JPH08213011A - Nickel paste electrode and alkaline storage battery using this nickel electrode - Google Patents

Nickel paste electrode and alkaline storage battery using this nickel electrode

Info

Publication number
JPH08213011A
JPH08213011A JP7020162A JP2016295A JPH08213011A JP H08213011 A JPH08213011 A JP H08213011A JP 7020162 A JP7020162 A JP 7020162A JP 2016295 A JP2016295 A JP 2016295A JP H08213011 A JPH08213011 A JP H08213011A
Authority
JP
Japan
Prior art keywords
nickel
electrode
powder
nickel electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7020162A
Other languages
Japanese (ja)
Inventor
Yuichi Takatsuka
祐一 高塚
Kotaro Kobayashi
康太郎 小林
Hideyuki Teraoka
秀幸 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP7020162A priority Critical patent/JPH08213011A/en
Publication of JPH08213011A publication Critical patent/JPH08213011A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To enhance charging efficiency at high temperature in spite of a small amount of additive, and lengthen life. CONSTITUTION: Nickel hydroxide powder, a small amount of calcium zincate powder, and cobalt hydroxide powder are mixed, then the mixture is kneaded together with carboxymethylcellulose to prepare slurry. The slurry is filled in a foamed nickel substrate, dried, pressed, then the nickel substrate is cut to produce a nickel paste electrode. A hydrogen storage alloy electrode serving as an anode and the nickel electrode are wound together with a nonwoven fabric separator so as to position the hydrogen storage alloy electrode in the outer periphery to form an electrode group. The electrode group is put into a cylindrical battery can, and 31 wt.% potassium hydroxide aqueous solution is poured into the can to manufacture a sealed nickel hydrogen storage battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ペースト式ニッケル極
及びそれを用いたアルカリ蓄電池に関するものであり、
特にペースト式ニッケル極の特性向上に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste type nickel electrode and an alkaline storage battery using the same.
In particular, it relates to improvement of the characteristics of the paste type nickel electrode.

【0002】[0002]

【従来の技術】従来から、ニッケル・カドミウム蓄電池
やニッケル・水素蓄電池等のアルカリ蓄電池は、繰り返
し使用可能な二次電池としてポータブル機器に幅広く利
用されている。IC等の電子部品の目覚ましい発展によ
りポータブル機器の小形、軽量化が進行しており、これ
らアルカリ蓄電池の高容量化に対する要望が非常に強く
なっている。ニッケル極を高容量化する手段として、焼
結式のニッケル極に代えてペースト式のニッケル極が提
案されている。ペースト式ニッケル極は、スポンジ状ニ
ッケル多孔体やニッケル繊維からなるフェルトを集電体
とし、これに水酸化ニッケルを主成分とするスラリ状活
物質を充填して製造したものである。スラリ状活物質
は、導電性を補うためにコバルト化合物が添加される。
さらに、(1)高温時の充電効率を高くすること、(2)過充
電あるいは大電流密度で充電時にγ型オキシ水酸化ニッ
ケルの生成を抑制することのために、亜鉛を混晶した水
酸化ニッケルを活物質として用いたり(特開平2−30
061号公報)、カルシウムや亜鉛の酸化物または水酸
化物を水酸化ニッケルに混合した活物質を用いること
(特開平5−101825号公報)が提案されている。
γ型オキシ水酸化ニッケルの生成を抑制しなければなら
ない理由は、これが通常生成するβ型オキシ水酸化ニッ
ケルより低密度であり、ニッケル極の膨張と活物質の脱
落を招き、内部短絡の原因となるからである。さらに、
γ型オキシ水酸化ニッケルは、電解液を多量に吸収する
ため、電池の内部抵抗を増大させ、電池寿命を短くする
からである。
2. Description of the Related Art Conventionally, alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries have been widely used in portable equipment as rechargeable secondary batteries. With the remarkable development of electronic parts such as ICs, downsizing and weight reduction of portable devices are progressing, and there is a strong demand for higher capacity of these alkaline storage batteries. As a means for increasing the capacity of the nickel electrode, a paste nickel electrode has been proposed instead of the sintered nickel electrode. The paste-type nickel electrode is manufactured by using a felt made of sponge-like nickel porous material or nickel fiber as a current collector, and filling it with a slurry-like active material containing nickel hydroxide as a main component. A cobalt compound is added to the slurry-like active material to supplement conductivity.
Furthermore, in order to (1) increase the charging efficiency at high temperature, and (2) suppress the formation of γ-type nickel oxyhydroxide during overcharging or charging with a large current density, a mixed hydroxide of zinc is used. Nickel is used as an active material (Japanese Patent Application Laid-Open No. 2-30
061), and the use of an active material in which an oxide or hydroxide of calcium or zinc is mixed with nickel hydroxide (JP-A-5-101825).
The reason why it is necessary to suppress the production of γ-type nickel oxyhydroxide is that it has a lower density than that of β-type nickel oxyhydroxide that is normally produced, which causes the expansion of the nickel electrode and the loss of the active material, and causes the internal short circuit. Because it will be. further,
This is because γ-type nickel oxyhydroxide absorbs a large amount of the electrolytic solution, which increases the internal resistance of the battery and shortens the battery life.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記公報に開
示された技術では、上記(1)および(2)の目的を達成する
ために、亜鉛の混晶量、カルシウムや亜鉛の酸化物ある
いは水酸化物の混合量をそれぞれ多くしなければならな
い。これらは充放電反応には関与しないので、ニッケル
極を高容量化するためにペースト式ニッケル極を採用し
た意義が薄れる。本発明が解決しようとする課題は、少
ない添加物量で高温時の充電効率を改善し、さらに、寿
命特性を向上させることのできるペースト式ニッケル正
極、及びそれらの特性を発揮したアルカリ蓄電池を提供
するものである。
However, in the technique disclosed in the above publication, in order to achieve the objects of the above (1) and (2), the mixed crystal amount of zinc, calcium or zinc oxide or water is used. It is necessary to increase the mixing amount of each oxide. Since these do not participate in the charge / discharge reaction, the significance of adopting the paste nickel electrode in order to increase the capacity of the nickel electrode is diminished. The problem to be solved by the present invention is to improve the charging efficiency at high temperature with a small amount of additives, and further to provide a paste-type nickel positive electrode capable of improving the life characteristics, and an alkaline storage battery exhibiting those characteristics. It is a thing.

【0004】[0004]

【課題を解決する手段】上記課題を解決するために、本
発明に係るペースト式ニッケル極(以下、ニッケル極と
のみ記す)は、活物質中に亜鉛酸カルシウムを含有する
ことを特徴とする。また、本発明に係るアルカリ蓄電池
は、前記ニッケル極を用いることを特徴とする。
In order to solve the above-mentioned problems, the paste type nickel electrode according to the present invention (hereinafter referred to as the nickel electrode only) is characterized in that the active material contains calcium zincate. An alkaline storage battery according to the present invention is characterized by using the nickel electrode.

【0005】[0005]

