JP2591988B2 - Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate - Google Patents

Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Info

Publication number
JP2591988B2
JP2591988B2 JP63158938A JP15893888A JP2591988B2 JP 2591988 B2 JP2591988 B2 JP 2591988B2 JP 63158938 A JP63158938 A JP 63158938A JP 15893888 A JP15893888 A JP 15893888A JP 2591988 B2 JP2591988 B2 JP 2591988B2
Authority
JP
Japan
Prior art keywords
cadmium
electrode plate
negative electrode
battery
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63158938A
Other languages
Japanese (ja)
Other versions
JPH027368A (en
Inventor
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63158938A priority Critical patent/JP2591988B2/en
Publication of JPH027368A publication Critical patent/JPH027368A/en
Application granted granted Critical
Publication of JP2591988B2 publication Critical patent/JP2591988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明はカドミウム負極板と、その負極板を用いたア
ルカリ二次電池を関するものである。
Description: TECHNICAL FIELD The present invention relates to a cadmium negative electrode plate and an alkaline secondary battery using the negative electrode plate.

従来の技術とその課題 現在、二次電池としては、主として鉛電池およびニッ
ケル−カドミウム電池が用いられているが、特にニッケ
ル−カドミウム電池は、高率放電での特性が良好である
ことや、鉛電池に比べて寿命が長いなどの理由によって
需要が急増している。また一方では、近年の電子機器の
小型化、軽量化などに伴って、高容量化や充電時間の短
縮が二次電池に対して要求されている。
2. Description of the Related Art At present, lead batteries and nickel-cadmium batteries are mainly used as secondary batteries. In particular, nickel-cadmium batteries have good characteristics in high-rate discharge and lead-free batteries. Demand is increasing rapidly due to its longer life than batteries. On the other hand, with the recent reduction in size and weight of electronic devices, there is a demand for secondary batteries to have higher capacity and shorter charging time.

カドミウム負極板を用いた従来のアルカリ二次電池に
は次のような問題がある。それはカドミウム負極板に関
するもので、充放電反応に関与しない水酸化カドミウム
を多く有していることである。つまり、水酸化カドミウ
ムの水素ガス発生までの充電効率は、通常90%程度であ
り、残り約10%の水酸化カドミウムは何等役に立つこと
もなく不要な体積を占めている。さらにニッケル−カド
ミウム電池を例にとると、電池の密閉状態を保つため
に、負極板内に正極板の容量の20%以上のいわゆるリザ
ーブの水酸化カドミウムが必要であった。このリザーブ
の水酸化カドミウムは正極活物質の保持体である金属ニ
ッケルの活物質化や電池内の空間体積を補償するもので
あり、放電容量には寄与しない。これらの水酸化カドミ
ウムを有していることが、カドミウム負極板および電池
の高容量化を妨げている一因である。
A conventional alkaline secondary battery using a cadmium negative electrode plate has the following problems. It relates to a cadmium negative electrode plate, and has a large amount of cadmium hydroxide which does not participate in the charge / discharge reaction. That is, the charging efficiency of cadmium hydroxide until hydrogen gas generation is usually about 90%, and the remaining 10% of cadmium hydroxide occupies an unnecessary volume without any use. Furthermore, taking a nickel-cadmium battery as an example, a so-called reserve cadmium hydroxide of 20% or more of the capacity of the positive electrode plate was required in the negative electrode plate in order to keep the battery sealed. The cadmium hydroxide in the reserve compensates for the conversion of the metallic nickel, which is a support for the positive electrode active material, into an active material and the space volume in the battery, and does not contribute to the discharge capacity. The presence of these cadmium hydroxides is one of the factors preventing the cadmium negative electrode plate and the battery from increasing in capacity.

また、従来のニッケル−カドミウム電池は、電池の密
閉状態を保つために定電流で充電した場合には電流を約
1CA以下に抑えなければならないという問題を有してい
る。これは、充電電流を1CA以上に大きくした場合に
は、過充電領域において正極板から発生した全ての酸素
ガスを負極板で吸収することができずに、結局は安全弁
が作動して電解液の減少を起こし、容量低下と寿命特性
の劣化を起こすためである。そこで、特願昭62−83582
号や特願昭63−13345号で提案されているように、充電
時における負極板の水素発生にいたる過程の電位変化を
充電電圧の変化として検出して充電制御を容易にし、か
つ急速充電を可能にする試みがあるが、負極板の充電効
率の点で不十分である。
In addition, a conventional nickel-cadmium battery reduces the current when charged at a constant current in order to keep the battery sealed.
There is a problem that it must be kept below 1 CA. This is because if the charging current is increased to 1 CA or more, all the oxygen gas generated from the positive electrode plate in the overcharge region cannot be absorbed by the negative electrode plate, and eventually the safety valve operates and the electrolyte solution is discharged. This is due to the decrease in the capacity and the deterioration of the life characteristics. Therefore, Japanese Patent Application No. 62-83582
As proposed in Japanese Patent Application No. 63-13345 and Japanese Patent Application No. 63-13345, a potential change in the process of generating hydrogen on the negative electrode plate during charging is detected as a change in charging voltage to facilitate charging control, and rapid charging is performed. There is an attempt to make it possible, but it is insufficient in terms of the charging efficiency of the negative electrode plate.

課題を解決するための手段 本発明はカドミウム負極板と、その負極板を備えたア
ルカリ二次電池に関するものであって、該負極板はチタ
ン酸カリウムを全カドミウム量に対し0.25重量%以上20
重量%以下含有することを特徴とするものである。
Means for Solving the Problems The present invention relates to a cadmium negative electrode plate and an alkaline secondary battery provided with the negative electrode plate, wherein the negative electrode plate contains potassium titanate in an amount of 0.25% by weight or more based on the total cadmium amount.
% By weight or less.

作用 カドミウム負極板の充電効率について検討した結果、
負極活物質中にチタン酸カリウムを含有させることによ
って充電効率が高くなることがわかった。
Action As a result of examining the charging efficiency of the cadmium negative electrode plate,
It was found that the charging efficiency was increased by including potassium titanate in the negative electrode active material.

例えば、水酸化カドミウムあるいは酸化カドミウムと
金属カドミウムとを活物質の主体とするカドミウム負極
板を、酸化カドミウムあるいは水酸化カドミウムの理論
容量を基準として、1CAの電流で充電した際の水素ガス
が発生するまでの充電効率は約93%であるが、チタン酸
カリウムを全カドミウム量に対し1重量%含有する場合
には充電効率が98%以上に向上する。
For example, hydrogen gas is generated when a cadmium negative electrode plate mainly containing cadmium hydroxide or cadmium oxide and metal cadmium as an active material is charged with a current of 1 CA based on the theoretical capacity of cadmium oxide or cadmium hydroxide. The charging efficiency is about 93%, but when potassium titanate is contained at 1% by weight based on the total amount of cadmium, the charging efficiency is improved to 98% or more.

また、このような充電効率の優れた負極板を用いて、
その負極板の充電時の水素発生にいたる電位変化を端子
電圧の変化として検出すれば充電制御が容易であり、そ
の時点で定電圧に設定すれば過充電領域では電流が小さ
くなるために、急速充電が可能でしかも電解液の減量の
ないアルカリ二次電池となる。
Also, using such a negative electrode plate with excellent charging efficiency,
If the potential change leading to hydrogen generation during the charging of the negative electrode plate is detected as a change in terminal voltage, charging control is easy, and if a constant voltage is set at that point, the current decreases in the overcharge region, so An alkaline secondary battery that can be charged and has no loss of electrolyte is obtained.

実施例 以下本発明を好適な実施例を用いて詳細に説明する。Examples Hereinafter, the present invention will be described in detail using preferred examples.

本発明の目的は、充電効率の優れたカドミウム負極板
を得ることであり、またそれを電池に適用することであ
る。従って、まず最初にカドミウム負極板について述べ
る。
An object of the present invention is to obtain a cadmium negative electrode plate having excellent charging efficiency, and to apply it to a battery. Therefore, the cadmium negative electrode plate will be described first.

[実施例1] 酸化カドミウム粉末240mgと金属カドミウム粉末210mg
と配合量を0〜84mgの範囲で変えたチタン酸カリウムと
混合してから、230kg/cm2の圧力で加圧成形して、全カ
ドミウムの理論容量が200mAhの錠剤とした。さらにこの
錠剤を20メッシュのニッケル網で包んで負極板とした。
これを負極板群(イ)とする。
[Example 1] 240 mg of cadmium oxide powder and 210 mg of metal cadmium powder
And potassium titanate whose blending amount was changed in the range of 0 to 84 mg, and then pressed under a pressure of 230 kg / cm 2 to obtain tablets having a total cadmium theoretical capacity of 200 mAh. Further, this tablet was wrapped with a nickel mesh of 20 mesh to obtain a negative electrode plate.
This is referred to as a negative electrode plate group (a).

[実施例2] 水酸化カドミウム粉末237mgと金属カドミウム粉末210
mgと配合量を0〜84mg範囲で変えたチタン酸カリウムと
を混合した後、実施例1と同様にして、理論容量が200m
Ahの錠剤形負極板とした。これを負極板群(ロ)とす
る。
[Example 2] Cadmium hydroxide powder 237 mg and metal cadmium powder 210
mg and potassium titanate whose blending amount was changed in the range of 0 to 84 mg, and the theoretical capacity was 200 m in the same manner as in Example 1.
An Ah tablet-shaped negative electrode plate was used. This is referred to as a negative electrode plate group (b).

なお、全カドミウム量とはカドミウム負極板に含まれ
るCd原子の総量である。
The total cadmium amount is the total amount of Cd atoms contained in the cadmium negative electrode plate.

これらの負極板を比重1.250(20℃)の水酸化カリウ
ム水溶液中で、対極にニッケル平板2枚を用いて、配合
時における酸化カドミウム粉末あるいは水酸化カドミウ
ム粉末の理論容量を基準として1CA(100mA)の電流で充
放電を繰り返し、下記の式(1)から充電効率を求め
た。
These negative electrodes are placed in an aqueous potassium hydroxide solution having a specific gravity of 1.250 (20 ° C.), and two nickel plates are used as counter electrodes, and 1 CA (100 mA) based on the theoretical capacity of the cadmium oxide powder or cadmium hydroxide powder at the time of compounding is used. The charge / discharge was repeated with the current of, and the charging efficiency was determined from the following equation (1).

その結果を第1図に示す。同図から活物質原料として
酸化カドミウム量あるいは水酸化カドミウムを用いたこ
とによる差は認められず、全カドミウム量に対するチタ
ン酸カリウムの含有率が0.25重量%以上で充電効率の向
上が認められる。特に含有率が0.5重量%以上15重量%
以下の範囲では充電効率が97%以上と極めて高く、充電
できない不活性な水酸化カドミウムが減少していること
を示している。
The result is shown in FIG. From the figure, there is no difference due to the use of cadmium oxide or cadmium hydroxide as the active material raw material, and the charging efficiency is improved when the content of potassium titanate with respect to the total cadmium content is 0.25% by weight or more. In particular, the content is 0.5% by weight or more and 15% by weight.
In the following range, the charging efficiency is extremely high at 97% or more, indicating that inactive cadmium hydroxide that cannot be charged is reduced.

なお、チタン酸カリウムの含有率を20重量%よりも高
くすることは可能であるが、カドミウム活物質の理論容
量密度の低下が大きくなるため、その含有率は20重量%
以下であることが望ましいと考えられる。
Although it is possible to increase the content of potassium titanate to more than 20% by weight, the content of the cadmium active material is reduced to 20% by weight because the theoretical capacity density of the cadmium active material is greatly reduced.
It is considered desirable that:

以上のことから全カドミウムに対するチタ酸カリウム
の含有率は、0.25重量%以上20重量%以下が適している
といえる。
From the above, it can be said that the content of potassium titanate with respect to all cadmium is suitably from 0.25% by weight to 20% by weight.

以下に実施例で用いた各原料の性状を示す。 The properties of each raw material used in the examples are shown below.

〈酸化カドミウム粉末〉 アトマイズ法によって製作した平均粒子径1μmのも
の 〈水酸化カドミウム粉末〉 上記の酸化カドミウム粉末を精製水中に浸漬して水和
させたもの 〈金属カドミウム粉末〉 電気化学的な置換法によって製作した平均粒子径2μ
mのもの 〈チタン酸カリウム〉 市販の試薬 次に以上の実施例で説明した極めて高い充電効率を有
する本発明のカドミウム負極板を用いた電池の評価を行
った。
<Cadmium oxide powder> One with an average particle diameter of 1 μm manufactured by the atomization method <Cadmium hydroxide powder> The above cadmium oxide powder immersed in purified water and hydrated <Cadmium metal powder> Electrochemical substitution method 2μ average particle size
<potassium titanate> Commercially available reagent Next, the battery using the cadmium negative electrode plate of the present invention having extremely high charging efficiency described in the above Examples was evaluated.

本発明のカドミウム負極板はリザーブの水酸化カドミ
ウムを必要とする従来のニッケル−カドミウム電池に使
用できる他に、これよりも高容量化と充電時間の短縮が
可能であるリザーブの水酸化カドミウムを有しない電池
に使用した場合にその効果がより明確である。それは、
本発明のカドミウム負極板の充電効率が優れていること
に起因する。従って以下の実施例ではリザーブの水酸化
カドミウムを有しない電池を例にして説明する。
The cadmium negative electrode plate of the present invention can be used for a conventional nickel-cadmium battery that requires a reserve cadmium hydroxide, and also has a reserve cadmium hydroxide that can have a higher capacity and a shorter charging time. The effect is more clear when used in batteries that do not. that is,
This is because the cadmium negative electrode plate of the present invention has excellent charging efficiency. Accordingly, in the following examples, a battery having no cadmium hydroxide reserve will be described as an example.

本発明のアルカリ電池に使用できる正極活物質は水酸
化ニッケル,二酸化マンガンおよび酸化銀である。これ
らのうち一般的に多く用いられている活物質は水酸化ニ
ッケルであるので、ニッケル−カドミウム電池を中心に
して説明する。
The positive electrode active materials that can be used in the alkaline battery of the present invention are nickel hydroxide, manganese dioxide, and silver oxide. Among these, the active material that is generally used is nickel hydroxide, and therefore, the description will be focused on nickel-cadmium batteries.

本発明に用いるカドミウム負極板は、基本的に以下に
示す集電体を用いて製造することができる。すなわち、
ニッケルや銅やカドミウムの網,エクスパンデッドメタ
ル,穿孔板あるいは集電体と活物質保持体を兼ねる三次
元構造の金属発泡体や金属繊維のマットである。
The cadmium negative electrode plate used in the present invention can be basically manufactured using the following current collector. That is,
It is a mat of nickel, copper or cadmium net, expanded metal, perforated plate or three-dimensional metal foam or metal fiber which also serves as a current collector and active material holder.

また、鉄にニッケルメッキしたものや、鉄あるいはニ
ッケルに銅メッキしたもの、さらに鉄,ニッケルあるい
は銅にカドミウムメッキしたものも使用できる。
In addition, iron plated with nickel, iron or nickel plated with copper, and iron, nickel or copper plated with cadmium can also be used.

[実施例3] 酸化カドミウム粉末60重量部と金属カドミウム粉末40
重量部とチタン酸カリウム2重量部と長さ1mmのポリプ
ロピレン製の短繊維0.1重量部とを1.5重量%のポリビニ
ルアルコールを含むエチレングリコール30mlで混合して
ペースト状にする。このペーストをニッケルメッキ(5
μm)した穿孔鋼板に塗着し、次いで乾燥、加圧して酸
化カドミウムの理論容量が960mAhで寸法が2.9×14×52
(mm)の負極板を製作した。
Example 3 60 parts by weight of cadmium oxide powder and metal cadmium powder 40
Parts by weight, 2 parts by weight of potassium titanate, and 0.1 part by weight of short fiber made of polypropylene having a length of 1 mm are mixed with 30 ml of ethylene glycol containing 1.5% by weight of polyvinyl alcohol to form a paste. This paste is plated with nickel (5
μm), applied to a perforated steel plate, and then dried and pressed to obtain a cadmium oxide with a theoretical capacity of 960 mAh and dimensions of 2.9 × 14 × 52.
(Mm) negative electrode plate was manufactured.

一方、正極板は次の方法で製作した。 On the other hand, the positive electrode plate was manufactured by the following method.

多孔度が約80%の焼結式ニッケル基板に、ニッケルと
コバルトとの合計に対するコバルトの含有率が8モル%
の硝酸コバルトと硝酸ニッケルとの混合水溶液[PH=
2、比重1.50(20℃)]を含浸した後、比重1.200(20
℃)の水酸化ナトリウム水溶液に浸漬し、湯洗、乾燥す
る。この操作を繰り返して、水酸化ニッケルと水酸化コ
バルトの理論容量の合計が400mAhで寸法が1.4×14×52m
mの正極板を製作した。
A sintered nickel substrate with a porosity of about 80%, a cobalt content of 8 mol% based on the total of nickel and cobalt
Aqueous solution of cobalt nitrate and nickel nitrate [PH =
2. Specific gravity 1.50 (20 ° C)], then specific gravity 1.200 (20
C), washed with hot water and dried. Repeat this operation, the total theoretical capacity of nickel hydroxide and cobalt hydroxide is 400 mAh and the size is 1.4 × 14 × 52 m
m positive electrode plate was manufactured.

次に負極板1枚を厚さ0.2mmのポリアミドの不織布に
包んだ後に正極板2枚の間にはさみ、電解液として比重
1.250(20℃)の水酸化カリウム水溶液2.4mlを用いて、
公称容量が700mAhの合成樹脂製の電槽を用いたニッケル
−カドミウム電池(A)を製作した。外形寸法は67×1
6.5×8(mm)であり、0.1kg/cm2で作動する安全弁を付
けている。また、この電池の負極板中の酸化カドミウム
は電解液を入れると以下の式(2)に示す反応によって
水を消費するため、その消費分に相当する水を余分に注
入した。
Next, one negative electrode plate is wrapped in a non-woven fabric of polyamide having a thickness of 0.2 mm, and then sandwiched between two positive electrode plates.
Using 2.4 ml of 1.250 (20 ° C.) aqueous potassium hydroxide solution,
A nickel-cadmium battery (A) using a synthetic resin battery case with a nominal capacity of 700 mAh was manufactured. External dimensions are 67 x 1
6.5 × a 8 (mm), and with a safety valve operating at 0.1 kg / cm 2. In addition, since cadmium oxide in the negative electrode plate of this battery consumes water by the reaction represented by the following formula (2) when the electrolytic solution is added, extra water corresponding to the consumed amount was injected.

CdO+H2O→Cd(OH) ……(2) [実施例4] 水酸化カドミウム粉末68.5重量部と金属カドミウム粉
末40重量部とチタン酸カリウム2重量部と長さ1mmのポ
リプロピレン製の短繊維0.1重量部とを1.5重量%のポリ
ビニルアルコールを含むエチレングリコール30mlで混合
してペースト状にする。このペーストを銅メッキ(5μ
m)した穿孔鋼板に塗着し、次いで乾燥,加圧して水酸
化カドミウムの理論容量が960mAhで寸法が2.9×14×52
(mm)の負極板を製作した。
CdO + H 2 O → Cd (OH) 2 (4) [Example 4] 68.5 parts by weight of cadmium hydroxide powder, 40 parts by weight of metal cadmium powder, 2 parts by weight of potassium titanate, and a short fiber made of polypropylene having a length of 1 mm 0.1 parts by weight are mixed with 30 ml of ethylene glycol containing 1.5% by weight of polyvinyl alcohol to form a paste. This paste is plated with copper (5μ
m) Coated on perforated steel sheet, then dried and pressurized, the theoretical capacity of cadmium hydroxide is 960mAh and the size is 2.9 × 14 × 52
(Mm) negative electrode plate was manufactured.

次に上記の負極板と実施例3と同じ正極板とを用いて
実施例3と同様な構成の公称容量が700mAhの角形ニッケ
ル−カドミウム電池(B)を製作した。
Next, a square nickel-cadmium battery (B) having a nominal capacity of 700 mAh and a configuration similar to that of Example 3 was manufactured using the above-described negative electrode plate and the same positive electrode plate as that of Example 3.

[実施例5] 実施例3における負極板の集電体すなわちニッケルメ
ッキした穿孔鋼板の代わりにカドミウムメッキ(5μ
m)した穿孔鋼板を用いた以外は全て実施例3と同様に
して公称容量700mAhの角形ニッケル−カドミウム電池
(C)を製作した。
Example 5 Instead of the current collector of the negative electrode plate in Example 3, that is, the nickel-plated perforated steel plate, cadmium plating (5 μm) was used.
m) A square nickel-cadmium battery (C) having a nominal capacity of 700 mAh was produced in the same manner as in Example 3 except that the perforated steel plate was used.

[比較例1] 実施例3における負極板の配合からチタン酸カリウム
を削除した以外は全て実施例3と同様にして公称容量70
0mAhの角形ニッケル−カドミウム電池(D)を製作し
た。
Comparative Example 1 The same procedure as in Example 3 was carried out except that potassium titanate was omitted from the composition of the negative electrode plate in Example 3, and the nominal capacity was 70%.
A 0 mAh square nickel-cadmium battery (D) was fabricated.

以上のようにして製作した電池(A),(B),
(C)および(D)を20℃において最大電流3CAの電流
で1.90Vの定電圧充電を30分間行った後、0.2CAの電流で
0.5Vまで放電するという充放電サイクルを250回行っ
た。1サイクル目の放電容量を100とした場合の各サイ
クルにおける容量保持率を第2図に示す。同図から本発
明の電池(A),(B),および(C)は比較電池
(D)よりも容量保持率が明らかに高いことがわかる。
この原因は本発明の電池の負極活物質の充電効率が極め
て高く、3CAのような大きな電流であっても充電終期の
負極電位の立ち上がりまでの充電電気量が多いためであ
り、また充電効率のサイクルにおける低下がほとんどな
いためである。
The batteries (A), (B),
(C) and (D) were subjected to a constant voltage charge of 1.90 V for 30 minutes at a maximum current of 3 CA at 20 ° C., followed by a current of 0.2 CA.
A charge / discharge cycle of discharging to 0.5 V was performed 250 times. FIG. 2 shows the capacity retention ratio in each cycle when the discharge capacity in the first cycle is 100. From the figure, it can be seen that the batteries (A), (B) and (C) of the present invention have a clearly higher capacity retention than the comparative battery (D).
The reason for this is that the charging efficiency of the negative electrode active material of the battery of the present invention is extremely high, and even with a large current such as 3 CA, the amount of charge electricity until the negative electrode potential rises at the end of charging is large. This is because there is almost no decrease in the cycle.

なお、電池(A),(B),(C)および(D)の負
極板中の水酸化カドミウムの含有量は重量比で正極中の
水酸化ニッケルの約0.95倍[2.73(g/Ah)/2.89(g/A
h)]となっている。また負極板の製作に用いた酸化カ
ドミウム等の原料の性状は先の錠剤形負極板の実施例で
用いたものと同様である。
The content of cadmium hydroxide in the negative plates of the batteries (A), (B), (C) and (D) was about 0.95 times the weight ratio of nickel hydroxide in the positive electrode [2.73 (g / Ah). /2.89 (g / A
h)]. The properties of the raw materials such as cadmium oxide used in the production of the negative electrode plate are the same as those used in the above-mentioned embodiment of the tablet-type negative electrode plate.

以上のように、本発明の電池は、定電圧制御という簡
便な充電方法で超急速充電が可能である。
As described above, the battery of the present invention can be super-rapidly charged by a simple charging method called constant voltage control.

なお、充電方法は、最大電流を規制して定電圧充電す
る方法を適用したがこの方法は、従来のニッケル−カド
ミウム電池で用いられている定電流で充電した後、充電
電圧がガス吸収によって低下するのを検出して充電を打
切る方法やガス吸収による発熱を検出して充電を打切る
方法のような複雑な充電システムではない。また本発明
の特徴のひとつは従来ニッケル−カドミウム電池ではそ
の適用が困難であった定電圧充電方式が容易に行えるこ
とである。すなわち従来のニッケル−カドミウム電池で
は充電過程の電圧と充電終期の電圧との差が高々150〜2
00mVと少なかったため、定電圧充電方式が適用できなか
ったが、本発明による電池の場合にはその差が0.2CA以
上の電流で400mV以上にも達するために充電電圧の変化
を検出することが容易である。この場合、定電流で充電
して、充電電圧の上昇を検出してから電流を下げてもよ
いし、定電圧で充電してもよい。なお、従来の焼結式極
板を用いた公称容量が700mAhの円筒形ニッケル−カドミ
ウム電池(AAサイズ)を最大電流3CAの電流で1.9Vの定
電圧充電を30分間行ったところ、安全弁が作動して液漏
れが発生した。このことは従来の電池の充電電圧が1.9V
に達しないために電池が過充電されたことによるもので
ある。
The charging method used was a method of charging at a constant voltage by regulating the maximum current.However, after charging at a constant current used in a conventional nickel-cadmium battery, the charging voltage decreased due to gas absorption. It is not a complicated charging system such as a method of detecting charging and terminating charging or a method of detecting heat generation due to gas absorption and terminating charging. One of the features of the present invention is that a constant voltage charging system, which has been conventionally difficult to apply to a nickel-cadmium battery, can be easily performed. That is, in the conventional nickel-cadmium battery, the difference between the voltage in the charging process and the voltage at the end of charging is 150 to 2 at most.
The constant voltage charging method could not be applied because it was as small as 00 mV, but in the case of the battery according to the present invention, the difference reached 400 mV or more at a current of 0.2 CA or more, so that it was easy to detect a change in the charging voltage. It is. In this case, the battery may be charged at a constant current and the current may be reduced after detecting an increase in the charging voltage, or the battery may be charged at a constant voltage. The safety valve was activated when a 1.9V constant voltage charge of a conventional nickel-cadmium battery (AA size) with a nominal capacity of 700mAh using a conventional sintered electrode plate and a maximum current of 3CA was performed for 30 minutes. And a liquid leak occurred. This means that the charging voltage of a conventional battery is 1.9V
, Because the battery is overcharged.

このように本発明の電池では、充電終期の負極板の電
位変化を大きくすることが有利であり、集電体の表面
は、基本的に水素発生の過電圧が大きい銅あるいはカド
ミウムであるもの、例えば銅やカドミウムの網,エクス
パンデッドメタル,穿孔板あるいは集電体と活物質保持
体を兼ねる三次元構造の金属発泡体や金属繊維のマット
等、さらに材質としては鉄あるいはニッケルに銅あるい
はカドミウムメッキしたものが適している。しかし、水
素発生の過電圧が小さいニッケルの集電体であっても、
活物質にニッケル粉末等の水素過電圧の小さい物質を少
なくすることによって、例えば5重量%以下にすれば集
電体として用いることができる。
Thus, in the battery of the present invention, it is advantageous to increase the potential change of the negative electrode plate at the end of charging, and the surface of the current collector is basically a copper or cadmium having a large overvoltage of hydrogen generation, for example, Copper or cadmium net, expanded metal, perforated plate or three-dimensional metal foam or metal fiber mat that also serves as current collector and active material holder, and copper or cadmium plating on iron or nickel Those that do are suitable. However, even with a nickel current collector with a small overvoltage for hydrogen generation,
The active material can be used as a current collector by reducing a material having a small hydrogen overvoltage such as nickel powder to 5% by weight or less, for example.

以上の本発明実施例では、正極活物質として水酸化ニ
ッケルを用いて説明したが、活物質として二酸化マンガ
ンを用いてもニッケル−カドミウム電池と同様な効果が
現れる。以下に、本発明を二酸化マンガン−カドミウム
電池に適用した場合について好適な実施例を用いて説明
する。
In the above embodiments of the present invention, nickel hydroxide was used as the positive electrode active material. However, even when manganese dioxide was used as the active material, the same effect as that of a nickel-cadmium battery was obtained. Hereinafter, a case where the present invention is applied to a manganese dioxide-cadmium battery will be described using preferred examples.

[実施例6] 金属カドミウム粉末100重量部と、チタン酸カリウム
2重量部と長さ1mmのポリプロピレン製の短繊維0.1重量
部とを1.5重量%のポリビニルアルコールを含むエチレ
ングリコール30mlで混合してペースト状にする。このペ
ーストを銅のエクスパンデッドメタルに塗着し、次いで
乾燥,加圧して金属カドミウムの容量が800mAhで寸法が
2.9×14×52(mm)の負極板を製作した。
Example 6 100 parts by weight of metal cadmium powder, 2 parts by weight of potassium titanate, and 0.1 part by weight of polypropylene short fiber having a length of 1 mm were mixed with 30 ml of ethylene glycol containing 1.5% by weight of polyvinyl alcohol and paste. Shape. This paste is applied to copper expanded metal, and then dried and pressed to obtain a metal cadmium capacity of 800 mAh and dimensions.
A 2.9 × 14 × 52 (mm) negative electrode plate was manufactured.

一方、正極板は次の方法で製作した。 On the other hand, the positive electrode plate was manufactured by the following method.

二酸化マンガン(γ−MnO2)80重量部とグラファイト
10重量部とを60重量%のポリテトラフルオロエチレンの
水性ディスパージョン30mlで混練した後、ローラーでシ
ート状にし、20メッシュのニッケル網に両面からさらに
加圧して理論容量が200mAh,寸法が1.4×14×52(mm)の
正極板を製作した。
80 parts by weight of manganese dioxide (γ-MnO 2 ) and graphite
After kneading 10 parts by weight with 30 ml of an aqueous dispersion of 60% by weight of polytetrafluoroethylene, the mixture is formed into a sheet by a roller, and further pressed on a 20 mesh nickel mesh from both sides to have a theoretical capacity of 200 mAh and a size of 1.4 × A 14 × 52 (mm) positive electrode plate was manufactured.

次に先の負極板1枚を厚さ0.2mmのポリビニルアルコ
ール製の不織布で包んだ後、正極板2枚の間にはさみ、
電解液として比重1.350(20℃)の水酸化カリウム水溶
液を2.7ml用い、公称容量が240mAhで合成樹脂電槽を用
いた角形二酸化マンガン−カドミウム電池(E)を製作
した。この電池は外径寸法67×16.5×8(mm)であり、
0.1kg/cm2で作動する安全弁を有している。
Next, after wrapping the above-mentioned one negative electrode plate with a non-woven fabric made of polyvinyl alcohol having a thickness of 0.2 mm, sandwiched between the two positive electrode plates,
A rectangular manganese dioxide-cadmium battery (E) using a synthetic resin battery container with a nominal capacity of 240 mAh using a potassium hydroxide aqueous solution having a specific gravity of 1.350 (20 ° C.) as an electrolyte was manufactured. This battery has an outer diameter of 67 x 16.5 x 8 (mm),
It has a safety valve that operates at 0.1 kg / cm 2 .

[比較例2] 実施例6の負極板の配合からチタン酸カリウムを削除
した以外は全て実施例6と同様にして比較例の角形二酸
化マンガン−カドミウム電池(F)を製作した。
Comparative Example 2 A prismatic manganese dioxide-cadmium battery (F) of a comparative example was manufactured in the same manner as in Example 6 except that potassium titanate was omitted from the formulation of the negative electrode plate of Example 6.

以上のようにして製作した電池(E)および(F)を
0.2Cの電流で100mAh放電し、次いで同じ電流で1.6Vまで
充電するという条件で充放電したときの容量推移の結果
を第3図に示した。
The batteries (E) and (F) produced as described above
FIG. 3 shows the results of the change in capacity when the battery was charged and discharged under the condition that the battery was discharged at a current of 0.2 C for 100 mAh and then charged at the same current up to 1.6 V.

第3図から充電効率が優れ、かつ充電効率のサイクル
における低下がほとんどない負極板を有する本発明の電
池(E)は、比較電池(F)に比べて明らかに容量低下
が小さく、1000サイクルを経過してもほとんど容量が低
下しなかった。
From FIG. 3, it is apparent that the battery (E) of the present invention having a negative electrode plate having excellent charge efficiency and almost no decrease in the cycle of the charge efficiency has a significantly smaller capacity decrease than the comparative battery (F), and has a capacity of 1000 cycles. Even after the passage, the capacity hardly decreased.

なお、これらの電池のリザーブ用水酸化カドミウムは
ほとんど含まれていない状態となっている。つまり、負
極板に含まれる水酸化カドミウムの含有量は重量比で常
に正極活物質の二酸化マンガンの約0.84倍[2.73(g/A
h)/2.34(g/Ah)]となっている。
In addition, these batteries are in a state where cadmium hydroxide for reserve is hardly contained. In other words, the content of cadmium hydroxide contained in the negative electrode plate is always about 0.84 times the weight ratio of manganese dioxide of the positive electrode active material [2.73 (g / A
h) /2.34 (g / Ah)].

以上にニッケル−カドミウム電池および二酸化マンガ
ン−カドミウム電池を例にとって説明したが、正極活物
質として酸化銀を用いても充電制御が容易な酸化銀−カ
ドミウム電池を得ることができる。
The nickel-cadmium battery and the manganese dioxide-cadmium battery have been described above as examples. However, even if silver oxide is used as the positive electrode active material, a silver oxide-cadmium battery whose charge control is easy can be obtained.

[実施例7] 金属カドミウム粉末100重量部とチタン酸カリウム2
重量部と長さ1mmのポリプロピレン製の短繊維0.1重量部
とを1.5重量%のポリビニルアルコールを含むエチレン
グリコール30mlで混合してペースト状にする。このペー
ストをカドミウムメッキ(5μm)した銅のエクスパン
デットメタルに塗着し、次いで乾燥,加圧して金属カド
ミウムの理論容量が1000mAhで寸法が3×14×52(mm)
の負極板を製作した。
Example 7 100 parts by weight of metal cadmium powder and potassium titanate 2
Parts by weight and 0.1 part by weight of polypropylene short fibers having a length of 1 mm are mixed with 30 ml of ethylene glycol containing 1.5% by weight of polyvinyl alcohol to form a paste. This paste is applied to a cadmium-plated (5 μm) copper expanded metal, and then dried and pressed to obtain a metal cadmium having a theoretical capacity of 1000 mAh and a size of 3 × 14 × 52 (mm).
Was produced.

一方、正極板は以下の方法で製作した。 On the other hand, the positive electrode plate was manufactured by the following method.

活物質である酸化銀粉末と集電体である銀のエクスパ
ンデッドメタルとを常法によって加圧焼結したものを水
酸化カリウム水溶液中で電解酸化した後水洗,乾燥して
理論容量が500mAhで寸法が1.3×14×52(mm)の正極板
を製作した。
A silver oxide powder as an active material and a silver expanded metal as a current collector are sintered under pressure by a conventional method, electrolytically oxidized in an aqueous solution of potassium hydroxide, washed with water and dried to obtain a theoretical capacity of 500 mAh. A positive electrode plate having dimensions of 1.3 × 14 × 52 (mm) was manufactured.

次に先の負極板1枚を厚さ0.02mmのセロファンで4重
に巻いた後に正極板2枚の間にはさみ、電解液として比
重1.250(20℃)の水酸化カリウム水溶液3mlを用いて公
称容量が500mAhの角形酸化銀−カドミウム電池(G)を
製作した。外径寸法は67×16.5×8(mm)であり、電槽
は合成樹脂製のものを用いた。また0.5kg/cm2の圧力で
作動する安全弁を取り付けている。
Next, one negative electrode plate is wound four times with cellophane having a thickness of 0.02 mm, sandwiched between the two positive electrode plates, and nominally using 3 ml of an aqueous solution of potassium hydroxide having a specific gravity of 1.250 (20 ° C.) as an electrolyte. A square silver oxide-cadmium battery (G) having a capacity of 500 mAh was manufactured. The outer diameter was 67 × 16.5 × 8 (mm), and the battery case was made of synthetic resin. A safety valve that operates at a pressure of 0.5 kg / cm 2 is installed.

[比較例3] 実施例7の負極板の配合からチタン酸カリウムを削除
した以外は全て実施例7と同様にして角形酸化銀−カド
ミウム電池(H)を製作した。
Comparative Example 3 A prismatic silver oxide-cadmium battery (H) was manufactured in the same manner as in Example 7 except that potassium titanate was omitted from the composition of the negative electrode plate of Example 7.

なお、これらの電池のリザーブ用水酸化カドミウム
は、ほとんどない状態であり、負極板に含まれる水酸化
カドミウムの含有量は重量比で常に正極活物質の銀の約
1.4倍[2.73(g/Ah)/2.01(g/Ah)]となっている。
The cadmium hydroxide for reserve in these batteries is almost nonexistent, and the content of cadmium hydroxide contained in the negative electrode plate is always about the weight of silver of the positive electrode active material in the weight ratio.
It is 1.4 times [2.73 (g / Ah) /2.01 (g / Ah)].

以上のようにして製作した電池(G)および(H)を
20℃で0.2CAの電流で300mAh放電した後に、同じ電流で
充電するという操作を繰り返して時の充電電圧特性を第
4図に示した。
The batteries (G) and (H) produced as described above
FIG. 4 shows the charging voltage characteristics at the time of repeating the operation of discharging at 300 mAh at 20 ° C. with a current of 0.2 CA and then charging at the same current.

第4図から本発明の酸化銀−カドミウム電池(G)の
充電終期の電圧上昇は、比較電池(H)よりも遅くに起
きており、その充電効率はほぼ100%である。この2つ
の電池の電圧上昇の時期が異なるのは負極板の充電効率
に基づくものであり、本発明の電池は優れた容量保持率
を有することが明らかである。
From FIG. 4, the voltage rise at the end of charging of the silver oxide-cadmium battery (G) of the present invention occurs later than in the comparative battery (H), and its charging efficiency is almost 100%. The difference in the timing of the voltage rise between the two batteries is based on the charging efficiency of the negative electrode plate, and it is clear that the battery of the present invention has an excellent capacity retention.

以上の実施例で本発明のカドミウム負極板および電池
の特性について説明した。
In the above examples, the characteristics of the cadmium negative electrode plate and the battery of the present invention have been described.

本発明のカドミウム負極板の集電体としては、各実施
例で説明したように、その表面がニッケル,銅あるいは
カドミウムであればよい。つまり、その素材としてはニ
ッケル,銅,カドミウムの他に鉄の表面にニッケル,銅
あるいはカドミウムの層を有するものや、ニッケルの表
面に銅あるいはカドミウムの層を有するもの、さらに銅
の表面にカドミウムの層を有するものである。
As described in each embodiment, the current collector of the cadmium negative electrode plate of the present invention may have a surface of nickel, copper or cadmium. In other words, the materials include nickel, copper, and cadmium, as well as those having a layer of nickel, copper, or cadmium on the surface of iron, those having a layer of copper or cadmium on the surface of nickel, and those of cadmium on the surface of copper. It has a layer.

またその形状としてはエクスパンデッドメタル,網,
穿孔板,発泡体あるいは繊維マットが使用できる。
The shape is expanded metal, net,
Perforated plates, foams or fiber mats can be used.

発明の効果 以上に述べたように本発明のカドミウム負極板は充電
効率が極めて高いために、不活性な水酸化カドミウムを
ほとんど有していない。従って従来のカドミウム負極板
に比べて実質的な容量密度は高くなる。
Effect of the Invention As described above, the cadmium negative electrode plate of the present invention has very high charging efficiency, and therefore has almost no inactive cadmium hydroxide. Therefore, the substantial capacity density is higher than that of the conventional cadmium negative electrode plate.

また、これを用いたアルカリ二次電池では正・負極活
物質の量比を調節することによって充電制御が容易で、
かつ1CA以上の大電流による超急速充電が可能である。
また、この電池にはリザーブ用の水酸化カドミウムがほ
とんど必要でないために高容量化が可能である。
In addition, in an alkaline secondary battery using this, charge control is easy by adjusting the amount ratio of the positive and negative electrode active materials,
And ultra-rapid charging with a large current of 1 CA or more is possible.
In addition, since this battery hardly needs cadmium hydroxide for reserve, high capacity can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明のカドミウム負極板において、チタン
酸カリウムの含有率と充電効率との関係について示した
図、第2図は、本発明のニッケル−カドミウム電池と比
較のための電池との充放電サイクルにおける容量保持率
を示した図。第3図は本発明の二酸化マンガン−カドミ
ウム電池と比較のための電池との充放電サイクルにおけ
る容量保持率を示した図。第4図は本発明の酸化銀−カ
ドミウム電池と比較のための電池との充電特性を示した
図。
FIG. 1 is a diagram showing the relationship between the content of potassium titanate and charging efficiency in the cadmium negative electrode plate of the present invention, and FIG. 2 is a graph showing the relationship between the nickel-cadmium battery of the present invention and a battery for comparison. The figure which showed the capacity retention in the charge / discharge cycle. FIG. 3 is a diagram showing a capacity retention ratio in a charge / discharge cycle of a manganese dioxide-cadmium battery of the present invention and a battery for comparison. FIG. 4 is a view showing charging characteristics of a silver oxide-cadmium battery of the present invention and a battery for comparison.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】全カドミウム量に対し0.25重量%以上20重
量%以下のチタン酸カリウムを含有することを特徴とす
るカドミウム負極板。
1. A cadmium negative electrode plate comprising 0.25% by weight or more and 20% by weight or less of potassium titanate based on the total amount of cadmium.
【請求項2】水酸化ニッケル,二酸化マンガンあるいは
酸化銀のいずれかを活物質の主体とする正極板を請求項
1記載のカドミウム負極板とを備えたことを特徴とする
アルカリ二次電池。
2. An alkaline secondary battery comprising: a positive electrode plate mainly composed of nickel hydroxide, manganese dioxide or silver oxide as an active material; and the cadmium negative electrode plate according to claim 1.
JP63158938A 1988-06-27 1988-06-27 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate Expired - Lifetime JP2591988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158938A JP2591988B2 (en) 1988-06-27 1988-06-27 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63158938A JP2591988B2 (en) 1988-06-27 1988-06-27 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Publications (2)

Publication Number Publication Date
JPH027368A JPH027368A (en) 1990-01-11
JP2591988B2 true JP2591988B2 (en) 1997-03-19

Family

ID=15682625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158938A Expired - Lifetime JP2591988B2 (en) 1988-06-27 1988-06-27 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Country Status (1)

Country Link
JP (1) JP2591988B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163848B2 (en) * 1993-06-07 2001-05-08 日本電池株式会社 Cadmium negative plate
US5569564A (en) * 1995-06-07 1996-10-29 Eveready Battery Company, Inc. Alkaline cell having a cathode including a titanate additive
JP2006291777A (en) 2005-04-07 2006-10-26 Yamaha Motor Co Ltd Throttle body including fuel return passage and vehicle

Also Published As

Publication number Publication date
JPH027368A (en) 1990-01-11

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP3389252B2 (en) Alkaline storage battery and charging method thereof
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600825B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2926732B2 (en) Alkaline secondary battery
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JP2577954B2 (en) Cadmium negative electrode plate and alkaline secondary battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP2553902B2 (en) Alkaline secondary battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JPH07105229B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH07105227B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH027369A (en) Cadmium negative plate and alkaline secondary battery using this negative plate
JPH07105228B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate