JP3458899B2 - Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof - Google Patents
Nickel hydroxide positive plate for alkaline battery and alkaline battery thereofInfo
- Publication number
- JP3458899B2 JP3458899B2 JP2001114472A JP2001114472A JP3458899B2 JP 3458899 B2 JP3458899 B2 JP 3458899B2 JP 2001114472 A JP2001114472 A JP 2001114472A JP 2001114472 A JP2001114472 A JP 2001114472A JP 3458899 B2 JP3458899 B2 JP 3458899B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- cobalt
- hydroxide
- electrode plate
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明はアルカリ電池用水酸化ニ
ッケル正極板及びアルカリ電池に関する。FIELD OF THE INVENTION The present invention relates to a nickel hydroxide positive electrode plate for an alkaline battery and an alkaline battery.
【0002】[0002]
【従来の技術】近年、電子機器の発展によって新しい高
性能の二次電池の出現が期待されている。現在、電子機
器の電源としては、ニッケル・カドミウム電池、ニッケ
ル・亜鉛電池、ニッケル・水素化物電池のニッケル系電
池および鉛電池が使用されている。これらの二次電池
は、高容量化とならんで急速充電性能の向上が求められ
ている。そのうち、ニッケル系二次電池は、正極板とし
て水酸化ニッケル電極が使用されている。この正極板の
電極反応はH+イオンの拡散であり、鉛電池の正極の電
極反応のように溶解・析出機構でないことから、高価格
であるが、長寿命で高性能の電極として使用されてい
る。この電極を充電すると水酸化ニッケルはオキシ水酸
化ニッケル(NiOOH) となる。このオキシ水酸化
ニッケルはβ形とγ形があるが、充電時にγ−NiOO
Hが生成すると31% の体積膨張がおこり、さらにγ
−NiOOHの放電生成物であるα-Ni(OH)2に
なると59%の膨張となる。近年、電池の高エネルギ−
密度化をはかるために、活物質を多く充填すると、電極
の残留多孔度が小さくなり、活物質が膨張すると電極が
厚くなり、セパレ−タの電解液が電極に移動して内部抵
抗が増大するいわゆる「ドライアップ」現象が生じた
り、電極が崩壊して短絡が発生することもある。さら
に、充電時間の短縮が要求される用途、すなわち、急速
充電をおこなう場合には、γ−NiOOHの生成がとく
におこりやすくなるために、その対策が必要になってき
た。2. Description of the Related Art In recent years, with the development of electronic equipment, the emergence of new high-performance secondary batteries is expected. Currently, nickel-cadmium batteries, nickel-zinc batteries, nickel-based batteries such as nickel-hydride batteries, and lead batteries are used as power sources for electronic devices. These secondary batteries are required to have high capacity as well as rapid charging performance. Among them, nickel-based secondary batteries use a nickel hydroxide electrode as a positive electrode plate. The electrode reaction of this positive electrode plate is diffusion of H + ions, and is not a dissolution / precipitation mechanism like the electrode reaction of the positive electrode of a lead battery, so it is expensive, but it is used as a long-lived and high-performance electrode. . When this electrode is charged, nickel hydroxide becomes nickel oxyhydroxide (NiOOH). This nickel oxyhydroxide has β-type and γ-type, but it is γ-NiOO when charging.
When H is generated, a volume expansion of 31% occurs, and γ
When it becomes α-Ni (OH) 2 which is a discharge product of —NiOOH, the expansion is 59%. In recent years, the high energy of batteries
To increase the density, if the active material is filled in a large amount, the residual porosity of the electrode becomes small, and when the active material expands, the electrode becomes thick, and the electrolytic solution of the separator moves to the electrode to increase the internal resistance. A so-called "dry-up" phenomenon may occur, or the electrodes may collapse to cause a short circuit. Furthermore, in applications where a reduction in charging time is required, that is, in the case of performing rapid charging, the production of γ-NiOOH is particularly likely to occur, and a countermeasure for it has become necessary.
【0003】従来より、水酸化ニッケル活物質の利用率
を向上させる目的で、活物質に水酸化コバルトを添加す
る方法(例えば電気化学31,47(1936),特許公開公報50-1
32441)、また活物質をニッケル基板に充填したのちCo(O
H)2 を形成させる方法(例えば特許公報昭和57-005018)
・Cd(OH)2 −Ni(OH)2 の二元系を形成させる方法(例え
ば特許公報平2-39063,USP4603094(1984), 特許公報昭56
-36796) ・Ni(OH)2 −Co(OH)2 - Cd(OH)2 の三元系を形
成させる方法(例えば特許公報平3-20860,USP395686(19
76))等が提案されている。さらに、活物質の保持体であ
る焼結ニッケル基板に金属コバルトを含有させる方法も
提案されている(例えば特許公報昭54-1010)。しかしな
がらγ−NiOOHの生成の抑制の観点からは不充分で
あった。Conventionally, a method of adding cobalt hydroxide to an active material for the purpose of improving the utilization rate of the nickel hydroxide active material (for example, Electrochemistry 31,47 (1936), Patent Publication 50-1).
32441), and after filling the nickel substrate with the active material, Co (O
H) 2 forming method (for example, Japanese Patent Publication No. 57-005018)
A method of forming a binary system of Cd (OH) 2-Ni (OH) 2 (for example, Japanese Patent Publication No. 2-39063, USP4603094 (1984), Japanese Patent Publication Sho 56).
-36796) -Method of forming a ternary system of Ni (OH) 2-Co (OH) 2-Cd (OH) 2 (for example, Japanese Patent Publication No. 3-20860, USP395686 (19
76)) etc. have been proposed. Further, a method of incorporating metallic cobalt into a sintered nickel substrate which is a holder of an active material has also been proposed (for example, Japanese Patent Publication No. 54-1010). However, it was insufficient from the viewpoint of suppressing the production of γ-NiOOH.
【0004】[0004]
【発明が解決しようとする課題】ニッケル・カドミウム
電池、ニッケル・亜鉛電池、ニッケル・水素化物電池の
ニッケル系電池は、高エネルギー密度化と急速充電化が
求められている。しかしながら、高エネルギー密度電池
や急速充電用電池に使用される水酸化ニッケル正極板は
充放電サイクルが進むと膨潤して厚くなりセパレ−タの
電解液が電極に移動して内部抵抗が増大するドライアッ
プ現象が生じて、電池寿命が短くなるという欠点があっ
た。とくに、活物質保持体であるニッケル基板が85%
以上のものを使用すると、基板の強度が弱いために、
正極板の膨潤が大きくなるという課題がある。SUMMARY OF THE INVENTION Nickel-based batteries such as nickel-cadmium batteries, nickel-zinc batteries, and nickel-hydride batteries are required to have high energy density and rapid charging. However, the nickel hydroxide positive electrode plate used in high energy density batteries and batteries for rapid charging swells and becomes thicker as the charge and discharge cycle progresses, and the electrolyte solution of the separator moves to the electrodes and increases the internal resistance. There is a drawback that the battery life is shortened due to an up phenomenon. Especially, nickel substrate, which is the active material holder, is 85%
If you use any of the above, the strength of the substrate is weak,
There is a problem that the swelling of the positive electrode plate increases.
【0005】[0005]
【課題を解決するための手段】本発明は、金属ニッケル
粉末と金属コバルト粉末とが焼結されてなるニッケル基
板と、コバルトと固溶体を形成した水酸化ニッケルと、
固溶体を形成していない水酸化カドミウムとニツケルま
たはコバルトとを備えたアルカリ電池用水酸化ニッケル
正極板において、水酸化ニッケルに固溶するコバルトの
含有率が、ニッケル基板の含有率よりも多いことを特徴
とするアルカリ電池用水酸化ニッケル正極板とすること
により、充放電による正極板の膨潤を抑制し、長寿命の
高エネルギー密度電池や急速充電用電池を提供するもの
である。さらには、ニッケル基板の多孔度が85〜98
%であることを特徴とする前記アルカリ電池用水酸化ニ
ッケル正極板とすることにより、高エネルギー密度の正
極板の長寿命化を図るものである。According to the present invention, there is provided a nickel substrate obtained by sintering metallic nickel powder and metallic cobalt powder, and nickel hydroxide having a solid solution formed with cobalt.
In a nickel hydroxide positive electrode plate for an alkaline battery comprising cadmium hydroxide not forming a solid solution and nickel or cobalt, the content ratio of cobalt dissolved in nickel hydroxide is higher than that of the nickel substrate. By using the nickel hydroxide positive electrode plate for alkaline batteries as described above, swelling of the positive electrode plate due to charging and discharging is suppressed, and a long-life high energy density battery and a battery for rapid charging are provided. Furthermore, the porosity of the nickel substrate is 85-98.
%, The long life of the high energy density positive electrode plate is achieved by using the nickel hydroxide positive electrode plate for alkaline batteries.
【0006】[0006]
【作用】水酸化ニッケル正極板の活物質利用率を向上さ
せる手段としてニッケル多孔体等の活物質保持体に活物
質を充填したのち、硝酸コバルトや硫酸コバルト等のコ
バルト水溶液を含浸したのち、水酸化ナトリウム等のア
ルカリ水溶液で中和して活物質の表面に水酸化コバルト
の層を形成させたのち充電して、導電性のオキシ水酸化
コバルトの層に変化させる方法が一般的に使用されてい
る。また、活物質として、水酸化コバルトを活物質に添
加して水酸化ニッケルと固溶体を形成させたり、あるい
は水酸化カドミウムを添加して、やはり固溶体を形成さ
せることによりγ−NiOOHの生成を抑制して、利用
率を向上させる手段も普遍的な技術として知られてい
る。さらに、正極活物質である水酸化ニッケルのほか
に、固溶体を形成していない水酸化カドミウムを形成さ
せる手段は、過放電対策として公知の手段である。[Function] As a means for improving the utilization rate of the active material of the nickel hydroxide positive electrode plate, the active material holder such as a nickel porous body is filled with the active material, and then an aqueous cobalt solution such as cobalt nitrate or cobalt sulfate is impregnated with water. A method is generally used in which a layer of cobalt hydroxide is formed on the surface of the active material by neutralizing with an alkaline aqueous solution such as sodium oxide, and then charged to change to a layer of conductive cobalt oxyhydroxide. There is. Further, as an active material, cobalt hydroxide is added to the active material to form a solid solution with nickel hydroxide, or cadmium hydroxide is added to form a solid solution, thereby suppressing the production of γ-NiOOH. Therefore, a means for improving the utilization rate is also known as a universal technology. Further, in addition to nickel hydroxide, which is a positive electrode active material, a means for forming cadmium hydroxide that does not form a solid solution is a known means as a measure against overdischarge.
【0007】本発明は、高エネルギー密度電池や急速充
電用電池に使用される水酸化ニッケル正極板は充放電サ
イクルが進むと膨潤して厚くなり、セパレ−タの電解液
が電極に移動して内部抵抗が増大してドライアップ現象
が生じ、電池寿命が短くなるという欠点の原因が、水酸
化ニッケル活物質の充電生成物としてγ−NiOOHが
生成することにあるという従来から知られているものの
ほかに、活物質保持体として使用するニッケル多孔体が
充放電によって酸化をうけて、水酸化ニッケルとなり、
それがγ−NiOOHになるために、正極板が膨潤して
厚くなり、セパレ−タの電解液が極板に移動することが
大きな原因であることを見いだしたことに基づくもので
ある。そして、その対策として活物質保持体のニッケル
にコバルトを含有させ、さらに活物質の最適化と、固溶
体を形成していない水酸化カドミウム水酸化とニッケル
や水酸化コバルトとを含有させることによって、基板の
酸化で生成する水酸化ニッケルがさらに酸化されてγ−
NiOOHになることを抑制する手段を提供するもので
ある。According to the present invention, the nickel hydroxide positive electrode plate used in a high energy density battery or a battery for rapid charging swells and becomes thicker as the charging / discharging cycle progresses, and the electrolytic solution of the separator moves to the electrode. Although it has been conventionally known that the cause of the increase in internal resistance, the dry-up phenomenon, and the shortening of battery life is that γ-NiOOH is produced as a charge product of the nickel hydroxide active material. In addition, the nickel porous body used as the active material holder is oxidized by charge and discharge to become nickel hydroxide,
It is based on the finding that the reason is that the positive electrode plate swells and becomes thicker because it becomes γ-NiOOH, and the electrolytic solution of the separator moves to the electrode plate. Then, as a countermeasure, by adding cobalt to nickel of the active material holder, further optimizing the active material, and by containing cadmium hydroxide hydroxide not forming a solid solution and nickel or cobalt hydroxide, the substrate The nickel hydroxide produced by the oxidation of
The present invention provides a means for suppressing the formation of NiOOH.
【0008】[0008]
【実施例】以下、本発明の好適な実施例を用いて説明す
る。
[実施例1]カ−ボニルニッケル粉末と2wt%の金属
コバルト粉末とを混合したのち、0.1wt%のメチル
セルロ−ズ水溶液と混練してスラリ−にする。このスラ
リ−をニッケルメツキした0.1mm の穿孔板に塗布
したのち、ヒ−タ−で乾燥してから水素の還元雰囲気中
950 ℃で焼結して多孔度が85% の焼結ニッケル基
板を製作した。つぎに、この焼結式ニッケル基板に硝酸
コバルト2mol% を含む5Mの硝酸ニッケル水溶液
を80℃で含浸したのち、80 ℃の5Mの水酸化ナトリ
ウム水溶液に浸漬する。その後、湯洗・乾燥するという
操作を8回おこなつたのち、最後に10mol%のカド
ミウムを含む1.5Mの硝酸コバルト水溶液を含浸し、
ついで、80℃の5Mの水酸化ナトリウム水溶液に浸漬
する(以下この操作を「ポストコ−ト」とよぶ)。その
後、湯洗・乾燥して、理論容量が300 mAh、寸法
が0.8×14×52mmの本発明の正極板を製作し
た。The preferred embodiments of the present invention will be described below. [Example 1] Carbonyl nickel powder and 2 wt% metallic cobalt powder were mixed and then kneaded with a 0.1 wt% methylcellulose aqueous solution to form a slurry. This slurry was applied to a nickel plated 0.1 mm perforated plate, dried with a heater and then sintered at 950 ° C. in a hydrogen reducing atmosphere to form a sintered nickel substrate with a porosity of 85%. I made it. Next, this sintered nickel substrate was impregnated with a 5M aqueous solution of nickel nitrate containing 2 mol% of cobalt nitrate at 80 ° C. and then immersed in a 5M aqueous solution of sodium hydroxide at 80 ° C. After that, the operation of washing with water and drying is performed eight times, and finally, a 1.5 M aqueous solution of cobalt nitrate containing 10 mol% of cadmium is impregnated,
Then, it is immersed in a 5M aqueous sodium hydroxide solution at 80 ° C. (hereinafter, this operation is referred to as “postcoat”). Then, it was washed with hot water and dried to manufacture a positive electrode plate of the present invention having a theoretical capacity of 300 mAh and dimensions of 0.8 × 14 × 52 mm.
【0009】実施例1で金属コバルト粉末の含有率を
0、1、2、3、5、10wt%と変えた正極板2 枚
と従来から公知の理論容量500mAh、寸法が0.7
×15×52mmのカドミウム負極板3枚を製作した。Two positive electrode plates in which the content of the metallic cobalt powder was changed to 0, 1, 2, 3, 5, 10 wt% in Example 1 and a conventionally known theoretical capacity of 500 mAh and a size of 0.7
Three x15x52 mm cadmium negative electrode plates were produced.
【0010】つぎに、この正極板を0.12mmのポリ
アミド不織布セパレ−タで包んだのち、ヒ−トシ−ルし
た。つづいて、正極板と負極板とを交互に積み重ねて極
板群とした。この極板群と電解液として8.5Mの水酸
化カリウム水溶液1.5mlを用いて公称容量が500
mAhのニッケルメッキした鉄電槽を使用した角形ニッ
ケル・カドミウム電池を製作した。外形寸法は67×1
6.5×6mm であり、電池には0.5kg/cm2
で作動する安全弁を付けている。金属コバルトの含有率
が0、1、2、3、5、10wt%の電池の符号をそれ
ぞれA、B、C、D、E、Fとする。Next, this positive electrode plate was wrapped with a 0.12 mm polyamide nonwoven fabric separator and then heat-sealed. Subsequently, a positive electrode plate and a negative electrode plate were alternately stacked to form an electrode plate group. A nominal capacity of 500 is obtained by using this electrode group and 1.5 ml of an 8.5 M potassium hydroxide aqueous solution as an electrolytic solution.
A rectangular nickel-cadmium battery was manufactured using a mAh nickel-plated iron battery case. External dimensions are 67 x 1
6.5 × 6 mm 2, the battery has 0.5 kg / cm 2
It has a safety valve that operates at. The symbols of batteries having a metal cobalt content of 0, 1, 2, 3, 5, 10 wt% are A, B, C, D, E, and F, respectively.
【0011】これらの電池を25℃、1Cで70分間充
電したのち、0.5Cの電流で1.0Vまで放電すると
いうサイクル試験をおこなった。サイクル経過にともな
う内部抵抗の値の変化を図1に示す。同図より、金属コ
バルトの含有率が0%のものA は、充放電サイクルが3
00回程度になると、内部抵抗の値が300mΩにも達
することがわかる。このように、内部抵抗の値が急上昇
すると電池の放電容量も減少し、充電電圧も高くなっ
た。一方、金属コバルトの含有率が1%以上のものB、
C、D、E、Fは、内部抵抗の上昇が極端に少なくなっ
ている。電池A を解体して、電池のエレメントを調査し
たところ、セパレ−タの電解液は枯渇しており、正極板
は厚く膨れていた。電池の重量減少は、ほとんどなかっ
たことから、金属コバルトの含有率が0%のものはニッ
ケル基板が酸化をうけてγ−NiOOHの生成がおこっ
ていることを意味するものと考えられる。このγ−Ni
OOHの示成式はK0.33・NiO2・0.67H2
O であり、電解液が正極に吸収されることを意味す
る。A cycle test was conducted in which these batteries were charged at 25 ° C. and 1 C for 70 minutes and then discharged to 1.0 V at a current of 0.5 C. FIG. 1 shows the change in the value of the internal resistance with the progress of cycles. From the figure, A with a metal cobalt content of 0% has a charge / discharge cycle of 3%.
It can be seen that the value of the internal resistance reaches 300 mΩ at about 00 times. Thus, when the value of the internal resistance rapidly increased, the discharge capacity of the battery also decreased and the charging voltage also increased. On the other hand, B containing 1% or more of metallic cobalt,
In C, D, E, and F, the increase in internal resistance is extremely small. When battery A was disassembled and the elements of the battery were examined, the separator electrolyte was depleted and the positive electrode plate was swollen thickly. Since there was almost no decrease in the weight of the battery, it is considered that when the content of metallic cobalt is 0%, the nickel substrate is oxidized to produce γ-NiOOH. This γ-Ni
The formula of OOH is K 0.33 · NiO 2 · 0.67H 2
O 2, which means that the electrolytic solution is absorbed by the positive electrode.
【0012】金属コバルトの最適含有率は、焼結ニッケ
ル基板の多孔度と活物質を充填したのちの残留多孔度に
よって異なる。実施例1で、残留多孔度が30% 、金
属コバルトの含有率が1、2、3wt%の正極板(G、
H、Iとする) を製作し、電解液として8M−KOH
、対極としてニッケル板2枚を使用し、充電率が2C
で公称容量の200%を充電したのち、0.5Cで0V
(Hg/HgO)まで放電し、さらに同じ条件で充電し
たのちの極板の厚さの変化を図2に示す。一般に電極の
厚さの増加率が15% を越えると、電池の内部抵抗の
値が上昇することが経験的に判明している。図から、極
板の厚さの増加率を15%以下に設定するためにはニッ
ケル基板の多孔度が80%の場合には、金属コバルトの
含有率の値を1wt%、多孔度が85%の場合は2wt
%、多孔度が90%の場合は3wt%以上の添加量が必
要であることがわかる。The optimum content of metallic cobalt depends on the porosity of the sintered nickel substrate and the residual porosity after filling the active material. In Example 1, the positive electrode plate (G, with a residual porosity of 30% and a metal cobalt content of 1, 2, or 3 wt%) was used.
H and I) is manufactured and 8M-KOH is used as an electrolytic solution.
, 2 nickel plates are used as counter electrodes, and the charging rate is 2C
After charging 200% of the nominal capacity with, 0V at 0.5C
FIG. 2 shows the change in the thickness of the electrode plate after discharging to (Hg / HgO) and further charging under the same conditions. It has been empirically found that the internal resistance value of the battery rises when the increase rate of the electrode thickness exceeds 15%. From the figure, in order to set the increase rate of the thickness of the electrode plate to 15% or less, when the porosity of the nickel substrate is 80%, the content ratio of metallic cobalt is 1 wt% and the porosity is 85%. 2wt in case of
%, The porosity is 90%, it can be seen that the addition amount of 3 wt% or more is required.
【0013】つぎに、金属コバルトの含有率が2%、多
孔度が80%のニッケル基板に硝酸コバルト6mol%
を含む5Mの硝酸ニッケル水溶液を80℃で含浸したの
ち、80℃の5Mの水酸化ナトリウム水溶液に浸漬す
る。その後、湯洗・乾燥するという操作を8回行った
後、ポストコ−トとして0、5、10、20、30、6
0、70、80mol%のカドミウムを含む1.5Mの
硝酸コバルト水溶液を含浸したのち、80℃の5Mの水
酸化ナトリウム水溶液に浸漬する。その後、湯洗・乾燥
して、理論容量が300mAh、寸法が0.8×14×
52mmの本発明の正極板を製作した。Next, 6 mol% of cobalt nitrate was added to a nickel substrate having a metal cobalt content of 2% and a porosity of 80%.
After impregnating it with a 5 M aqueous solution of nickel nitrate containing 80 ° C., it is immersed in a 5 M aqueous solution of sodium hydroxide at 80 ° C. After that, after performing the operation of washing with water and drying eight times, 0, 5, 10, 20, 30, 6 as a post coat.
After impregnating with a 1.5 M aqueous solution of cobalt nitrate containing 0, 70 and 80 mol% of cadmium, it is immersed in a 5 M aqueous solution of sodium hydroxide at 80 ° C. After that, it is washed with hot water and dried to have a theoretical capacity of 300 mAh and dimensions of 0.8 x 14 x.
A 52 mm positive electrode plate of the present invention was manufactured.
【0014】これらの正極板を電解液として8M−KO
H 、対極としてニッケル板2枚を使用し、充電率が2
Cで公称容量の200%を充電したのち、0.5Cで0
V(Hg/HgO)まで放電し、さらに同じ条件で充電
したのち、湯洗してから乾燥させて、活物質のX線回折
分析をおこなった。γ−NiOOHの生成量をγ−Ni
OOH(003)のピ−ク/(β−NiOOH(00
1)のピ−ク+γ−NiOOH(003)のピ−ク)か
ら求め、図3に示す。図から、ポストコ−トのカドミウ
ム含有率が10mol%以上になるとγ−NiOOHの
生成が抑制され、とくに50mol%以上になるとその
生成量は少なくなることがわかる。実用的にはカドミウ
ムの含有率は10〜80mol%がよい。ポストコ−ト
でコバルトの含有液とカドミウムの含有液とを別々にし
ても同様な効果が得られたが、コバルトとカドミウムの
混合溶液を使用した方がプロ−セスが一回で良く、簡便
である。Using these positive plates as an electrolyte, 8M-KO
H, using two nickel plates as the counter electrode, the charge rate is 2
After charging 200% of the nominal capacity with C, 0 with 0.5C
After discharging to V (Hg / HgO), charging under the same conditions, washing with hot water and then drying, an X-ray diffraction analysis of the active material was performed. The amount of γ-NiOOH produced is γ-Ni
Peak of OOH (003) / (β-NiOOH (00
It is determined from the peak of 1) + the peak of γ-NiOOH (003)) and is shown in FIG. From the figure, it can be seen that when the cadmium content of the postcoat is 10 mol% or more, the production of γ-NiOOH is suppressed, and particularly when it is 50 mol% or more, the production amount is small. Practically, the cadmium content is preferably 10 to 80 mol%. Even if the cobalt-containing solution and the cadmium-containing solution were separated by post-coating, the same effect was obtained, but using a mixed solution of cobalt and cadmium requires only one process and is simple and easy. is there.
【0015】つぎに、これらの正極板2枚と従来から公
知の理論容量が500mAhで、寸法が0.7×15×
52mmのカドミウム負極板3 枚を製作した。Next, these two positive electrode plates and a conventionally known theoretical capacity of 500 mAh and dimensions of 0.7 × 15 ×
Three 52 mm cadmium negative electrode plates were manufactured.
【0016】そして、この正極板を0.12mmのポリ
アミド不織布セパレ−タで包んだのち、ヒ−トシ−ルし
た。つづいて、正極板と負極板とを交互に積み重ねて極
板群とした。この極板群と電解液として8.5Mの水酸
化カリウム水溶液1.5mlを用いて公称容量が500
mAhのニッケルメッキした鉄電槽を使用した角形ニッ
ケル・カドミウム電池を製作した。外形寸法は67×1
6.5×6mm であり、電池には0.5kg/cm2
で作動する安全弁をつけている。ポストコ−トのカドミ
ウム含有率が2、5、10、15mol%の正極板を使
用した電池をJ、K、L、Mとする。この電池を1Cで
1.2時間充電したのち、0.2Cで0.5Vまで放電
するというサイクル試験をおこなった場合の容量推移を
図4に示す。図からカドミウムの含有率が2mol%
(J)、5mol%(K) のものは、充放電サイクル
数が600回を越えると放電容量が低下するが、カドミ
ウムの含有率が10mol%(L)および15mol%
(M)の電池の容量は安定して良好であることがわか
る。The positive electrode plate was wrapped with a 0.12 mm polyamide nonwoven fabric separator and then heat-sealed. Subsequently, a positive electrode plate and a negative electrode plate were alternately stacked to form an electrode plate group. A nominal capacity of 500 is obtained by using this electrode group and 1.5 ml of an 8.5 M potassium hydroxide aqueous solution as an electrolytic solution.
A rectangular nickel-cadmium battery was manufactured using a mAh nickel-plated iron battery case. External dimensions are 67 x 1
6.5 × 6 mm 2 , the battery has 0.5 kg / cm 2
It has a safety valve that operates at. Batteries using the positive electrode having a post-coating cadmium content of 2, 5, 10, and 15 mol% are J, K, L, and M. FIG. 4 shows the capacity transition when a cycle test was conducted in which the battery was charged at 1 C for 1.2 hours and then discharged at 0.2 C to 0.5 V. From the figure, the cadmium content is 2 mol%
In the case of (J) and 5 mol% (K), the discharge capacity decreases when the number of charge / discharge cycles exceeds 600, but the cadmium content is 10 mol% (L) and 15 mol%.
It can be seen that the capacity of the battery (M) is stable and good.
【0017】このように、カドミウムの含有率が10m
ol%以上になると、充放電サイクル寿命が良くなるの
は活物質およびニッケル基板のニッケルが酸化をうけて
生成する水酸化ニッケルが、充放電サイクル経過ととも
に、充電時にγ−NiOOHになりにくい状態に変化す
るためによるものと考えられる。その機構は、つぎのよ
うに考えられる。すなわち、ポストコート液のカドミウ
ムの含有率が10mol%以上になると中和工程で生成
する水酸化物は、水酸化コバルトと固溶体を形成する水
酸化カドミウムのほかに、固溶体を形成していない水酸
化カドミウムが生成する。水酸化ニッケルが充電時にγ
−NiOOHになり、その放電生成物はα−Ni(O
H)2 となるが、このα−Ni(OH)2がアルカリ
水溶液中で溶解してβ−Ni(OH)2に相変化する。
その際に固溶体を形成しない水酸化カドミウムが活物質
中に固溶体として結晶中に取り込まれる。すると、つづ
く充電においては、γ−Ni(OH)2 の生成が抑制
され極板の膨潤が少なくなり、長寿命となるものと考え
られる。なお、ニッケル基板のコバルトの含有率と水酸
化ニッケルに固溶するコバルトの含有率との関係は、水
酸化ニッケルに固溶するコバルトの含有率がニッケル基
板のコバルトの含有率よりも多い方がよかった。これ
は、ニッケル基板の酸化によって生成する水酸化ニッケ
ルに含まれるコバルトの量が多いと活物質よりも活性な
ものとなり、放電時にはバルクの活物質よりも優先的に
放電され、その放電生成物が抵抗となって正極の放電性
能を低下させるものと考えられる。Thus, the cadmium content is 10 m.
If it is ol% or more, the charge / discharge cycle life is improved because the nickel hydroxide formed by the oxidation of the active material and nickel of the nickel substrate becomes less likely to become γ-NiOOH during charging as the charge / discharge cycle progresses. It is thought to be due to change. The mechanism is considered as follows. That is, when the content of cadmium in the post-coat liquid is 10 mol% or more, the hydroxide produced in the neutralization step is not only cadmium hydroxide which forms a solid solution with cobalt hydroxide, but also hydroxide which does not form a solid solution. Cadmium is produced. Γ when nickel hydroxide is charged
-NiOOH and its discharge product is α-Ni (O
H) 2 , but this α-Ni (OH) 2 dissolves in an alkaline aqueous solution and undergoes a phase change to β-Ni (OH) 2 .
At that time, cadmium hydroxide that does not form a solid solution is incorporated into the crystal as a solid solution in the active material. Then, in the subsequent charging, it is considered that the generation of γ-Ni (OH) 2 is suppressed, the swelling of the electrode plate is reduced, and the life is extended. The relationship between the content of cobalt in the nickel substrate and the content of cobalt in solid solution in nickel hydroxide is that the content of cobalt in solid solution in nickel hydroxide is higher than the content of cobalt in the nickel substrate. Was good. This is because when the amount of cobalt contained in nickel hydroxide generated by the oxidation of the nickel substrate is large, it becomes more active than the active material, and during discharge, it is discharged preferentially over the bulk active material, and the discharge product is It is considered that it becomes resistance and deteriorates the discharge performance of the positive electrode.
【0018】[0018]
【発明の効果】以上述べたように、金属ニッケル粉末と
金属コバルト粉末とが焼結されてなるニッケル基板と、
コバルトと固溶体を形成した水酸化ニッケルと、固溶体
を形成していない水酸化カドミウムとニツケルまたはコ
バルトとを備えたアルカリ電池用水酸化ニッケル正極板
において、水酸化ニッケルに固溶するコバルトの含有率
が、ニッケル基板の含有率よりも多いことを特徴とする
アルカリ電池用水酸化ニッケル正極板とすることによ
り、充放電による正極板の膨潤を抑制し、長寿命の高エ
ネルギー密度電池や急速充電用電池を提供するものであ
る。また、ニッケル基板の多孔度が85〜98%のもの
を使用すれば、より高エネルギー密度の正極板の長寿命
化が図れる。As described above, a nickel substrate formed by sintering metallic nickel powder and metallic cobalt powder,
Nickel hydroxide forming a solid solution with cobalt, in a nickel hydroxide positive electrode plate for alkaline batteries comprising cadmium hydroxide not forming a solid solution and nickel or cobalt, the content rate of cobalt solid-solving in nickel hydroxide, By providing a nickel hydroxide positive electrode plate for an alkaline battery characterized by having a content ratio higher than that of the nickel substrate, swelling of the positive electrode plate due to charging and discharging is suppressed, and a long-life high energy density battery and a battery for rapid charging are provided. To do. If a nickel substrate having a porosity of 85 to 98% is used, the positive electrode plate having a higher energy density can have a longer life.
【図1】密閉形ニッケル・カドミウム電池の充放電サイ
クル経過にともなう電池の内部抵抗の変化を比較した
図。FIG. 1 is a diagram comparing changes in the internal resistance of a sealed nickel-cadmium battery with the progress of charge / discharge cycles.
【図2】正極板の極板厚さの増加率と基板の多孔度との
関係を示した図。FIG. 2 is a diagram showing the relationship between the increase rate of the electrode plate thickness of the positive electrode plate and the porosity of the substrate.
【図3】充電状態のγ−NiOOHの生成状態とカドミ
ウムの含有率との関係を示した図。FIG. 3 is a diagram showing a relationship between a production state of γ-NiOOH in a charged state and a cadmium content rate.
【図4】充放電サイクルにともなう容量保持率を比較し
た図。FIG. 4 is a diagram comparing capacity retention rates with charge / discharge cycles.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 10/30 H01M 10/30 Z (56)参考文献 特開 昭61−263047(JP,A) 特開 平2−253559(JP,A) 特開 昭56−143669(JP,A) 特開 昭52−10538(JP,A) 特開 昭62−66572(JP,A) 特公 平2−39063(JP,B2) 特公 昭48−6332(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/84 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI H01M 10/30 H01M 10/30 Z (56) Reference JP-A-61-263047 (JP, A) JP-A-2-253559 ( JP, A) JP 56-143669 (JP, A) JP 52-10538 (JP, A) JP 62-66572 (JP, A) JP-B 2-39063 (JP, B2) JP 48-3332 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/84
Claims (3)
焼結されてなるニッケル基板と、コバルトと固溶体を形
成した水酸化ニッケルと、ニツケルまたはコバルトと固
溶体を形成していない水酸化カドミウムとを備えたアル
カリ電池用水酸化ニッケル正極板において、 水酸化ニッケルに固溶するコバルトの含有率が、ニッケ
ル基板のコバルトの含有率よりも多いことを特徴とする
アルカリ電池用水酸化ニッケル正極板。1. A nickel substrate obtained by sintering metallic nickel powder and metallic cobalt powder, nickel hydroxide which forms a solid solution with cobalt, and nickel or cadmium hydroxide which does not form a solid solution with cobalt. In the nickel hydroxide positive electrode plate for alkaline batteries, the content ratio of cobalt dissolved in nickel hydroxide is higher than the content ratio of cobalt in the nickel substrate.
ることを特徴とする、請求項1記載のアルカリ電池用水
酸化ニッケル正極板。2. The nickel hydroxide positive electrode plate for an alkaline battery according to claim 1, wherein the nickel substrate has a porosity of 85 to 98%.
板を備えたアルカリ電池。3. An alkaline battery provided with the nickel hydroxide positive electrode plate according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001114472A JP3458899B2 (en) | 2001-04-12 | 2001-04-12 | Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001114472A JP3458899B2 (en) | 2001-04-12 | 2001-04-12 | Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19315892A Division JP3225608B2 (en) | 1992-06-25 | 1992-06-25 | Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001351620A JP2001351620A (en) | 2001-12-21 |
JP3458899B2 true JP3458899B2 (en) | 2003-10-20 |
Family
ID=18965536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001114472A Expired - Fee Related JP3458899B2 (en) | 2001-04-12 | 2001-04-12 | Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3458899B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007087851A (en) * | 2005-09-26 | 2007-04-05 | Sanyo Electric Co Ltd | Manufacturing method of nickel electrode for alkali secondary battery and alkali secondary battery |
-
2001
- 2001-04-12 JP JP2001114472A patent/JP3458899B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001351620A (en) | 2001-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2730121B2 (en) | Alkaline secondary battery and manufacturing method thereof | |
JPH09270253A (en) | Manufacture of lithium nickelate positive plate and lithium battery | |
EP0130627B1 (en) | Alkaline storage battery | |
JP2002117842A (en) | Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery | |
JP3458899B2 (en) | Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof | |
JP3414200B2 (en) | Alkaline storage battery | |
JP3200822B2 (en) | Nickel-metal hydride storage battery | |
JP3498727B2 (en) | Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery | |
JP4824251B2 (en) | Nickel metal hydride storage battery and manufacturing method thereof | |
JP3225608B2 (en) | Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same | |
JP2591988B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2923946B2 (en) | Sealed alkaline secondary battery and method of manufacturing the same | |
JP2989877B2 (en) | Nickel hydride rechargeable battery | |
JP2926732B2 (en) | Alkaline secondary battery | |
JP3404758B2 (en) | Nickel-metal hydride storage battery and method of manufacturing the same | |
JP2577964B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2796674B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2591985B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2546665B2 (en) | Alkaline battery | |
JPH10149824A (en) | Manufacture of hydrogen storage alloy electrode | |
JP2625706B2 (en) | Alkaline battery | |
JP2591982B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2591987B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2577954B2 (en) | Cadmium negative electrode plate and alkaline secondary battery | |
JP2591986B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |