JPH07105228B2 - Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate - Google Patents

Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Info

Publication number
JPH07105228B2
JPH07105228B2 JP63180985A JP18098588A JPH07105228B2 JP H07105228 B2 JPH07105228 B2 JP H07105228B2 JP 63180985 A JP63180985 A JP 63180985A JP 18098588 A JP18098588 A JP 18098588A JP H07105228 B2 JPH07105228 B2 JP H07105228B2
Authority
JP
Japan
Prior art keywords
cadmium
electrode plate
negative electrode
battery
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63180985A
Other languages
Japanese (ja)
Other versions
JPH0230065A (en
Inventor
吉村  公志
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP63180985A priority Critical patent/JPH07105228B2/en
Publication of JPH0230065A publication Critical patent/JPH0230065A/en
Publication of JPH07105228B2 publication Critical patent/JPH07105228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はカドミウム負極板と、その負極板を用いたアル
カリ二次電池に関するものである。
TECHNICAL FIELD The present invention relates to a cadmium negative electrode plate and an alkaline secondary battery using the negative electrode plate.

従来の技術とその課題 現在、二次電池としては、主として鉛電池およびニッケ
ル−カドミウム電池が用いられているが、特にニッケル
−カドミウム電池は、高率放電での特性が良好であるこ
とや、鉛電池に比べて寿命が長いなどの理由によって需
要が急増している。また一方では、近年の電子機器の小
型化、軽量化などに伴って、高容量化や充電時間の短縮
が二次電池に対して要求されている。
2. Description of the Related Art Currently, lead batteries and nickel-cadmium batteries are mainly used as secondary batteries, and nickel-cadmium batteries are particularly good at high-rate discharge and lead-free. Demand is rapidly increasing because of its longer life than batteries. On the other hand, with the recent trend toward smaller and lighter electronic devices, there has been a demand for higher capacity and shorter charging time for secondary batteries.

カドミウム負極板を用いた従来のアルカリ二次電池には
次のような問題がある。それはカドミウム負極板に関す
るもので、充放電反応に関与しない水酸化カドミウムを
多く有していることである。つまり、水酸化カドミウム
の水素ガス発生までの充電効率は、通常90%程度であ
り、残り約10%の水酸化カドミウムは何等役に立つこと
もなく不要な体積を占めている。さらにニッケル−カド
ミウム電池を例にとると、電池の密閉状態を保つため
に、負極板内に正極板の容量の20%以上のいわゆるリザ
ーブの水酸化カドミウムが必要であった。このリザーブ
の水酸化カドミウムは正極活物質の保持体である金属ニ
ッケルの活物質化や電池内の空間体積を補償するもので
あり、放電容量には寄与しない。これらの水酸化カドミ
ウムを有していることが、カドミウム負極板および電池
の高容量化を妨げている一因である。
The conventional alkaline secondary battery using the cadmium negative electrode plate has the following problems. It relates to a cadmium negative electrode plate and has a large amount of cadmium hydroxide that does not participate in the charge / discharge reaction. That is, the charging efficiency of cadmium hydroxide until the generation of hydrogen gas is usually about 90%, and the remaining about 10% of cadmium hydroxide occupies an unnecessary volume without any use. Further, taking a nickel-cadmium battery as an example, in order to keep the battery in a hermetically sealed state, a so-called reserved cadmium hydroxide of 20% or more of the capacity of the positive electrode plate was required in the negative electrode plate. This reserve cadmium hydroxide compensates for the activation of metallic nickel, which is a holder for the positive electrode active material, into the active material and the space volume in the battery, and does not contribute to the discharge capacity. Having these cadmium hydroxides is one of the factors that hinder the high capacity of the cadmium negative electrode plate and the battery.

また、従来のニッケル−カドミウム電池は、電池の密閉
状態を保つために定電流で充電した場合には電流を約1C
A以下に抑えなければならないという問題を有してい
る。これは、充電電流を1CA以上に大きくした場合に
は、過充電領域において正極板から発生した全ての酸素
ガスを負極板で吸収することができずに、結局は安全弁
が作動して電解液の減少を起こし、容量低下と寿命特性
の劣化を起こすためである。そこで、特願昭62−83582
号や特願昭63−13345号で提案されているように、充電
時における負極板の水素発生にいたる過程の電位変化を
充電電圧の変化として検出して充電制御を容易にし、か
つ急速充電を可能にする試みがあるが、負極板の充電効
率の点で不十分である。
In addition, the conventional nickel-cadmium battery has a current of about 1 C when charged at a constant current to keep the battery sealed.
It has a problem that it must be kept below A. This is because when the charging current is increased to 1 CA or more, all the oxygen gas generated from the positive electrode plate cannot be absorbed by the negative electrode plate in the overcharge region, and eventually the safety valve operates and the electrolyte solution This is because it causes a decrease in capacity and a deterioration in capacity and life characteristics. Therefore, Japanese Patent Application No. Sho 62-83582
As disclosed in Japanese Patent Application No. 63-13345 and Japanese Patent Application No. 63-13345, the potential change in the process of hydrogen generation on the negative electrode plate during charging is detected as a change in charging voltage to facilitate charge control and to achieve rapid charging. Although there is an attempt to make it possible, it is insufficient in terms of charging efficiency of the negative electrode plate.

課題を解決するための手段 本発明はカドミウム負極板と、その負極板を備えたアル
カリ二次電池に関するものであって、該負極板は酸化第
一銅(Cu2O)を全カドミウム量に対し0.5重量%以上20
重量%以下含有することを特徴とするものである。
Means for Solving the Problems The present invention relates to a cadmium negative electrode plate and an alkaline secondary battery provided with the negative electrode plate, wherein the negative electrode plate contains cuprous oxide (Cu 2 O) with respect to the total amount of cadmium. 0.5% by weight or more 20
It is characterized by containing less than or equal to wt%.

作用 カドミウム負極板の充電効率について検討した結果、負
極活物質中に酸化第一銅を含有させることによって充電
効率が高くなることがわかった。
Action As a result of studying the charging efficiency of the cadmium negative electrode plate, it was found that the charging efficiency was increased by containing cuprous oxide in the negative electrode active material.

例えば、水酸化カドミウムあるいは水酸カドミウムと金
属カドミウムとを活物質の主体とするカドミウム負極板
を、酸化カドミウムあるいは水酸化カドミウムの理論容
量を基準として1CAの電流で充電した際の水素ガスが発
生するまでの充電効率は約93%であるが、酸化第一銅を
全カドミウム量に対し1重量%含有する場合には充電効
率が96%以上に向上する。さらにこのような充電効率を
高める効果は一過性ではなく、充放電サイクルにおいて
持続することがわかった。
For example, hydrogen gas is generated when a cadmium negative electrode plate containing cadmium hydroxide or cadmium hydroxide and metal cadmium as the active material is charged with a current of 1 CA based on the theoretical capacity of cadmium oxide or cadmium hydroxide. The charging efficiency up to about 93% is about 93%, but if the content of cuprous oxide is 1% by weight based on the total amount of cadmium, the charging efficiency is improved to 96% or more. Further, it has been found that such an effect of enhancing the charging efficiency is not transient but lasts in the charge / discharge cycle.

そしてこのような充電効率の優れた負極板を用いて、そ
の負極板の充電時の水素発生にいたる電位変化を端子電
圧の変化として検出すれば充電制御が容易であり、その
時点で定電圧に設定すれば過充電領域では電流が小さく
なるために、急速充電が可能でしかも電解液の減量のな
いアルカリ二次電池となる。
And by using such a negative electrode plate with excellent charging efficiency, it is easy to control the charge by detecting the potential change resulting in hydrogen generation during charging of the negative electrode plate as the change in the terminal voltage. If set, the current becomes small in the overcharge region, so that the alkaline secondary battery can be rapidly charged and the electrolyte solution is not reduced.

実施例 以下本発明を好適な実施例を用いて詳細に説明する。Examples The present invention will be described in detail below with reference to preferred examples.

本発明の目的は、充電効率の優れたカドミウム負極板を
得ることであり、またそれを電池に適用することであ
る。従って、まず最初にカドミウム負極板について述べ
る。
An object of the present invention is to obtain a cadmium negative electrode plate having excellent charging efficiency and to apply it to a battery. Therefore, the cadmium negative electrode plate will be described first.

[実施例1] 酸化カドミウム粉末240mgと金属カドミウム粉末210mgと
配合量を0〜84mgの範囲で変えた酸化第一銅とを混合し
てから、230kg/cm2の圧力で加圧成形して、全カドミウ
ムの理論容量が200mAhの錠剤とした。さらにこの錠剤を
20メッシュのニッケル網で包んで負極板とした。これを
負極板群(イ)とする。
[Example 1] 240 mg of cadmium oxide powder, 210 mg of metal cadmium powder, and cuprous oxide whose compounding amount was changed in the range of 0 to 84 mg were mixed, and then pressure-molded at a pressure of 230 kg / cm 2 , Tablets with a theoretical capacity of total cadmium of 200 mAh. Furthermore, this tablet
It was wrapped with a 20 mesh nickel net to give a negative electrode plate. This is referred to as a negative electrode plate group (a).

[実施例2] 水酸化カドミウム粉末273mgと金属カドミウム粉末210mg
と配合量を0〜84mgの範囲で変えた酸化第一銅とを混合
した後、実施例1と同様にして、理論容量が200mAhの錠
剤形負極板とした。これを負極板群(ロ)とする。
Example 2 Cadmium hydroxide powder 273 mg and metal cadmium powder 210 mg
After mixing with cuprous oxide whose compounding amount was changed in the range of 0 to 84 mg, a tablet type negative electrode plate having a theoretical capacity of 200 mAh was prepared in the same manner as in Example 1. This is referred to as a negative electrode plate group (b).

なお、全カドミウム量とはカドミウム負極板に含まれる
Cd原子の総量である。
The total amount of cadmium is included in the cadmium negative electrode plate.
It is the total amount of Cd atoms.

これらの負極板を比重1.250(20℃)の水酸化カドミウ
ム水溶液中で、対極にニッケル平板2枚を用いて、配合
時における酸化カドミウム粉末あるいは水酸化カドミウ
ム粉末の理論容量を基準として1CA(100mA)の電流で充
放電を繰り返し、下記の式(1)から充電効率を求め
た。
These negative plates were placed in an aqueous cadmium hydroxide solution with a specific gravity of 1.250 (20 ° C), using two nickel flat plates as counter electrodes, and 1CA (100mA) based on the theoretical capacity of the cadmium oxide powder or cadmium hydroxide powder at the time of compounding. The charging / discharging was repeated with the current of, and the charging efficiency was calculated from the following formula (1).

その結果を第1図に示す。同図から全カドミウム量に対
する酸化第一銅の含有率が0.5重量%以上20重量%以下
の範囲で充電効率の向上が認められる。特に含有率が2.
5重量%以上10重量%以下の範囲では充電効率が97%以
上と極めて高く、充電できない不活性な水酸化カドミウ
ムが減少していることを示している。
The results are shown in FIG. From the figure, it can be seen that the charging efficiency is improved when the content of cuprous oxide is 0.5 wt% or more and 20 wt% or less with respect to the total amount of cadmium. Especially the content rate is 2.
In the range of 5% by weight or more and 10% by weight or less, the charging efficiency is extremely high at 97% or more, which shows that the amount of inactive cadmium hydroxide that cannot be charged is reduced.

なお、酸化第一銅の含有率を20重量%よりも高くするこ
とは可能であるが、カドミウム活物質の理論容量密度の
低下が大きくなるため、その含有率は20重量%以下であ
ることが望ましいと考えられる。
Although it is possible to increase the content of cuprous oxide to more than 20% by weight, the content of cuprous oxide should be 20% by weight or less because the decrease in the theoretical capacity density of the cadmium active material becomes large. Considered desirable.

以上のことから全カドミウムに対する酸化第一銅の含有
率は、0.5重量%以上20重量%以下が適しているといえ
る。
From the above, it can be said that the content of cuprous oxide with respect to all cadmium is preferably 0.5% by weight or more and 20% by weight or less.

以下に実施例で用いた各原料の性状を示す。The properties of each raw material used in the examples are shown below.

〈酸化カドミウム粉末〉 アトマイズ法によって製作した平均粒子径1μmのもの 〈水酸化カドミウム粉末〉 上記の酸化カドミウム粉末を精製水中に浸漬して水和さ
せたもの 〈金属カドミウム粉末〉 電気化学的な置換法によって製作した平均粒子径2μm
のもの 〈酸化第一銅〉 市販の試薬 次に以上の実施例で説明した極めて高い充電効率を有す
る本発明のカドミウム負極板を用いた電池の評価を行っ
た。
<Cadmium oxide powder> Atomized particles with an average particle size of 1 μm <Cadmium hydroxide powder> The above cadmium oxide powder is immersed in purified water for hydration <Cadmium metal powder> Electrochemical substitution method Average particle size 2μm
<Cuprous oxide> Commercial reagent Next, a battery using the cadmium negative electrode plate of the present invention having extremely high charging efficiency described in the above examples was evaluated.

本発明のカドミウム負極板はリザーブの水酸化カドミウ
ムを必要とする従来のニッケル−カドミウム電池に使用
できる他に、これよりも高容量化と充電時間の短縮が可
能であるリザーブの水酸化カドミウムを有しない電池に
使用した場合にその効果がより明確である。それは、本
発明のカドミウム負極板の充電効率が優れていることに
起因する。従って以下の実施例ではリザーブの水酸化カ
ドミウムを有しない電池を例にして説明する。
The cadmium negative electrode plate of the present invention can be used for a conventional nickel-cadmium battery that requires a reserve cadmium hydroxide, and also has a reserve cadmium hydroxide capable of higher capacity and shorter charging time. The effect is more clear when used in batteries that do not. This is due to the excellent charging efficiency of the cadmium negative electrode plate of the present invention. Therefore, in the following embodiments, a battery having no reserve cadmium hydroxide will be described as an example.

本発明のアルカリ電池に使用できる正極活物質は水酸化
ニッケル,二酸化マンガンおよび酸化銀である。これら
のうち一般的に多く用いられている活物質は水酸化ニッ
ケルであるので、ニッケル−カドミウム電池を中心にし
て説明する。
Positive electrode active materials that can be used in the alkaline battery of the present invention are nickel hydroxide, manganese dioxide and silver oxide. Of these, nickel hydroxide is the most commonly used active material, so a nickel-cadmium battery will be mainly described.

本発明に用いるカドミウム負極板は、基本的に以下に示
す集電体を用いて製造することができる。すなわち、ニ
ッケルや銅やカドミウムの網,エクスパンデッドメタ
ル,,穿孔板あるいは集電体と活物質保持体を兼ねる三次
元構造の金属発泡体や金属繊維のマットである。
The cadmium negative electrode plate used in the present invention can be manufactured basically using the following current collector. That is, it is a net of nickel, copper or cadmium, an expanded metal, a perforated plate or a metal foam having a three-dimensional structure which also serves as a collector and an active material holder, or a mat of metal fibers.

また、鉄にニッケルメッキしたものや、鉄あるいはニッ
ケルに銅メッキしたもの、さらに鉄、ニッケルあるいは
銅にカドミウムメッキしたものも使用できる。
Further, iron plated with nickel, iron plated with nickel or copper with copper, and iron plated with nickel, copper, or cadmium can also be used.

[実施例3] 酸化カドミウム粉末60重量部と金属カドミウム粉末40重
量部と酸化第一銅3重量部と長さ1mmのポリプロピレン
製の短繊維0.1重量部とを1.5重量%のポリビニルアルコ
ールを含むエチレングリコール30mlで混合してペースト
状にする。このペーストをニッケルメッキ(5μm)し
た穿孔鋼板に塗着し、次いで乾燥、加圧して酸化カドミ
ウムの理論容量が960mAhで寸法が2.9×14×52(mm)の
負極板を製作した。
[Example 3] 60 parts by weight of cadmium oxide powder, 40 parts by weight of metal cadmium powder, 3 parts by weight of cuprous oxide, and 0.1 parts by weight of polypropylene short fibers having a length of 1 mm were used, and ethylene containing 1.5% by weight of polyvinyl alcohol was used. Mix with 30 ml of glycol to make a paste. This paste was applied to a nickel-plated (5 μm) perforated steel plate, and then dried and pressed to produce a negative electrode plate having a theoretical capacity of cadmium oxide of 960 mAh and dimensions of 2.9 × 14 × 52 (mm).

一方、正極板は次の方法で製作した。On the other hand, the positive electrode plate was manufactured by the following method.

多孔度が約80%の焼結式でニッケル基板に、ニッケルと
コバルトとの合計に対するコバルトの含有率が8モル%
の硝酸コバルトと硝酸ニッケルとの混合水溶液[PH=
2、比重1.50(20℃)]を含浸した後、比重1.200(20
℃)の水酸化ナトリウム水溶液に浸漬し、湯洗、乾燥す
る。この操作を繰り返して、水酸化ニッケルと水酸化コ
バルトの理論容量の合計が400mAhで寸法が1.4×14×52m
mの正極板を製作した。
Sintering method with porosity of about 80%, nickel content on the nickel substrate, cobalt content of 8 mol% to the total of nickel and cobalt
Aqueous solution of cobalt nitrate and nickel nitrate [PH =
2, specific gravity 1.50 (20 ℃)], and then specific gravity 1.200 (20
C.) aqueous sodium hydroxide solution, washed with hot water and dried. Repeating this operation, the total theoretical capacity of nickel hydroxide and cobalt hydroxide is 400mAh and the size is 1.4 × 14 × 52m.
A m positive plate was manufactured.

次に負極板1枚を厚さ0.2mmのポリアミドの不織布に包
んだ後に正極板2枚の間にはさみ、電解液として比重1.
250(20℃)の水酸化カリウム水溶液2.4mlを用いて、公
称容量が700mAhの合成樹脂製の電槽を用いたニッケル−
カドミウム電池(A)を製作した。外形寸法は67×16.5
×8(mm)であり、0.1kg/cm2で作動する安全弁を付け
ている。また、この電池の負極板中の酸化カドミウムは
電解液を入れると以下の式(2)に示す反応によって水
を消費するため、その消費分に相当する水を余分に注入
した。
Next, one negative electrode plate was wrapped in 0.2 mm thick polyamide non-woven fabric and then sandwiched between two positive electrode plates to give a specific gravity of 1.
Using 2.4 ml of 250 (20 ° C) potassium hydroxide aqueous solution, nickel with a nominal capacity of 700 mAh in a synthetic resin battery case
A cadmium battery (A) was manufactured. External dimensions are 67 x 16.5
It is × 8 (mm) and has a safety valve that operates at 0.1 kg / cm 2 . In addition, since cadmium oxide in the negative electrode plate of this battery consumes water by the reaction shown in the following formula (2) when an electrolytic solution is added, extra water corresponding to the consumed amount was injected.

CdO+H2O→Cd(OH) …(2) [実施例4] 水酸化カドミウム粉末68.5重量部と金属カドミウム粉末
40重量部と酸化第一銅3重量部と長さ1mmのポリプロピ
レン製の短繊維0.1重量部とを1.5重量%のポリビニルア
ルコールを含むエチレングリコール30mlで混合してペー
スト状にする。このペーストを銅メッキ(5μm)した
穿孔鋼板に塗着し、次いで乾燥,加圧して水酸化カドミ
ウムの理論容量が960mAhで寸法が2.9×14×52(mm)の
負極板を製作した。
CdO + H 2 O → Cd (OH) 2 (2) [Example 4] 68.5 parts by weight of cadmium hydroxide powder and metal cadmium powder
40 parts by weight, 3 parts by weight of cuprous oxide and 0.1 part by weight of polypropylene short fibers having a length of 1 mm are mixed with 30 ml of ethylene glycol containing 1.5% by weight of polyvinyl alcohol to form a paste. This paste was applied to a copper-plated (5 μm) perforated steel plate, which was then dried and pressed to produce a negative electrode plate having a theoretical capacity of 960 mAh for cadmium hydroxide and a size of 2.9 × 14 × 52 (mm).

次に上記の負極板と実施例3で用いたのと同じ正極板と
で実施例3と同様な構成の公称容量が700mAhの角形ニッ
ケル−カドミウム電池(B)を製作した。
Next, a prismatic nickel-cadmium battery (B) having a nominal capacity of 700 mAh and having the same configuration as in Example 3 was manufactured by using the above-mentioned negative electrode plate and the same positive electrode plate as that used in Example 3.

[実施例5] 実施例3における負極板の集電体すなわちニッケルメッ
キした穿孔鋼板の代わりにカドミウムメッキ(5μm)
した穿孔鋼板を用いた以外は全て実施例3と同様にして
公称容量700mAhの角形ニッケル−カドミウム電池(C)
を製作した。
Example 5 Instead of the current collector of the negative electrode plate in Example 3, that is, the perforated steel plate plated with nickel, cadmium plating (5 μm)
A rectangular nickel-cadmium battery (C) having a nominal capacity of 700 mAh in the same manner as in Example 3 except that the perforated steel sheet was used.
Was produced.

[比較例1] 実施例3における負極板の配合から酸化第一銅を削除し
た以外は全て実施例3と同様にして公称容量700mAhの角
形ニッケル−カドミウム電池(D)を製作した。
Comparative Example 1 A prismatic nickel-cadmium battery (D) having a nominal capacity of 700 mAh was manufactured in the same manner as in Example 3, except that cuprous oxide was omitted from the formulation of the negative electrode plate in Example 3.

以上のようにして製作した電池(A),(B),(C)
および(D)を20℃において最大電流3CAの電流で1.90V
の定電圧充電を30分間行った後、0.2CAの電流で0.5Vま
で放電するという充放電サイクルを250回行った。1サ
イクル目の放電容量を100とした場合の各サイクルにお
ける容量保持率を第2図に示す。同図から本発明の電池
(A),(B),および(C)は比較電池(D)よりも
容量保持率が明らかに高いことがわかる。この原因は本
発明の電池の負極活物質の充電効率が極めて高く、3CA
のような大きな電流であっても充電終期の負極電位の立
ち上がりまでの充電電気量が多いためであり、また充電
効率のサイクルにおける低下がほとんどないためであ
る。
Batteries (A), (B), (C) manufactured as described above
And (D) at 20 ° C, maximum current of 3CA, 1.90V
After carrying out the constant voltage charging for 30 minutes, the battery was discharged 250 times at a current of 0.2 CA to a charge / discharge cycle of 250 times. FIG. 2 shows the capacity retention rate in each cycle when the discharge capacity in the first cycle is 100. It can be seen from the figure that the batteries (A), (B), and (C) of the present invention have a clearly higher capacity retention rate than the comparative battery (D). This is because the charging efficiency of the negative electrode active material of the battery of the present invention is extremely high,
This is because, even with such a large current, the amount of charge electricity until the rise of the negative electrode potential at the end of charge is large, and there is almost no decrease in the cycle of charging efficiency.

なお、電池(A),(B),(C)および(D)の負極
板中の水酸化カドミウムの含有量は重量比で正極中の水
酸化ニッケルの約0.95倍[2.73(g/Ah)/2.88(g/A
h)]となっている。また負極板の製作に用いた酸化カ
ドミウム等の原料の性状は先の錠剤形負極板の実施例で
用いたものと同様である。
The content of cadmium hydroxide in the negative electrode plates of the batteries (A), (B), (C) and (D) was approximately 0.95 times the weight ratio of nickel hydroxide in the positive electrode [2.73 (g / Ah) /2.88 (g / A
h)]. The properties of the raw materials such as cadmium oxide used for manufacturing the negative electrode plate are the same as those used in the above-mentioned tablet-shaped negative electrode plate.

以上のように、本発明の電池は、定電圧制御という簡便
な充電方法で超急速充電が可能であり、容量保持率が優
れている。
As described above, the battery of the present invention is capable of ultra-rapid charging by a simple charging method called constant voltage control, and has an excellent capacity retention rate.

なお、充電方法は、最大電流を制御して定電圧充電する
方法を適用したがこの方法は、従来のニッケル−カドミ
ウム電池で用いられている定電流で充電した後、充電電
圧がガス吸収によって低下するのを検出して充電を打切
る方法やガス吸収による発熱を検出して充電を打切る方
法のような複雑な充電システムではない。また本発明の
特徴のひとつは従来ニッケル−カドミウム電池ではその
適用が困難であった定電圧充電方式が容易に行えること
である。すなわち従来のニッケル−カドミウム電池では
充電過程の電圧と充電終期の電圧との差が高々150〜200
mVと少なかったため、定電圧充電方式が適用できなかっ
たが、本発明による電池の場合にはその差が0.2CA以上
の電流で400mV以上にも達するために充電電圧の変化を
検出することが容易である。この場合、定電流で充電し
て、充電電圧の上昇を検出してから電流を下げてもよい
し、定電圧で充電してもよい。なお、従来の焼結式極板
を用いた公称容量が700mAhの円筒形ニッケル−カドミウ
ム電池(AAサイズ)を最大電池3CAの電流で1.9Vの定電
圧充電を30分間行ったところ、安全弁が作動して液漏れ
が発生した。このことは従来の電池の充電電圧が1.9Vに
達しないために電池が過充電されたことによるものであ
る。
As the charging method, a method of controlling the maximum current to perform constant voltage charging was applied, but this method shows that after charging with the constant current used in the conventional nickel-cadmium battery, the charging voltage decreases due to gas absorption. It is not a complicated charging system such as a method of detecting the occurrence of charging and stopping the charging or a method of detecting heat generation due to gas absorption and stopping the charging. Further, one of the features of the present invention is that the constant voltage charging method, which has been difficult to apply in the conventional nickel-cadmium battery, can be easily performed. That is, in the conventional nickel-cadmium battery, the difference between the voltage during the charging process and the voltage at the end of charging is 150 to 200 at most.
The constant voltage charging method could not be applied because it was as low as mV, but in the case of the battery according to the present invention, the difference reaches 400 mV or more at a current of 0.2 CA or more, so it is easy to detect a change in charging voltage. Is. In this case, charging may be performed with a constant current and then the current may be reduced after detecting an increase in the charging voltage, or charging may be performed with a constant voltage. In addition, when a cylindrical nickel-cadmium battery (AA size) with a nominal capacity of 700 mAh using a conventional sintered electrode plate was charged with a constant voltage of 1.9 V at a maximum battery current of 3 CA for 30 minutes, the safety valve was activated. Then, liquid leakage occurred. This is because the charging voltage of the conventional battery did not reach 1.9V and the battery was overcharged.

このように本発明の電池では、充電終期の負極板の電位
変化を大きくすることが有利であり、集電体の表面は、
基本的に水素発生の過電圧が大きい銅あるいはカドミウ
ムであるもの、例えば銅やカドミウムの網,エクスパン
デッドメタル,穿孔板あるいは集電体と活物質保持体を
兼ねる三次元構造の金属発泡体や金属繊維のマット等、
さらに材質としては鉄あるいはニッケルに銅あるいはカ
ドミウムメッキしたものが適している。しかし、水素発
生の過電圧が小さいニッケルの集電体であっても、活物
質にニッケル粉末等の水素過電圧の小さい物質を少なく
することによって、例えば5重量%以下にすれば集電体
として用いることができる。
Thus, in the battery of the present invention, it is advantageous to increase the potential change of the negative electrode plate at the end of charging, and the surface of the current collector is
Basically copper or cadmium with a large overvoltage for hydrogen generation, for example, copper or cadmium net, expanded metal, perforated plate or metal foam or metal with a three-dimensional structure that doubles as a collector and active material holder Fiber mat etc,
Further, as the material, iron or nickel plated with copper or cadmium is suitable. However, even if the current collector of nickel has a small overvoltage for hydrogen generation, it can be used as a current collector if the amount of the material having a low hydrogen overvoltage such as nickel powder is reduced as the active material, for example, 5% by weight or less. You can

以上の本発明実施例では、正極活物質として水酸化ニッ
ケルを用いて説明したが、活物質として二酸化マンガン
を用いてもニッケル−カドミウム電池と同様な効果が現
れる。以下に、本発明を二酸化マンガン−カドミウム電
池に適用した場合について好適な実施例を用いて説明す
る。
In the above-mentioned embodiments of the present invention, nickel hydroxide was used as the positive electrode active material, but manganese dioxide is also used as the active material, and the same effect as the nickel-cadmium battery appears. Hereinafter, the case where the present invention is applied to a manganese dioxide-cadmium battery will be described with reference to preferred examples.

[実施例6] 金属カドミウム粉末100重量部と、酸化第一銅3重量部
と長さ1mmのポリプロピレン製の短繊維0.1重量部とを1.
5重量%のポリビニルアルコールを含むエチレングリコ
ール30mlで混合してペースト状にする。このペーストを
銅のエクスパンデッドメタルに塗着し、次いで乾燥,加
圧して金属カドミウムの容量が800mAhで寸法が2.9×14
×52(mm)の負極板を製作した。
Example 6 100 parts by weight of metallic cadmium powder, 3 parts by weight of cuprous oxide, and 0.1 part by weight of polypropylene short fibers having a length of 1 mm were 1.
Mix with 30 ml of ethylene glycol containing 5% by weight of polyvinyl alcohol to form a paste. This paste is applied to copper expanded metal, then dried and pressed, the capacity of metal cadmium is 800mAh and the size is 2.9 × 14.
A negative electrode plate of × 52 (mm) was manufactured.

一方、正極板は次の方法で製作した。On the other hand, the positive electrode plate was manufactured by the following method.

二酸化マンガン(γ−MnO2)80重量部とグラファイト10
重量部とを60重量%のポリテトラフルオロエチレンの水
性ディスパージョン30mlで混練した後、ローラーでシー
ト状にし、20メッシュのニッケル網に両面からさらに加
圧して理論容量が200mAh,寸法が1.4×14×52(mm)の正
極板を製作した。
80 parts by weight of manganese dioxide (γ-MnO 2 ) and graphite 10
After mixing with 30 ml of an aqueous dispersion of polytetrafluoroethylene of 60 wt% and parts by weight, a roller is used to form a sheet, and a nickel mesh of 20 mesh is further pressed from both sides to have a theoretical capacity of 200 mAh and dimensions of 1.4 × 14. A positive electrode plate of × 52 (mm) was manufactured.

次に先の負極板1枚を厚さ0.2mmのポリビニルアルコー
ル製の不織布で包んだ後、正極板2枚の間にはさみ、電
解液として比重1.350(20℃)の水酸化カリウム水溶液
を2.7ml用い、公称容量が240mAhで合成樹脂電槽を用い
た角形二酸化マンガン−カドミウム電池(E)を製作し
た。この電池は外形寸法が67×16.5×8(mm)であり、
0.1kg/cm2で作動する安全弁を有している。
Next, after wrapping one of the above negative plates with a non-woven fabric made of polyvinyl alcohol with a thickness of 0.2 mm, sandwich it between two positive plates, and use 2.7 ml of potassium hydroxide aqueous solution with a specific gravity of 1.350 (20 ° C) as the electrolyte. A prismatic manganese dioxide-cadmium battery (E) having a nominal capacity of 240 mAh and using a synthetic resin battery case was produced. The external dimensions of this battery are 67 x 16.5 x 8 (mm),
It has a safety valve that operates at 0.1 kg / cm 2 .

[比較例2] 実施例6の負極板の配合から酸化第一銅を削除した以外
は全て実施例6と同様にして比較例の角形二酸化マンガ
ン−カドミウム電池(F)を製作した。
Comparative Example 2 A prismatic manganese dioxide-cadmium battery (F) of Comparative Example was produced in the same manner as in Example 6 except that cuprous oxide was omitted from the formulation of the negative electrode plate of Example 6.

以上のようにして製作した電池(E)および(F)を0.
2Cの電流で100mAh放電し、次いで同じ電流で1.6Vまで充
電するという条件で充放電したときの容量推移の結果を
第3図に示した。
The batteries (E) and (F) manufactured as described above were
Fig. 3 shows the results of the capacity transition when the battery was charged and discharged under the condition that the battery was discharged at a current of 2C for 100mAh and then charged at the same current to 1.6V.

同図から充電効率が優れ、かつ充電効率のサイクルにお
ける低下がほとんどない負極板を有する本発明の電池
(E)は、比較電池(F)に比べて明らかに容量低下が
小さく、1000サイクルを経過してもほとんど容量が低下
していないことがわかる。
It can be seen from the figure that the battery (E) of the present invention having a negative electrode plate with excellent charging efficiency and almost no decrease in cycle of charging efficiency has a clearly smaller capacity decrease than the comparative battery (F), and 1000 cycles have passed. However, it can be seen that the capacity has hardly decreased.

なお、これらの電池のリザーブ用水酸化カドミウムはほ
とんど含まれていない状態となっている。つまり、負極
板に含まれる水酸化カドミウムの含有量は重量比で常に
正極活物質の二酸化マンガンの約0.84倍[2.73(g/Ah)
/2.34(g/Ah)]となっている。
It should be noted that the reserve cadmium hydroxide of these batteries is hardly contained. That is, the content of cadmium hydroxide contained in the negative electrode plate is always about 0.84 times that of manganese dioxide as the positive electrode active material [2.73 (g / Ah) by weight ratio].
/2.34 (g / Ah)].

以上にニッケル−カドミウム電池および二酸化マンガン
−カドミウム電池を例にとって説明したが、正極活物質
として酸化銀を用いても充電制御が容易な酸化銀−カド
ミウム電池を得ることができる。
Although the nickel-cadmium battery and the manganese dioxide-cadmium battery have been described above as examples, a silver oxide-cadmium battery with easy charge control can be obtained even when silver oxide is used as the positive electrode active material.

[実施例7] 金属カドミウム粉末100重量部と酸化第一銅3重量部と
長さ1mmのポリプロピレン製の短繊維0.1重量部とを1.5
重量%のポリビニルアルコールを含むエチレングリコー
ル30mlで混合してペースト状にする。このペーストをカ
ドミウムメッキ(5μm)した銅のエクスパンデッドメ
タルに塗着し、次いで乾燥,加圧して金属カドミウムの
理論容量が1000mAhで寸法が3×14×52(mm)の負極板
を製作した。
Example 7 100 parts by weight of metallic cadmium powder, 3 parts by weight of cuprous oxide, and 0.1 part by weight of polypropylene short fibers having a length of 1 mm were used as 1.5 parts by weight.
Mix with 30 ml of ethylene glycol containing wt% polyvinyl alcohol to form a paste. This paste was applied to cadmium-plated (5 μm) expanded copper metal, then dried and pressed to produce a negative electrode plate with a theoretical capacity of 1000 mAh for metal cadmium and dimensions of 3 × 14 × 52 (mm). .

一方、正極板は以下の方法で製作した。On the other hand, the positive electrode plate was manufactured by the following method.

活物質である酸化銀粉末と集電体である銀のエクスパン
デッドメタルとを常法によって加圧焼結したものを水酸
化カリウム水溶液中で電界酸化した後水洗,乾燥して理
論容量が500mAhで寸法が1.3×14×52(mm)の正極板を
製作した。
A theoretical capacity of 500 mAh was obtained by subjecting silver oxide powder, which is an active material, and expanded metal of silver, which is a current collector, to pressure sintering in a conventional method, to electric field oxidation in a potassium hydroxide aqueous solution, followed by washing with water and drying. A positive electrode plate with dimensions of 1.3 × 14 × 52 (mm) was manufactured.

次に先の負極板1枚を厚さ0.02mmのセロファンで4重に
巻いた後に正極板2枚の間にはさみ、電解液として比重
1.250(20℃)の水酸化カリウム水溶液3mlを用いて公称
容量が500mAhの角形酸化銀−カドミウム電池(G)を製
作した。外径寸法は67×16.5×8(mm)であり、電槽は
合成樹脂製のものを用いた。また0.5kg/cm2の圧力で作
動する安全弁を取り付けている。
Next, the above negative electrode plate was wound four times with 0.02 mm thick cellophane and then sandwiched between two positive electrode plates to give a specific gravity as an electrolyte.
A prismatic silver oxide-cadmium battery (G) having a nominal capacity of 500 mAh was produced using 3 ml of 1.250 (20 ° C.) potassium hydroxide aqueous solution. The outer diameter was 67 × 16.5 × 8 (mm), and the battery case was made of synthetic resin. It also has a safety valve that operates at a pressure of 0.5 kg / cm 2 .

[比較例3] 実施例7の負極板の配合から酸化第一銅を削除した以外
は全て実施例7と同様にして角形酸化銀−カドミウム電
池(H)を製作した。
Comparative Example 3 A prismatic silver oxide-cadmium battery (H) was manufactured in the same manner as in Example 7, except that cuprous oxide was omitted from the formulation of the negative electrode plate of Example 7.

なお、これらの電池のリザーブ用水酸化カドミウムは、
ほとんどない状態であり、負極板に含まれる水酸化カド
ニウムの含有量は重量比で常に正極活物質の銀の約1.4
倍[2.73(g/Ah)/2.01(g/Ah)]となっている。
The reserve cadmium hydroxide for these batteries is
It is almost absent, and the content of cadmium hydroxide contained in the negative electrode plate is always about 1.4% by weight of silver of the positive electrode active material.
It is double [2.73 (g / Ah) /2.01 (g / Ah)].

以上のようにして製作した電池(G)および(H)を20
℃で0.2CAの電流で300mAh放電した後に、同じ電流で充
電するという操作を繰り返した時の充電電圧特性を第4
図に示した。
The batteries (G) and (H) manufactured as described above are used for 20
Charging voltage characteristics when repeating the operation of discharging 300mAh at a current of 0.2CA at 300 ℃ and then charging at the same current.
As shown in the figure.

同図から本発明の酸化銀−カドミウム電池(G)の充電
終期の電圧上昇は、比較電池(H)よりも遅く起きてお
り、その充電効率は100%に近い。この2つの電池の電
圧上昇の時期が異なるのは負極板の充電効率に基づくも
のであり、本発明の電池は優れた容量保持率を有するこ
とが明らかである。
From the figure, the voltage rise at the end of charging of the silver oxide-cadmium battery (G) of the present invention occurs later than that of the comparative battery (H), and the charging efficiency thereof is close to 100%. The difference in the timing of voltage increase between the two batteries is based on the charging efficiency of the negative electrode plate, and it is clear that the battery of the present invention has an excellent capacity retention rate.

以上の実施例で本発明のカドミウム負極板および電池の
特性について説明した。
The characteristics of the cadmium negative electrode plate and the battery of the present invention have been described in the above examples.

本発明のカドミウム負極板の集電体としては、各実施例
で説明したように、その表面がニッケル,銅あるいはカ
ドミウムであればよい。つまり、その素材としてはニッ
ケル,銅,カドミウムの他に鉄の表面にニッケル,銅あ
るいはカドミウムの層を有するものや、ニッケルの表面
に銅あるいはカドミウムの層を有するもの、さらに銅の
表面にカドミウムの層を有するものである。
As the current collector of the cadmium negative electrode plate of the present invention, the surface thereof may be nickel, copper or cadmium, as described in each example. That is, as the material, in addition to nickel, copper and cadmium, a material having a nickel, copper or cadmium layer on the surface of iron, a material having a layer of copper or cadmium on the surface of nickel, and a material of cadmium on the surface of copper. It has a layer.

またその形状としてはエクスパンデッドメタル,網,穿
孔板,発泡体あるいは繊維マットが使用できる。
Expanded metal, mesh, perforated plate, foam or fiber mat can be used as the shape.

発明の効果 以上に述べたように本発明のカドミウム負極板は充電効
率が極めて高いために、不活性な水酸化カドミウムをほ
とんど有していない。従って従来のカドミウム負極板に
比べて実質的な容量密度は高くなる。
EFFECTS OF THE INVENTION As described above, the cadmium negative electrode plate of the present invention has extremely high charging efficiency, and therefore has almost no inactive cadmium hydroxide. Therefore, the substantial capacity density becomes higher than that of the conventional cadmium negative electrode plate.

また、これを用いたアルカリ二次電池では正・負極活物
質の量比を調節することによって充電制御が容易で、か
つ1CA以上の大電流による超急速充電が可能である。ま
た、この電池にはリザーブ用の水酸化カドミウムがほと
んど必要でないために高容量化が可能である。
In addition, in an alkaline secondary battery using this, charge control is easy by adjusting the amount ratio of the positive and negative electrode active materials, and super rapid charging with a large current of 1 CA or more is possible. In addition, since this battery requires almost no reserve cadmium hydroxide, it is possible to increase the capacity.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のカドミウム負極板において、酸化第
一銅の含有率と充電効率との関係について示した図。第
2図は、本発明のニッケル−カドミウム電池と比較のた
めの電池の充放電サイクルにおける容量保持率を示した
図。第3図は、本発明の二酸化マンガン−カドミウム電
池と比較のための電池の充放電サイクルにおける容量保
持率を示した図。第4図は、本発明の酸化銀−カドミウ
ム電池と比較のための電池の充電特性を示した図。
FIG. 1 is a diagram showing the relationship between the content rate of cuprous oxide and the charging efficiency in the cadmium negative electrode plate of the present invention. FIG. 2 is a diagram showing a capacity retention rate in a charge / discharge cycle of a battery for comparison with the nickel-cadmium battery of the present invention. FIG. 3 is a diagram showing the capacity retention rate in the charge / discharge cycle of the manganese dioxide-cadmium battery of the present invention and a battery for comparison. FIG. 4 is a diagram showing the charging characteristics of a battery for comparison with the silver oxide-cadmium battery of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】全カドミウム量に対し0.5重量%以上20重
量%以下の酸化第一銅を含有することを特徴とするカド
ミウム負極板。
1. A cadmium negative electrode plate containing 0.5% by weight or more and 20% by weight or less of cuprous oxide with respect to the total amount of cadmium.
【請求項2】水酸化ニッケル,二酸化マンガンあるいは
酸化銀のいずれかを活物質の主体とする正極板と請求項
1記載のカドミウム負極板とを備えたことを特徴とする
アルカリ二次電池。
2. An alkaline secondary battery comprising a positive electrode plate containing nickel hydroxide, manganese dioxide or silver oxide as an active material, and a cadmium negative electrode plate according to claim 1.
JP63180985A 1988-07-20 1988-07-20 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate Expired - Lifetime JPH07105228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63180985A JPH07105228B2 (en) 1988-07-20 1988-07-20 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180985A JPH07105228B2 (en) 1988-07-20 1988-07-20 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Publications (2)

Publication Number Publication Date
JPH0230065A JPH0230065A (en) 1990-01-31
JPH07105228B2 true JPH07105228B2 (en) 1995-11-13

Family

ID=16092727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180985A Expired - Lifetime JPH07105228B2 (en) 1988-07-20 1988-07-20 Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Country Status (1)

Country Link
JP (1) JPH07105228B2 (en)

Also Published As

Publication number Publication date
JPH0230065A (en) 1990-01-31

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP2001338645A (en) Paste type positive electrode for alkaline battery and nickel hydrogen battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2926732B2 (en) Alkaline secondary battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600825B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH07105228B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH07105229B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2553902B2 (en) Alkaline secondary battery
JPH07105227B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2577954B2 (en) Cadmium negative electrode plate and alkaline secondary battery
JP2861057B2 (en) Alkaline secondary battery