrogen storage alloy negative electrode plate z 1 prepared as described above on both sides of the hydrogen storage alloy negative electrode plate z 1 with 0.5 mass of acetylene black relative to the mass of the hydrogen storage alloy. %, And then dried, cut to a predetermined size, and produced a hydrogen storage alloy electrode v coated with a coating material.
[0021]
Further, the hydrogen storage alloy coated electrode plate w 1 manufactured as described above was cut into a predetermined size to prepare a hydrogen storage alloy electrode w.
In addition, the dispersion liquid δ produced as described above was transferred onto the both surfaces of the hydrogen storage alloy negative electrode plate z 1 produced as described above by a method using roller transfer, and 0.5 mass of yttrium oxide was added to the mass of the hydrogen storage alloy. %, And dried, cut to a predetermined size, and produced a hydrogen storage alloy electrode x coated with a coating material.
Further, the hydrogen storage alloy-coated electrode plate z 1 manufactured as described above was cut into a predetermined size to prepare a hydrogen storage alloy electrode z.
[0022]
3. Nickel hydroxide powder containing 2.5% by mass of zinc and 1.0% by mass of cobalt as a coprecipitation component for nickel positive electrode was added to a cobalt sulfate aqueous solution, and 1 mol of sodium hydroxide aqueous solution was gradually added while stirring. After dropwise addition and adjusting the pH during the reaction to 11, the reaction was continued with stirring. The pH at this time was monitored with a glass electrode (pH meter) with automatic temperature compensation. Next, the precipitate was separated by filtration, washed with water, and vacuum dried to obtain a powder in which the surface of nickel hydroxide particles was coated with 5% by mass of cobalt hydroxide.
[0023]
Next, while stirring the obtained powder in a beaker, a 25 mass% sodium hydroxide aqueous solution was added to impregnate the mass ratio to 1:10, and the temperature atmosphere at 85 ° C. was stirred for 8 hours. After performing an alkali heat treatment by heat treatment with, the product was washed with water and dried at 65 ° C. This alkali heat treatment increases a part of the cobalt hydroxide and contains sodium. As a result, composite particles containing 1% by mass of sodium in the cobalt hydroxide coating layer were obtained.
[0024]
Subsequently, the composite particles obtained as described above were mixed with 95% by mass, 3% by mass of zinc oxide and 2% by mass of cobalt hydroxide, and 0.2% by mass of hydroxypropylcellulose as a binder. A positive electrode active material slurry was prepared by adding and mixing 50% by weight of an aqueous solution with respect to the weight of the mixed powder. Thereafter, the positive electrode active material slurry is made of a nickel foam (for example, having a surface density (weight per unit area) of about 600 g / m 2 , a porosity of 95%, and a thickness of about 2 mm). It was filled in, dried, rolled, and then cut into predetermined dimensions to obtain a non-sintered nickel positive electrode plate. The filling amount of the positive electrode active material slurry was adjusted so that the active material density after rolling was about 2.9 g / cm 3 -void.
[0025]
4). Production of Nickel-Hydrogen Storage Battery Attaching a current collecting tab to each of the hydrogen storage alloy negative electrode plates a to k, v, w, x, z produced as described above and the non-sintered nickel positive electrode plate produced as described above. After that, each of these electrode plates was spirally wound through a separator made of a polypropylene nonwoven fabric having a thickness of 0.2 mm to produce a spiral electrode group. Thereafter, each spiral electrode group is inserted into an AA size bottomed cylindrical metal outer can, the negative electrode current collecting tab is welded to the inner bottom surface of the outer can, and the positive electrode current collecting tab is attached to the sealing body. Welded to the bottom. Next, an alkaline electrolyte (8N KOH aqueous solution containing LiOH and NaOH) was injected into each metal outer can, and then sealed with a sealing body to produce a nickel-hydrogen storage battery having a nominal capacity of 1300 mAh.
[0026]
The nickel-hydrogen storage battery using the hydrogen storage alloy negative electrode plate a is battery A, the nickel-hydrogen storage battery using the hydrogen storage alloy negative electrode plate b is battery B, and the nickel-hydrogen storage using the hydrogen storage alloy negative electrode plate c. The storage battery is battery C, the nickel-hydrogen storage battery using the hydrogen storage alloy negative electrode plate d is battery D, the nickel-hydrogen storage battery using the hydrogen storage alloy negative electrode plate e is battery E, and the hydrogen storage alloy negative electrode plate f is used. The nickel-hydrogen storage battery used as battery F, the nickel-hydrogen storage battery using hydrogen storage alloy negative electrode plate g as battery G, the nickel-hydrogen storage battery using hydrogen storage alloy negative electrode plate h as battery H, and the hydrogen storage alloy negative electrode. Nickel-hydrogen storage battery using plate i is battery I, nickel-hydrogen storage battery using hydrogen storage alloy negative electrode plate j is battery J, and nickel-water using hydrogen storage alloy negative electrode plate k The battery was a battery K.
[0027]
The nickel-hydrogen storage battery using the hydrogen storage alloy negative electrode plate v is referred to as battery V, the nickel-hydrogen storage battery using the hydrogen storage alloy negative electrode plate w is referred to as battery W, and nickel-hydrogen using the hydrogen storage alloy negative electrode plate x. The storage battery was designated as battery X, and the nickel-hydrogen storage battery using the hydrogen storage alloy negative electrode plate z was designated as battery Z.
In addition, after preparing a spiral electrode group in the same manner as described above using the hydrogen storage alloy negative electrode plate z, it is inserted into an AA size bottomed cylindrical metal outer can in the same manner as described above, and a negative electrode current collecting tab is provided. While welding to the inner bottom face of an exterior can, the positive electrode current collection tab was welded to the bottom face of the sealing body. Next, after injecting an alkaline electrolyte saturated with yttrium oxide at room temperature (25 ° C.), it was sealed with a sealing body to produce a nickel-hydrogen storage battery having a nominal capacity of 1300 mAh. This nickel-hydrogen storage battery was designated as battery Y.
[0028]
5. Battery Test (1) Activation Each battery AK and VZ prepared as described above was charged at room temperature (25 ° C.) with a charging current of 130 mA (0.1 C) for 16 hours, and then rested for 1 hour. Let Thereafter, the battery is discharged at a discharge current of 260 mA (0.2 C) until the final voltage reaches 1.0 V, and then rested for 1 hour. This charging / discharging was repeated 5 cycles at room temperature (25 ° C.) to activate the nickel-hydrogen storage batteries A to K and V to Z.
[0029]
(2) High-temperature continuous charge characteristics test Next, the batteries A to K and V to Z activated as described above were charged for 16 hours at room temperature (25 ° C.) with a charging current of 130 mA (0.1 C), After resting at room temperature (25 ° C.) for 1 hour, the battery was discharged at room temperature (25 ° C.) with a discharge current of 1300 mA (1.0 C) until the final voltage reached 1.0 V, and from the discharge time to room temperature (25 ° C. ) To obtain the initial battery capacity.
[0030]
Next, the batteries A to K and V to Z after measuring the initial battery capacity as described above are placed in a constant temperature bath of 60 ° C., and continuous charging is performed at a charging current of 260 mA (0.2 C). Started. After starting continuous charging, the batteries A to K and V to Z were taken out from the thermostat at intervals of 2 days (every other day) and left at room temperature (25 ° C.) for 3 hours. ) At a discharge current of 1300 mA (1C) until the final voltage reached 1.0 V, and the discharge capacities of the batteries A to K and V to Z at this time were determined.
Next, when the ratio with the initial battery capacity obtained in advance was calculated and the battery life was obtained when the ratio became 30% or less, the results shown in Table 1 below were obtained. The addition amount (PPM), average particle diameter (μm) and specific surface area (m 2 / g) in Table 1 are the addition amount (PPM), average particle diameter (μm) and specific surface area (m / g) of yttrium oxide or ytterbium oxide. m 2 / g), respectively.
[0031]
[Table 1]
Figure 0003639494
[0032]
As apparent from Table 1 above, the battery life of the battery Z using the negative electrode plate to which neither acetylene black (carbon powder) nor yttrium oxide or ytterbium oxide was added was 68 days, and only acetylene black (carbon powder) was used as the negative electrode plate. The battery life of the battery V using the negative electrode plate coated on the surface of the battery is 70 days, the battery life of the battery W using the negative electrode plate added with yttrium oxide to the negative electrode plate is 72 days, and only the yttrium oxide is used for the negative electrode plate. The battery life of the battery X using the negative electrode plate coated on the surface is 74 days, and the battery life of the battery Y using the additive-free negative electrode plate with yttrium oxide added to the electrolyte is 72 days. It can be seen that even when only black (carbon powder) is added or only yttrium oxide or ytterbium oxide is added, the battery life is not improved so much.
[0033]
On the other hand, in the batteries A to K using the negative electrode plate in which acetylene black (carbon powder) and yttrium oxide or ytterbium oxide are simultaneously applied to the surface of the negative electrode plate, the battery life is improved to 80 days or more. I understand that This is because yttrium oxide or ytterbium oxide is adsorbed on the surface of acetylene black having a very large specific surface area added at the same time, and acts as a catalyst for oxygen gas absorption. As a result, oxidation of the hydrogen storage alloy is suppressed. The battery life is considered to have improved.
[0034]
In addition, in the batteries B to I and the battery K in which the addition amount of yttrium oxide or ytterbium oxide is limited to 1 to 10000 ppm, it is 90 days to 120 days, which shows that the battery life is dramatically improved. This is because if the addition amount of yttrium oxide or ytterbium oxide is less than 1 ppm, the addition amount is too small to exhibit the effect of addition.
On the contrary, when the addition amount exceeds 10,000 ppm, it is considered that yttrium oxide or ytterbium oxide covers the surface of the hydrogen storage alloy, thereby inhibiting a smooth oxygen gas absorption reaction.
In Table 1, although only the case where the amount of ytterbium oxide added is 5000 ppm, the same results as in the case of yttrium oxide were obtained even when the amount of ytterbium oxide added was changed.
[0035]
6). Examination of physical property values of yttrium oxide After preparing an yttrium oxide powder having an average particle diameter of 10 μm by a laser method and a specific surface area of 18 m 2 / g by a BET nitrogen adsorption method, 5% by mass of this yttrium oxide powder and an acetylene black powder 5 wt% was added to and mixed with a 4 wt% aqueous solution of 90 wt% polyvinyl alcohol (PVA) to prepare a dispersion, and then a hydrogen storage alloy coated electrode prepared as described above by a roller transfer method. After applying and drying on both surfaces of the plate z 1 , rolling was performed and cut to a predetermined size to produce a hydrogen storage alloy electrode l coated with a coating material.
[0036]
Similarly, a hydrogen storage alloy electrode m was prepared using yttrium oxide powder having an average particle diameter of 5 μm and a specific surface area of 19 m 2 / g, and yttrium oxide having an average particle diameter of 3 μm and a specific surface area of 10 m 2 / g. A hydrogen storage alloy electrode n was prepared using the powder, and a hydrogen storage alloy electrode o was prepared using an yttrium oxide powder having an average particle diameter of 3 μm and a specific surface area of 15 m 2 / g. The coating amount of these dispersions was adjusted and applied so that yttrium oxide was 5000 ppm with respect to the mass of the hydrogen storage alloy.
[0037]
Next, after attaching a current collecting tab to each of the hydrogen storage alloy negative electrode plates l to o and the non-sintered nickel positive electrode plate prepared as described above, each of these electrode plates is made of a polypropylene nonwoven fabric having a thickness of 0.2 mm. Each of the spiral electrode groups was produced by spirally winding through a separator made of After that, each spiral electrode group is inserted into an AA size bottomed cylindrical metal outer can, and an alkaline electrolyte (8N KOH aqueous solution containing LiOH and NaOH) is placed in each metal outer can. After the injection, the nickel-hydrogen storage batteries L to O having a nominal capacity of 1300 mAh were prepared by sealing with a sealing body.
Next, when these batteries L to O were activated in the same manner as described above, and the battery life was measured by performing continuous charging in the same manner as described above, the results shown in Table 2 below were obtained. The addition amount in Table 2 (PPM), the average particle diameter ([mu] m) and the specific surface area (m 2 / g), the amount of yttrium oxide (PPM), the average particle diameter ([mu] m) and a specific surface area (m 2 / g) respectively. Table 2 also shows the battery H described above.
[0038]
[Table 2]
Figure 0003639494
[0039]
As is apparent from Table 2 above, when the average particle diameter of yttrium oxide exceeds 5 μm, the battery life tends to be shortened, and when the specific surface area of yttrium oxide is less than 15 m 2 / g, the battery life is shortened. A trend is observed. From this, it can be said that the average particle diameter of yttrium oxide is desirably 5 μm or less, and the specific surface area of yttrium oxide is desirably 15 m 2 / g or more. This also applies to ytterbium oxide.
[0040]
As described above, in the present invention, since acetylene black (carbon powder) and yttrium oxide or ytterbium oxide are simultaneously coated on the surface of the negative electrode plate, the surface of acetylene black having a very large specific surface area is yttrium oxide. Alternatively, ytterbium oxide is adsorbed. Since yttrium oxide or ytterbium oxide adsorbed on the surface of acetylene black acts as a catalyst for absorbing oxygen gas, oxidation of the hydrogen storage alloy is suppressed, and the battery life is improved.
[0041]
In the above-described embodiment, an example in which acetylene black is used as the carbon powder has been described. However, the carbon powder may be any powder having a large specific surface area, such as activated carbon, graphite, acetylene black, carbon black, ketjen. It is preferable to use black or the like.
[0042]
In the above-described embodiment, an example in which MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 is used as the hydrogen storage alloy has been described. However, as the hydrogen storage alloy, a Ti—Ni-based or La (or Mm) -Ni-based multiple element is used. It can be used by appropriately selecting from alloys. In the above-described embodiment, an example in which a mechanically pulverized hydrogen storage alloy is used has been described. However, a hydrogen storage alloy manufactured by an atomizing method may be used. In this case, since the hydrogen storage alloy produced by the atomization method has a small specific surface area, it is more effective when the present invention is applied.

Claims (4)

電気化学的に水素の吸蔵・放出を可逆的に行うことができる水素吸蔵合金からなる負極と、主活物質として水酸化ニッケルを含有する正極と、アルカリ電解液とを備えたニッケル−水素蓄電池であって、
前記負極はその表面にレーザー法による平均粒径が5μm以下であるイットリウムあるいはイッテルビウムの金属、金属酸化物あるいは金属水酸化物から選択される1種以上の粉末粒子と炭素粉末とを備えたことを特徴とするニッケル−水素蓄電池。
A nickel-hydrogen storage battery comprising a negative electrode made of a hydrogen storage alloy capable of reversibly storing and releasing hydrogen electrochemically, a positive electrode containing nickel hydroxide as a main active material, and an alkaline electrolyte. There,
The negative electrode is provided with at least one kind of powder particles selected from yttrium or ytterbium metal, metal oxide or metal hydroxide having an average particle diameter by laser method of 5 μm or less on the surface thereof and carbon powder. Nickel-hydrogen storage battery characterized.
電気化学的に水素の吸蔵・放出を可逆的に行うことができる水素吸蔵合金からなる負極と、主活物質として水酸化ニッケルを含有する正極と、アルカリ電解液とを備えたニッケル−水素蓄電池であって、
前記負極はその表面にBET窒素吸着法による比表面積が15m 2 /g以上であるイットリウムあるいはイッテルビウムの金属、金属酸化物あるいは金属水酸化物から選択される1種以上の粉末粒子と炭素粉末とを備えたことを特徴とするニッケル−水素蓄電池。
A nickel-hydrogen storage battery comprising a negative electrode made of a hydrogen storage alloy capable of reversibly storing and releasing hydrogen electrochemically, a positive electrode containing nickel hydroxide as a main active material, and an alkaline electrolyte. There,
The negative electrode has one or more powder particles selected from yttrium or ytterbium metal, metal oxide or metal hydroxide having a specific surface area of 15 m 2 / g or more by the BET nitrogen adsorption method on the surface thereof and carbon powder. A nickel-hydrogen storage battery comprising:
前記炭素粉末は活性炭、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラックから選択される1種以上であることを特徴とする請求項1または請求項2に記載のニッケル−水素蓄電池。  The nickel-hydrogen storage battery according to claim 1 or 2, wherein the carbon powder is at least one selected from activated carbon, graphite, acetylene black, carbon black, and ketjen black. 前記イットリウムあるいはイッテルビウムの金属、金属酸化物あるいは金属水酸化物から選択される粉末粒子の添加量は水素吸蔵合金質量に対して1〜10000ppmであることを特徴とする請求項1または請求項2に記載のニッケル−水素蓄電池。  The amount of powder particles selected from the metal of yttrium or ytterbium, metal oxide, or metal hydroxide is 1 to 10000 ppm based on the mass of the hydrogen storage alloy. The nickel-hydrogen storage battery as described.
JP2000078746A 2000-03-21 2000-03-21 Nickel-hydrogen storage battery Expired - Lifetime JP3639494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078746A JP3639494B2 (en) 2000-03-21 2000-03-21 Nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078746A JP3639494B2 (en) 2000-03-21 2000-03-21 Nickel-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JP2001266860A JP2001266860A (en) 2001-09-28
JP3639494B2 true JP3639494B2 (en) 2005-04-20

Family

ID=18596115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078746A Expired - Lifetime JP3639494B2 (en) 2000-03-21 2000-03-21 Nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP3639494B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196005B2 (en) * 2004-07-30 2008-12-17 パナソニック株式会社 Hydrogen storage alloy negative electrode and nickel-hydrogen storage battery
JP5944854B2 (en) * 2013-03-27 2016-07-05 プライムアースEvエナジー株式会社 Manufacturing method of nickel metal hydride storage battery
US20190097213A1 (en) * 2017-09-28 2019-03-28 Basf Corporation Processes and compositions to improve high-temperature performance of nimh batteries

Also Published As

Publication number Publication date
JP2001266860A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP6132279B2 (en) Nickel metal hydride secondary battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP6422111B2 (en) Nickel metal hydride secondary battery
JP2001076730A (en) Nickel-hydrogen secondary battery
JP3363670B2 (en) Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP3557063B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP4404447B2 (en) Method for producing alkaline storage battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JP3098948B2 (en) Hydrogen storage alloy-containing composition and electrode using the same
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP3547980B2 (en) Nickel-hydrogen storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R151 Written notification of patent or utility model registration

Ref document number: 3639494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term