【作用】亜鉛酸カルシウムは、従来技術のような、亜鉛
化合物、カルシウム化合物をそれぞれ単独でニッケル極
に添加するか、あるいは水酸化ニッケルに亜鉛化合物を
混晶するよりも少量の添加量あるいは混晶量で、ニッケ
ル極の高温雰囲気下における酸素過電圧の低下を抑制
し、充電の受け入れ性を向上させることができる。さら
に過充電もしくは高電位となるような大きい電流密度で
の充電時のγ型オキシ水酸化ニッケルの生成を抑制さ
せ、寿命特性を向上させることができる。亜鉛酸カルシ
ウムは、粉末の状態で得られるため、焼結式ニッケル極
の製造における含浸操作ではニッケル極中に含有させる
ことは困難である。その点、ペースト式ニッケル極は、
活物質を含むスラリを直接集電体(基体)に充填可能で
あるため、容易に亜鉛酸カルシウムをニッケル極中に含
有させることができる。上記のニッケル極を用いること
で、高温雰囲気下における充電の受け入れ性が良好で、
且つ寿命特性の向上したアルカリ蓄電池を得ることがで
きる。
[Function] Calcium zincate is added in a smaller amount or mixed crystal than in the prior art in which a zinc compound and a calcium compound are individually added to the nickel electrode or a zinc compound is mixed with nickel hydroxide. The amount can suppress the decrease of the oxygen overvoltage in the high temperature atmosphere of the nickel electrode, and can improve the acceptability of charging. Furthermore, it is possible to suppress the generation of γ-type nickel oxyhydroxide during charging at a high current density such as overcharging or high potential, and it is possible to improve the life characteristics. Since calcium zincate is obtained in the form of powder, it is difficult to incorporate it into the nickel electrode by the impregnation operation in the production of the sintered nickel electrode. In that respect, the paste nickel electrode is
Since the slurry containing the active material can be directly filled in the current collector (base), calcium zincate can be easily contained in the nickel electrode. By using the above nickel electrode, the acceptability of charging under a high temperature atmosphere is good,
Moreover, an alkaline storage battery having improved life characteristics can be obtained.

【0006】[0006]

【実施例】本発明の実施例及び従来例を以下に説明す
る。 (実施例の亜鉛酸カルシウムの調製)本実施例に用いた
亜鉛酸カルシウムは、以下のように調製した。まず、水
酸化カルシウム(Ca(OH)2)粉末を10℃の水に混
入、攪拌し、カルシウム化合物の飽和溶液をつくる。次
に、酸化亜鉛(ZnO)粉末を60℃、35wt%のN
aOH水溶液に混入、攪拌し、亜鉛化合物の飽和溶液を
つくる。これらの飽和溶液を混合すると沈殿物が生成す
る。これが亜鉛酸カルシウムである。
EXAMPLES Examples of the present invention and conventional examples will be described below. (Preparation of calcium zincate in Examples) The calcium zincate used in this Example was prepared as follows. First, calcium hydroxide (Ca (OH) 2 ) powder is mixed in water at 10 ° C. and stirred to form a saturated solution of calcium compound. Next, zinc oxide (ZnO) powder was added at 60 ° C. and 35 wt% N
Mix in an aOH aqueous solution and stir to form a saturated solution of zinc compound. A precipitate forms when these saturated solutions are mixed. This is calcium zincate.

【0007】(実施例のニッケル極の作製)上記の亜鉛
酸カルシウム、及び活物質である水酸化ニッケル、導電
材としての水酸化コバルトを用いて表1に示す重量比で
構成されるニッケル極(A1〜A4)を作製した。この
とき、水酸化コバルトの重量比は、全ての電極において
5wt%とした。電極作製条件を以下に示す。水酸化ニ
ッケル粉末、亜鉛酸カルシウム粉末、水酸化コバルト粉
末を混合する。これをカルボキシメチルセルロース2w
t%の水溶液と共に混練しスラリ状とする。このスラリ
を厚さ1.2mm、多孔度94%の発泡ニッケル基体に
充填し、乾燥、加圧、裁断することにより、幅40m
m、長さ74mm、厚さ0.65mmのニッケル極を作
製した。表1には実施例、及び従来例のニッケル極の理
論容量も記載した。
(Preparation of Nickel Electrode of Example) A nickel electrode constituted by the weight ratio shown in Table 1 using the above-mentioned calcium zincate, nickel hydroxide as an active material, and cobalt hydroxide as a conductive material ( A1 to A4) were produced. At this time, the weight ratio of cobalt hydroxide was 5 wt% in all the electrodes. The electrode preparation conditions are shown below. Mix nickel hydroxide powder, calcium zincate powder, and cobalt hydroxide powder. This is carboxymethyl cellulose 2w
Knead with a t% aqueous solution to form a slurry. This slurry was filled in a foamed nickel substrate having a thickness of 1.2 mm and a porosity of 94%, dried, pressed and cut to give a width of 40 m.
A nickel electrode having m, a length of 74 mm and a thickness of 0.65 mm was produced. Table 1 also shows the theoretical capacities of the nickel electrodes of the examples and conventional examples.

【0008】(従来例Bのニッケル極の作製)亜鉛酸カ
ルシウムを使用せず、水酸化ニッケル粉末95wt%、
水酸化コバルト粉末5wt%のみで上記実施例と同様の
方法でニッケル極を作製した。これを従来例の電極Bと
する。
(Preparation of Nickel Electrode of Conventional Example B) 95 wt% of nickel hydroxide powder without using calcium zincate,
A nickel electrode was prepared in the same manner as in the above-described example using only 5 wt% of cobalt hydroxide powder. This is referred to as a conventional electrode B.

【0009】(従来例Cのニッケル極の作製)亜鉛酸カ
ルシウムを使用せず、Ca(OH)2粉末またはCaO
粉末と、Zn(OH)2粉末またはZnO粉末を、表1
に示す重量比で水酸化ニッケル粉末90wt%、水酸化
コバルト粉末5wt%と共に混合し、その他は上記実施
例と同様の方法で比較例の電極(C1〜C4)を作製し
た。
(Preparation of Nickel Electrode of Conventional Example C) Ca (OH) 2 powder or CaO was used without using calcium zincate.
Table 1 shows the powder and Zn (OH) 2 powder or ZnO powder.
90% by weight of nickel hydroxide powder and 5% by weight of cobalt hydroxide powder were mixed in the weight ratio shown in (1), and the other electrodes (C1 to C4) of the comparative example were manufactured in the same manner as in the above example.

【0010】[0010]

【表1】 [Table 1]

【0011】(電池の作製)陰極は、常法により調整し
たMm−Ni−Co−Al−Mnからなる組成の水素吸
蔵合金を用い、この水素吸蔵合金をボールミルなどの機
械粉砕器を用いて粉砕し、粒子径が60〜100μm程
度としたものを、ヒドロキシプロピルメチルセルロース
をバインダとして混練し、発泡ニッケル基体に充填し、
乾燥、プレスしたものを用いた。これを実施例、従来例
のニッケル極容量に対し、1.4倍の容量になるようそ
れぞれ容量密度を調整した。極板サイズは幅40mm、
長さ106mm、厚さ0.35mmである。実施例、従
来例、比較例のニッケル極と、上記陰極を公知のナイロ
ン製の不織布セパレータを用いて、最外周が陰極となる
ように捲回した。この電極群を円筒形電池缶に挿入後、
31wt%の水酸化カリウム水溶液を所定量注液し、A
A形の密閉形ニッケル・水素蓄電池を作製した。
(Production of Battery) As the cathode, a hydrogen storage alloy having a composition of Mm-Ni-Co-Al-Mn prepared by a conventional method is used, and this hydrogen storage alloy is crushed by a mechanical crusher such as a ball mill. Then, the particles having a particle diameter of about 60 to 100 μm were kneaded with hydroxypropylmethyl cellulose as a binder and filled in a foamed nickel substrate,
What was dried and pressed was used. The capacity density of each of the examples and the conventional example was adjusted to 1.4 times the capacity of the nickel electrode. The electrode plate size is 40 mm wide,
The length is 106 mm and the thickness is 0.35 mm. The nickel electrodes of Examples, Conventional Examples and Comparative Examples and the cathode were wound using a known nylon non-woven fabric separator so that the outermost periphery was the cathode. After inserting this electrode group into a cylindrical battery can,
Inject a predetermined amount of 31 wt% potassium hydroxide aqueous solution,
A sealed nickel-metal hydride storage battery of A type was produced.

【0012】(実験条件)これらのニッケル極を用いた
電池の評価として、高温時の充電効率試験と、サイクル
寿命試験を行った。試験前には常法により活性化処理し
た。高温時の充電効率試験は、25℃と45℃のそれぞ
れの雰囲気下で、0.1CmAで900分充電した後、
25℃の雰囲気下で、0.2CmAで終止電圧1.0V
まで放電して放電容量を調べた。この45℃で充電した
後の放電容量と、25℃で充電した後の放電容量の比を
計算した。この容量比を高温の充電効率とする。サイク
ル寿命試験は、作製した電池を周囲温度20℃で、充電
は1CmAで−ΔV=10mV(充電末期において酸素
ガス吸収が生じ、充電電圧がピーク電圧から10mV低
下した時点)まで、放電は1CmAで終止電圧1.0V
までの繰り返し充放電を行い、活物質利用率が70%以
下となったところで寿命とした。
(Experimental Conditions) As an evaluation of batteries using these nickel electrodes, a charging efficiency test at high temperature and a cycle life test were conducted. Before the test, activation treatment was carried out by a conventional method. The charging efficiency test at high temperature was conducted by charging at 0.1 CmA for 900 minutes in each atmosphere of 25 ° C and 45 ° C.
Final voltage 1.0V at 0.2CmA in 25 ℃ atmosphere
It was discharged up to and the discharge capacity was examined. The ratio of the discharge capacity after charging at 45 ° C. and the discharge capacity after charging at 25 ° C. was calculated. This capacity ratio is the charging efficiency at high temperature. The cycle life test was carried out at an ambient temperature of 20 ° C., at a charging temperature of 1 CmA, and at −ΔV = 10 mV (at the end of charging, when oxygen gas absorption occurred and the charging voltage dropped 10 mV from the peak voltage) until the battery was discharged at 1 CmA. Final voltage 1.0V
Was repeatedly charged and discharged up to, and the life was reached when the active material utilization rate became 70% or less.

【0013】(実験結果)表2に本発明によるニッケル
極を用いた電池(A1〜A4)と従来例の電池Bと電池
(C1〜C4)の45℃/25℃の充電効率を示す。従
来の電池(B)の高温時の充電効率は、65%程度と極
端に悪く、従来例(C1〜4)は86〜88%である。
しかしながら、本実施例の電池(A1〜A4)は、90
〜96%もの充電効率を示すことが分かる。これによ
り、本発明の高温時の充電効率向上効果は明らかであ
る。しかも、その効果はニッケル極への添加物(亜鉛酸
カルシウム)量が極少量でも得られた。同じく表2にサ
イクル寿命回数を示す。これによると、従来例の電池B
に比較し、本実施例の電池(A1〜A4)は1000サ
イクル以上と飛躍的に延び、従来例の電池(C1〜C
4)に比べても明らかに優位であることが分かる。従っ
て本発明のサイクル寿命特性向上効果は明らかである。
しかも、その効果はニッケル極への添加物(亜鉛酸カル
シウム)の量が極少量でも得られた。
(Experimental Results) Table 2 shows the charging efficiency at 45 ° C./25° C. of the batteries (A1 to A4) using the nickel electrode according to the present invention, the conventional battery B and the batteries (C1 to C4). The charging efficiency of the conventional battery (B) at a high temperature is extremely poor at about 65%, and the charging efficiency of the conventional example (C1 to 4) is 86 to 88%.
However, the batteries (A1 to A4) of this example have 90
It can be seen that a charging efficiency of up to 96% is exhibited. From this, the effect of improving the charging efficiency at high temperature of the present invention is clear. Moreover, the effect was obtained even when the amount of the additive (calcium zincate) to the nickel electrode was extremely small. Similarly, Table 2 shows the cycle life frequency. According to this, the battery B of the conventional example
In comparison with the battery of this example, the batteries (A1 to A4) of the present example dramatically extend to 1000 cycles or more, and
It can be seen that it is clearly superior to 4). Therefore, the effect of improving the cycle life characteristics of the present invention is clear.
Moreover, the effect was obtained even when the amount of the additive (calcium zincate) to the nickel electrode was extremely small.

【0014】[0014]

【表2】 [Table 2]

【0015】本実施例では上述した方法で亜鉛酸カルシ
ウムを調製したが、これに限定されるものではない。ま
た、本実施例では円筒形ニッケル・水素電池に本発明の
ニッケル極を適用したが、その他のアルカリ蓄電池、例
えばニッケル・カドミウム電池、ニッケル・亜鉛電池に
も適用できる。また、当然電池の形状にも制限されな
い。また、本実施例では、ニッケル極の集電体(基体)
として発泡ニッケル基体を用いたが、活物質及び亜鉛酸
カルシウムを含むスラリを直接充填可能な基体であれば
他の基体でも構わない。
In the present example, calcium zincate was prepared by the method described above, but the present invention is not limited to this. Further, although the nickel electrode of the present invention is applied to the cylindrical nickel-hydrogen battery in the present embodiment, it can be applied to other alkaline storage batteries such as nickel-cadmium battery and nickel-zinc battery. Further, naturally, the shape of the battery is not limited. Further, in this embodiment, the current collector (base) of the nickel electrode is used.
Although a foamed nickel substrate was used as the substrate, any other substrate may be used as long as it can directly fill the slurry containing the active material and calcium zincate.

【0016】[0016]

【発明の効果】以上のように本発明によると、少ない添
加物量で、高温時の充電効率を改善し、さらに、寿命特
性を向上させることのできるニッケル極、及びそれらの
特性を発揮したアルカリ蓄電池を提供することができ
た。
As described above, according to the present invention, it is possible to improve the charging efficiency at high temperature with a small amount of additives and further improve the life characteristics, and the alkaline storage battery exhibiting those characteristics. Could be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】活物質中に亜鉛酸カルシウムを含有するこ
とを特徴とするペースト式ニッケル極。
1. A paste-type nickel electrode containing calcium zincate in an active material.
【請求項2】請求項1記載のペースト式ニッケル極を用
いることを特徴とするアルカリ蓄電池。
2. An alkaline storage battery using the paste-type nickel electrode according to claim 1.
JP7020162A 1995-02-08 1995-02-08 Nickel paste electrode and alkaline storage battery using this nickel electrode Pending JPH08213011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7020162A JPH08213011A (en) 1995-02-08 1995-02-08 Nickel paste electrode and alkaline storage battery using this nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7020162A JPH08213011A (en) 1995-02-08 1995-02-08 Nickel paste electrode and alkaline storage battery using this nickel electrode

Publications (1)

Publication Number Publication Date
JPH08213011A true JPH08213011A (en) 1996-08-20

Family

ID=12019471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7020162A Pending JPH08213011A (en) 1995-02-08 1995-02-08 Nickel paste electrode and alkaline storage battery using this nickel electrode

Country Status (1)

Country Link
JP (1) JPH08213011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032208A1 (en) * 2004-09-24 2006-03-30 Byd Company Limited Methods for fabricating calcium zincate for negative electrodes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032208A1 (en) * 2004-09-24 2006-03-30 Byd Company Limited Methods for fabricating calcium zincate for negative electrodes
CN100355120C (en) * 2004-09-24 2007-12-12 比亚迪股份有限公司 Preparation method of alkaline storage battery negative electrode active material calcium zincate
KR100831802B1 (en) * 2004-09-24 2008-05-28 비와이디 컴퍼니 리미티드 Methods for Fabricating Calcium Zincate for Negative Electrodes

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JP3923157B2 (en) Alkaline storage battery
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
KR100336232B1 (en) Secondary battery and method of manufacturing the same
JP3482606B2 (en) Sealed alkaline storage battery
JP3344234B2 (en) Paste-type nickel positive electrode for alkaline storage battery and its manufacturing method
JP3079303B2 (en) Activation method of alkaline secondary battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP2001266867A (en) Alkaline battery and positive electrode for use in alkaline battery
JPH08213011A (en) Nickel paste electrode and alkaline storage battery using this nickel electrode
JPH07272722A (en) Paste type nickel positive electrode for alkaline storage battery
JP3550838B2 (en) Alkaline storage battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries
JP2530281B2 (en) Alkaline storage battery
JP4839433B2 (en) Sealed nickel hydride secondary battery
JP4458749B2 (en) Alkaline storage battery
JP2600825B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH11238507A (en) Alkaline storage battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate