JP3788484B2 - Nickel electrode for alkaline storage battery - Google Patents

Nickel electrode for alkaline storage battery Download PDF

Info

Publication number
JP3788484B2
JP3788484B2 JP34262795A JP34262795A JP3788484B2 JP 3788484 B2 JP3788484 B2 JP 3788484B2 JP 34262795 A JP34262795 A JP 34262795A JP 34262795 A JP34262795 A JP 34262795A JP 3788484 B2 JP3788484 B2 JP 3788484B2
Authority
JP
Japan
Prior art keywords
nickel
electrode
nickel hydroxide
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34262795A
Other languages
Japanese (ja)
Other versions
JPH09180717A (en
Inventor
裕江 中川
健吾 古川
俊樹 田中
勇一 松村
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP34262795A priority Critical patent/JP3788484B2/en
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to CNA2004100317516A priority patent/CN1536691A/en
Priority to CNB961915048A priority patent/CN1205679C/en
Priority to CNB2004100317501A priority patent/CN1244964C/en
Priority to EP96931980A priority patent/EP0794584A4/en
Priority to KR1019970703538A priority patent/KR100416428B1/en
Priority to CNB2004100317520A priority patent/CN1253954C/en
Priority to US08/849,103 priority patent/US6136473A/en
Priority to PCT/JP1996/002761 priority patent/WO1997012408A1/en
Publication of JPH09180717A publication Critical patent/JPH09180717A/en
Application granted granted Critical
Publication of JP3788484B2 publication Critical patent/JP3788484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル−カドミウム蓄電池、ニッケル−水素化物蓄電池、ニッケル−亜鉛蓄電池などに用いられるアルカリ蓄電池用ニッケル電極に関するものである。
【0002】
【従来の技術】
カドミウムを含まないペースト式ニッケル電極を正極として用いたニッケル−カドミウム蓄電池、ニッケル−水素化物蓄電池、ニッケル−亜鉛蓄電池などの各種アルカリ蓄電池は、高いエネルギー密度を有し、低公害であるため注目され、近年ポータブル機器用あるいは電気自動車用電源としての研究開発が盛んに行われている。
【0003】
これらのアルカリ蓄電池に用いられているペースト式ニッケル電極は、耐アルカリ性金属の多孔体であるニッケル繊維多孔体や発泡ニッケル多孔体などを電極基板とし、その基板に水酸化ニッケル粉末を増粘剤水溶液を用いてペースト状活物質として充填することにより作製される。
【0004】
ところで、これら上述のペースト式ニッケル電極を高温下で充電した場合、充電効率の低下が生じることが知られている。これは、水酸化ニッケルの充電反応電位と酸素ガス発生電位の差が元々小さいため、高温下ではさらに水酸化ニッケルの充電反応と酸素ガス発生反応との電位差が小さくなり、両反応が競合するためである。そこで従来、この現象を解決する手段として、電解液として用いられている水酸化カリウム水溶液に、水酸化リチウム水溶液を添加する方法や、水酸化ニッケルの結晶中にコバルトを固溶状態で添加する方法等が提案されている。
【0005】
【発明が解決しようとする課題】
しかし、上記の電解液中への水酸化リチウムの添加は、放電電圧や低温時の放電容量を低下させるという欠点があり、広範囲の温度下における良好な電池性能が保持できないという問題を生ずる。一方、水酸化ニッケル結晶中へのコバルトのみの固溶添加は、ニッケル電極の充電電位をより卑な電位にするが、同時に放電電位をも卑な電位にし、電池出力低下の原因となるという問題点がある。従って、これらの手段を採用した場合、高温下での充電効率以外の性能向上に対してさらなる対策が必要となっていた。
【0006】
本発明は上記問題点に鑑みてなされたものであり、放電電位を低下させることなく高温下での充電効率の低下を抑制し、広範囲の温度下における充放電効率に優れたアルカリ蓄電池用ニッケル電極を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
この課題を解決するために本発明のアルカリ蓄電池用ニッケル電極は、水酸化ニッケルに、希土類元素、若しくは希土類元素およびコバルト、若しくは希土類元素および亜鉛、若しくは希土類元素とコバルトおよび亜鉛を、固溶状態で含有させたことを特徴とする。さらに、前記希土類元素がYb、Eu、Erの内少なくとも1種であることを特徴とするものである
【0008】
水酸化ニッケルに希土類元素を固溶状態で含有させることにより、水酸化ニッケルの酸素過電圧を適切に高くすることができる。すなわち、放電電位を低下させることなく高温下での充電効率の低下を抑制できる。加えて、希土類元素およびコバルトを固溶状態で含有させることにより、水酸化ニッケルの酸素過電圧を高くするだけでなく、ニッケル電極の放電電位が卑にならない範囲で高温下の充電反応電位を卑にすることができる上、水酸化ニッケル粒子内の導電性を向上させ、活物質の利用率を向上させることができる。また、希土類元素および亜鉛を固溶状態で含有させることにより、水酸化ニッケルの結晶内部に歪みを生じさせることができ、活物質の利用率を向上させるだけでなく、γ−NiOOHの生成による電極膨潤も抑制することができる。さらに、希土類元素とコバルトおよび亜鉛を固溶状態で含有させることにより、これらの効果を複合して得ることができる。
【0009】
従って、これらの方法を用いてニッケル電極を作製することにより、放電電位を低下させることなく高温下での充電効率の低下を抑制し、広範囲の温度下における充放電効率に優れたアルカリ蓄電池用ニッケル電極を提供することができるものである。
【0010】
【発明の実施の形態】
以下、本発明を実施例により詳細に説明する。
【0011】
まず、硝酸ニッケルに所定量の硝酸イッテルビウムを加えた水溶液に、水酸化ナトリウム水溶液を滴しながら撹拌し、且つpHを11〜14の範囲に保つことによりYbの固溶した水酸化ニッケル粒子を析出させ、水洗・乾燥して目的組成の水酸化ニッケル粉末を得た。
【0012】
さらに、上記と同様に硝酸ニッケルに所定量の硝酸イッテルビウムおよび硝酸コバルトあるいは硝酸亜鉛のいずれか、もしくは両方を加えた水溶液に、水酸化ナトリウム水溶液を滴しながら撹拌し、その他の条件は同一とした水酸化ニッケル粉末も得た。
【0013】
また、上記した水酸化ニッケル粉末に対し、硝酸イッテルビウムを加えずに同様の手法で作製した水酸化ニッケル粉末も得た。
【0014】
このようにして得た各種水酸化ニッケル粉末に導電補助剤として一酸化コバルトを混合し、さらに増粘剤を溶解した水溶液を加えてペースト状にしたものをニッケル繊維基板に充填、乾燥後所定の厚みにプレスしてニッケル電極を作製し、本発明電極A〜E、比較電極F〜Hとした。これらを正極とし、負極に公知のシンター式カドミウム電極を用い、正極容量規制の電極群を構成した。次いで、電解液として比重1.28の水酸化カリウム水溶液を過剰に注液し、24時間放置後、ニッケル電極の理論容量の0.1C相当の電流で15時間充電、0.2C相当の電流で両極間電位が1Vに至るまで放電することを1サイクルとする充放電を5サイクル繰り返し、充分に活性化を行った。その後これらの電池を用いて各種充放電試験を行った。
【0015】
以上、作製したニッケル電極の組成を表1に示す。
【0016】
【表1】

Figure 0003788484
【0017】
まず、上記した本発明電極A〜B、比較電極Fについて、高温充電効率とYb含有量との関係を図1に示す。なお、試験条件は、45℃の温度下で、ニッケル電極の理論容量の0.1C相当の電流で15時間充電した後、0. 2C相当の電流で両極間電位が1Vに至るまで放電したものである。また、45℃の充電効率は、20℃での充電効率を100とした百分率で表した(以下、同じ)。図1より、充電効率はYbの含有量が多いほど増加することが分かる。これは、Ybを固溶状態で含有させることにより、水酸化ニッケルの酸素過電圧が高くなるが、Ybの含有量が多いほど酸素過電圧がより高くなるため、充電反応と酸素ガス発生反応の電位差を大きくすることができ、充電効率を向上させることが可能となったと考えられる。
【0018】
次に、上記した本発明電極A、Cおよび比較電極Gについて、Yb若しくはCo含有時の高温充電効率とCo含有量との関係を図2に示す。なお、試験条件は、図1での評価と同じく45℃の温度下で、ニッケル電極の理論容量の0.1C相当の電流で15時間充電した後、0.2C相当の電流で両極間電位が1Vに至るまで放電したものである。
【0019】
図2から明らかなように、Coを含有する場合はYbを添加していない比較電極Gであっても比較的高温下での充電効率は良好であるが、Ybを添加した本発明電池AおよびCの方が充電効率は良好である。また、CoをYbと同時に含有する本発明電池Cは、Ybのみを添加した本発明電池Aよりも充電効率は更に向上する。これは、Coが高温下の充電反応電位をより卑にする効果を持つために、Ybとの相乗効果によって高温下の充電反応と酸素ガス発生反応の電位差を大きくすることができるためと考えられる。さらに、Coが高次酸化物の形態を取ることにより、水酸化ニッケル粒子内の導電性を向上させ、活物質の利用率の向上も期待することができる。ただし、Coを多量に添加した場合には放電反応電位も卑にすることから、添加量を適切な範囲に制限する必要がある。
【0020】
また、上記した本発明電極A、D、E、比較電極Hについて、Yb若しくはZn含有時の高温充電効率とZn含有量との関係を図3に示す。なお、試験条件は、図1、2での評価と同じく45℃の温度下で、ニッケル電極の理論容量の0.1C相当の電流で15時間充電した後、0.2C相当の電流で両極間電位が1Vに至るまで放電したものである。図3から明らかなように、ZnとYbを同時に含有した本発明電極D、及びZn、CoとYbを同時に含有した本発明電極Eの充電効率は向上している。また、Znを含有する場合でも、Ybを添加していない比較電極Hでは、むしろ充電効率の低下がみられる。さらに、ZnとYbを同時に含有する本発明電極Dは、Ybのみを添加した本発明電極Aよりも充電効率は向上する。これは、Znが酸素発生電位を貴にする効果を持つために、水酸化ニッケルの充電反応と酸素ガス発生反応の電位差を大きくすることができるためと考えられる。また、ZnはNiとイオン半径が異なるため水酸化ニッケルの結晶内部に歪みを生じさせることができ、活物質の利用率を向上させるだけでなく、γ−NiOOHの生成による電極膨潤も抑制する効果が期待できる。これらのZnの効果は、Znのみを添加した場合には、Ybのみを添加した場合に比較して高温充電効率の低下が認められるが、Ybとの同時添加、若しくはCo、Ybとの同時添加によっては損なわれることはなく、むしろ前述したYbやCoの添加効果との相乗効果を良好に得ることができる。
【0021】
以上のことより、本発明電極A〜Eは、比較電池F〜Hに比較して、放電電位を低下させることなく高温下での充電効率の低下を抑制し、広範囲の温度下における充放電効率に優れたアルカリ蓄電池用ニッケル電極であることがわかる。
【0022】
なお、本実施例ではYbを水酸化ニッケル粉末中に固溶状態で含有させたが、希土類元素であるEu又はErを含有させても同等の効果が得られる。また、Eu又はErとCo、Eu又はErとZn、若しくはEu又はErとZn、Coを同時に含有させた場合や、Yb、Eu又はErを同時に添加した場合、さらにはYb、Eu又はErとCo、若しくはYb、Eu又はErとZn、若しくはYb、Eu又はErとZn、Coを同時に含有させた場合にも同等の効果が得られる。更に、他の希土類元素を含有させても効果がある。
【0023】
【発明の効果】
上記した通り本発明は、広範囲の温度下における充放電効率に優れ、安定した容量特性を持つアルカリ蓄電池用ニッケル電極を提供することができ、その工業的価値は大である。
【図面の簡単な説明】
【図1】本発明および比較例における高温充電効率とYb含有量との関係を示す図である。
【図2】本発明および比較例におけるYb若しくはCo含有時の高温充電効率とCo含有量との関係を示す図である。
【図3】本発明および比較例におけるYb若しくはZn含有時の高温充電効率とZn含有量との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nickel electrode for alkaline storage batteries used in nickel-cadmium storage batteries, nickel-hydride storage batteries, nickel-zinc storage batteries, and the like.
[0002]
[Prior art]
Various alkaline storage batteries such as nickel-cadmium storage battery, nickel-hydride storage battery, nickel-zinc storage battery using paste-type nickel electrode not containing cadmium as a positive electrode have high energy density and are low-pollution, In recent years, research and development as a power source for portable devices or electric vehicles has been actively conducted.
[0003]
The paste-type nickel electrode used in these alkaline storage batteries uses a nickel fiber porous body or a foamed nickel porous body which is a porous body of an alkali-resistant metal as an electrode substrate, and nickel hydroxide powder is used as a thickener aqueous solution on the substrate. It is produced by filling as a paste-like active material using.
[0004]
By the way, it is known that when these paste type nickel electrodes are charged at a high temperature, the charging efficiency is lowered. This is because the difference between the charge reaction potential of nickel hydroxide and the oxygen gas generation potential is originally small, and therefore the potential difference between the charge reaction of nickel hydroxide and the oxygen gas generation reaction becomes even smaller at high temperatures, and both reactions compete. It is. Therefore, conventionally, as means for solving this phenomenon, a method of adding a lithium hydroxide aqueous solution to a potassium hydroxide aqueous solution used as an electrolytic solution, or a method of adding cobalt in a solid solution state in a crystal of nickel hydroxide Etc. have been proposed.
[0005]
[Problems to be solved by the invention]
However, the addition of lithium hydroxide to the electrolytic solution has a drawback that the discharge voltage and the discharge capacity at a low temperature are lowered, which causes a problem that good battery performance cannot be maintained under a wide range of temperatures. On the other hand, the solid solution addition of only cobalt to the nickel hydroxide crystal makes the charge potential of the nickel electrode a lower base potential, but at the same time the discharge potential also makes the base potential lower, causing a decrease in battery output. There is a point. Therefore, when these means are employed, further measures are required for performance improvement other than charging efficiency at high temperatures.
[0006]
The present invention has been made in view of the above problems, and suppresses a decrease in charging efficiency at a high temperature without lowering a discharge potential, and is a nickel electrode for an alkaline storage battery excellent in charge / discharge efficiency under a wide range of temperatures. Is intended to provide.
[0007]
[Means for Solving the Problems]
In order to solve this problem, the nickel electrode for an alkaline storage battery of the present invention comprises a rare earth element, a rare earth element and cobalt, a rare earth element and zinc, or a rare earth element and cobalt and zinc in a solid solution state. It was made to contain. Further, the rare earth element is one which Yb, Eu, characterized in that at least one of Er.
[0008]
By containing rare earth elements in a solid solution state in nickel hydroxide, the oxygen overvoltage of nickel hydroxide can be appropriately increased. That is, it is possible to suppress a decrease in charging efficiency at a high temperature without reducing the discharge potential. In addition, by adding rare earth elements and cobalt in a solid solution state, not only the oxygen overvoltage of nickel hydroxide is increased, but the charging reaction potential at high temperatures is reduced to the extent that the discharge potential of the nickel electrode is not reduced. In addition, the conductivity in the nickel hydroxide particles can be improved, and the utilization factor of the active material can be improved. In addition, by including rare earth elements and zinc in a solid solution state, distortion can be generated inside the crystal of nickel hydroxide, and not only the utilization rate of the active material is improved, but also the electrode by generation of γ-NiOOH. Swelling can also be suppressed. Furthermore, these effects can be obtained in combination by containing rare earth elements, cobalt and zinc in a solid solution state.
[0009]
Therefore, by producing a nickel electrode using these methods, it is possible to suppress a decrease in charging efficiency at a high temperature without lowering a discharge potential, and nickel for alkaline storage batteries excellent in charge / discharge efficiency under a wide range of temperatures. An electrode can be provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples.
[0011]
First, an aqueous solution obtained by adding a predetermined amount of ytterbium nitrate nickel nitrate, and stirred while droplets below the aqueous solution of sodium hydroxide, and nickel hydroxide particles dissolved in Yb by keeping the pH in the range of 11 to 14 Precipitated, washed with water and dried to obtain nickel hydroxide powder having the desired composition.
[0012]
Further, any of ytterbium nitrate and cobalt nitrate or zinc nitrate of a predetermined amount in the same manner as described above nickel nitrate, or an aqueous solution obtained by adding both, stirred at drop down aqueous sodium hydroxide, other conditions the same A nickel hydroxide powder was also obtained.
[0013]
Moreover, the nickel hydroxide powder produced with the same method without adding ytterbium nitrate to the above-mentioned nickel hydroxide powder was also obtained.
[0014]
Various nickel hydroxide powders obtained in this manner were mixed with cobalt monoxide as a conductive auxiliary agent, and an aqueous solution in which a thickener was dissolved was added to form a paste. Nickel electrodes were produced by pressing to a thickness, and the present invention electrodes A to E and comparative electrodes F to H were obtained. These were used as positive electrodes, and a known sinter cadmium electrode was used as the negative electrode to constitute a positive electrode capacity-regulated electrode group. Next, an excess amount of 1.28 potassium hydroxide aqueous solution was injected as an electrolyte, left for 24 hours, then charged for 15 hours with a current equivalent to 0.1 C of the theoretical capacity of the nickel electrode, with a current equivalent to 0.2 C. Charging / discharging which makes 1 cycle discharge until the electric potential between both electrodes reaches 1V was repeated 5 cycles, and it fully activated. Thereafter, various charge / discharge tests were conducted using these batteries.
[0015]
The composition of the produced nickel electrode is shown in Table 1.
[0016]
[Table 1]
Figure 0003788484
[0017]
First, FIG. 1 shows the relationship between the high-temperature charging efficiency and the Yb content for the above-described inventive electrodes A to B and the comparative electrode F. The test condition was that the battery was charged at a temperature of 45 ° C. with a current equivalent to 0.1 C of the nickel electrode theoretical capacity for 15 hours and then discharged with a current equivalent to 0.2 C until the potential between both electrodes reached 1 V. It is. The charging efficiency at 45 ° C. was expressed as a percentage with the charging efficiency at 20 ° C. being 100 (hereinafter the same). FIG. 1 shows that the charging efficiency increases as the Yb content increases. This is because the oxygen overvoltage of nickel hydroxide increases by containing Yb in a solid solution state, but the oxygen overvoltage becomes higher as the Yb content increases, so the potential difference between the charging reaction and the oxygen gas generation reaction is increased. It is thought that it was possible to increase the charging efficiency and improve the charging efficiency.
[0018]
Next, FIG. 2 shows the relationship between the high-temperature charging efficiency and the Co content when Yb or Co is contained in the above-described inventive electrodes A and C and the comparative electrode G. The test conditions were the same as in the evaluation in FIG. 1. After charging for 15 hours at a current equivalent to 0.1 C of the theoretical capacity of the nickel electrode at a temperature of 45 ° C., the potential between both electrodes was changed to a current equivalent to 0.2 C. It was discharged to 1V.
[0019]
As is clear from FIG. 2, in the case of containing Co, the charging efficiency at a relatively high temperature is good even with the comparative electrode G to which Yb is not added. C has better charging efficiency. In addition, the battery C of the present invention containing Co at the same time as Yb is further improved in charging efficiency than the battery A of the present invention to which only Yb is added. This is thought to be because Co has the effect of making the charging reaction potential at a high temperature lower, and the potential difference between the charging reaction at a high temperature and the oxygen gas generation reaction can be increased by a synergistic effect with Yb. . Furthermore, when Co takes the form of a high-order oxide, the conductivity in the nickel hydroxide particles can be improved, and the utilization rate of the active material can be expected. However, when a large amount of Co is added, the discharge reaction potential is also reduced, so that it is necessary to limit the addition amount to an appropriate range.
[0020]
FIG. 3 shows the relationship between the high-temperature charging efficiency and the Zn content when Yb or Zn is contained in the above-described inventive electrodes A, D, E and comparative electrode H. The test conditions were the same as in the evaluation in FIGS. 1 and 2, at a temperature of 45 ° C., charged for 15 hours with a current equivalent to 0.1 C of the theoretical capacity of the nickel electrode, and then between both electrodes with a current equivalent to 0.2 C. It is discharged until the potential reaches 1V. As is apparent from FIG. 3, the charging efficiency of the inventive electrode D containing Zn and Yb simultaneously and the inventive electrode E containing Zn, Co and Yb simultaneously is improved. Even when Zn is contained, the charging efficiency is rather lowered in the comparative electrode H to which Yb is not added. Furthermore, the present invention electrode D containing Zn and Yb at the same time has a higher charging efficiency than the present invention electrode A to which only Yb is added. This is considered to be because the potential difference between the nickel hydroxide charging reaction and the oxygen gas generating reaction can be increased because Zn has the effect of making the oxygen generating potential noble. In addition, since Zn has an ion radius different from that of Ni, it can cause distortion inside the crystal of nickel hydroxide, which not only improves the utilization of the active material but also suppresses electrode swelling due to the formation of γ-NiOOH. Can be expected. The effect of these Zn is that, when only Zn is added, the high-temperature charging efficiency is reduced as compared with the case where only Yb is added, but simultaneous addition with Yb or simultaneous addition with Co and Yb. However, the synergistic effect with the above-described effect of adding Yb or Co can be obtained satisfactorily.
[0021]
From the above, the electrodes A to E of the present invention suppress the decrease in charging efficiency at high temperature without lowering the discharge potential and charge / discharge efficiency under a wide range of temperatures compared with the comparative batteries F to H. It can be seen that the nickel electrode for alkaline storage batteries is excellent.
[0022]
In this example, Yb was included in the nickel hydroxide powder in a solid solution state. However, the same effect can be obtained even if Eu or Er, which is a rare earth element, is included. Further, when Eu or Er and Co, Eu or Er and Zn, or Eu or Er and Zn, Co are added at the same time, or when Yb, Eu or Er is added simultaneously, Yb, Eu or Er and Co are further added. Alternatively, when Yb, Eu or Er and Zn, or Yb, Eu or Er, Zn and Co are contained simultaneously, the same effect can be obtained. Furthermore, it is effective to contain other rare earth elements.
[0023]
【The invention's effect】
As described above, the present invention can provide a nickel electrode for an alkaline storage battery having excellent charge / discharge efficiency under a wide range of temperatures and having stable capacity characteristics, and its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between high-temperature charging efficiency and Yb content in the present invention and comparative examples.
FIG. 2 is a graph showing the relationship between high-temperature charging efficiency and Co content when Yb or Co is contained in the present invention and comparative examples.
FIG. 3 is a graph showing the relationship between high temperature charging efficiency and Zn content when Yb or Zn is contained in the present invention and comparative examples.

Claims (5)

水酸化ニッケルを活物質の主成分とするアルカリ蓄電池用ニッケル電極において、前記水酸化ニッケルに希土類元素を固溶状態で含有させたことを特徴とするアルカリ蓄電池用ニッケル電極。  A nickel electrode for an alkaline storage battery comprising nickel hydroxide as a main component of an active material, wherein the nickel hydroxide contains a rare earth element in a solid solution state. 水酸化ニッケルを活物質の主成分とするアルカリ蓄電池用ニッケル電極において、前記水酸化ニッケルに希土類元素およびコバルトを固溶状態で含有させたことを特徴とするアルカリ蓄電池用ニッケル電極。  A nickel electrode for an alkaline storage battery comprising nickel hydroxide as a main component of an active material, wherein the nickel hydroxide contains a rare earth element and cobalt in a solid solution state. 水酸化ニッケルを活物質の主成分とするアルカリ蓄電池用ニッケル電極において、前記水酸化ニッケルに希土類元素および亜鉛を固溶状態で含有させたことを特徴とするアルカリ蓄電池用ニッケル電極。  A nickel electrode for an alkaline storage battery comprising nickel hydroxide as a main component of an active material, wherein the nickel hydroxide contains a rare earth element and zinc in a solid solution state. 水酸化ニッケルを活物質の主成分とするアルカリ蓄電池用ニッケル電極において、前記水酸化ニッケルに希土類元素とコバルトおよび亜鉛を固溶状態で含有させたことを特徴とするアルカリ蓄電池用ニッケル電極。  A nickel electrode for an alkaline storage battery containing nickel hydroxide as a main component of an active material, wherein the nickel hydroxide contains a rare earth element, cobalt and zinc in a solid solution state. 前記希土類元素が、Yb、Eu、Erの内少なくとも1種である請求項1から4記載のアルカリ蓄電池用ニッケル電極。  The nickel electrode for an alkaline storage battery according to claim 1, wherein the rare earth element is at least one of Yb, Eu, and Er.
JP34262795A 1995-09-28 1995-12-28 Nickel electrode for alkaline storage battery Expired - Fee Related JP3788484B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP34262795A JP3788484B2 (en) 1995-12-28 1995-12-28 Nickel electrode for alkaline storage battery
CNB961915048A CN1205679C (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode, and alkaline storage battery
CNB2004100317501A CN1244964C (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode and alkaline storage battery
EP96931980A EP0794584A4 (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode, and alkaline storage battery
CNA2004100317516A CN1536691A (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode and alkaline storage battery
KR1019970703538A KR100416428B1 (en) 1995-09-28 1996-09-25 A hydrogen occlusion electrode, a nickel electrode, and an alkaline storage battery
CNB2004100317520A CN1253954C (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode and alkaline storage battery
US08/849,103 US6136473A (en) 1995-09-28 1996-09-25 Hydrogen absorbing electrode, nickel electrode and alkaline storage battery
PCT/JP1996/002761 WO1997012408A1 (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode, and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34262795A JP3788484B2 (en) 1995-12-28 1995-12-28 Nickel electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09180717A JPH09180717A (en) 1997-07-11
JP3788484B2 true JP3788484B2 (en) 2006-06-21

Family

ID=18355241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34262795A Expired - Fee Related JP3788484B2 (en) 1995-09-28 1995-12-28 Nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3788484B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287726B1 (en) 1997-01-10 2001-09-11 Matsushita Electric Industrial Co., L.T.D. Method for producing nickel positive electrode for alkaline storage batteries
CN100361330C (en) * 1997-01-30 2008-01-09 三洋电机株式会社 Enclosed alkali storage battery
US6566008B2 (en) 1997-01-30 2003-05-20 Sanyo Electric Co., Ltd. Sealed alkaline storage battery
JP2000164212A (en) * 1998-11-30 2000-06-16 Yuasa Corp Positive electrode active material for alkaline storage battery and positive electrode for alkaline storage battery
CN103380520B (en) * 2011-02-28 2015-12-09 三洋电机株式会社 Alkaline battery

Also Published As

Publication number Publication date
JPH09180717A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3358702B2 (en) Nickel electrode for alkaline storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JPH10270042A (en) Active material for nickel electrode and nickel positive electrode for alkaline storage battery using it
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP3314611B2 (en) Nickel electrode for alkaline storage battery
JP3788485B2 (en) Alkaline storage battery
JP3550838B2 (en) Alkaline storage battery
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3088649B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH09219214A (en) Alkaline storage battery
JP3384109B2 (en) Nickel plate
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0837022A (en) Alkaline storage battery
JP3118357B2 (en) Non-sintered positive electrode plate for alkaline storage batteries
JP4217854B2 (en) Alkaline storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPS5971265A (en) Alkali zinc lead storage battery
JPH08213011A (en) Nickel paste electrode and alkaline storage battery using this nickel electrode
JP2000012075A (en) Nickel/metal hydride battery
JP2004311144A (en) Alkaline storage battery equipped with non-sintering type nickel positive electrode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees