JP3414200B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP3414200B2
JP3414200B2 JP13812097A JP13812097A JP3414200B2 JP 3414200 B2 JP3414200 B2 JP 3414200B2 JP 13812097 A JP13812097 A JP 13812097A JP 13812097 A JP13812097 A JP 13812097A JP 3414200 B2 JP3414200 B2 JP 3414200B2
Authority
JP
Japan
Prior art keywords
nickel hydroxide
mixture
nickel
oxide compound
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13812097A
Other languages
Japanese (ja)
Other versions
JPH10326616A (en
Inventor
康治 山村
徳勝 阿久津
真澄 勝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13812097A priority Critical patent/JP3414200B2/en
Publication of JPH10326616A publication Critical patent/JPH10326616A/en
Application granted granted Critical
Publication of JP3414200B2 publication Critical patent/JP3414200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池の正
極に関し、特にニッケル・カドミウム蓄電池、ニッケル
・水素蓄電池やニッケル・亜鉛蓄電池のようなペースト
式ニッケル正極の活物質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode of an alkaline storage battery, and more particularly to improvement of an active material of a paste type nickel positive electrode such as a nickel-cadmium storage battery, a nickel-hydrogen storage battery and a nickel-zinc storage battery.

【0002】[0002]

【従来の技術】アルカリ蓄電池の負極材料としては、カ
ドミウムの他に亜鉛、鉄、水素などがある。現在のとこ
ろカドミウム極と水素極が主体であるが、エネルギー密
度を高めることが可能な金属水素化物、つまり水素吸蔵
合金を負極に使ったニッケル−水素蓄電池に関しては、
その製法などに多くの提案がされている。
2. Description of the Related Art As negative electrode materials for alkaline storage batteries, there are zinc, iron, hydrogen, etc. in addition to cadmium. At present, cadmium electrodes and hydrogen electrodes are the main components, but regarding metal hydrides that can increase energy density, that is, nickel-hydrogen storage batteries that use a hydrogen storage alloy for the negative electrode,
Many proposals have been made for its manufacturing method and the like.

【0003】一方、正極としては一部空気極や酸化銀極
なども取り上げられているが、そのほとんどは水酸化ニ
ッケルを主としたニッケル極である。その形態はポケッ
ト式から焼結式、さらにはペースト式へと移り変わって
特性が向上し、密閉化が可能になるとともに用途も広が
った。上記ペースト式ニッケル極は、活物質である水酸
化ニッケル粉末に、コバルト、カドミウム等の粉末を添
加し、結着材、水等を加えて粘調なペースト状態にし、
これを空間率の高い多孔体(芯材)に充填して作成され
る。このニッケル極は焼結式のものに比べ、エネルギー
密度が高いという特徴がある。
On the other hand, as the positive electrode, an air electrode, a silver oxide electrode and the like have been taken up, but most of them are nickel electrodes mainly composed of nickel hydroxide. Its form changed from a pocket type to a sintering type, and further to a paste type, improving its characteristics, making it possible to seal it and expanding its applications. The paste-type nickel electrode is a nickel hydroxide powder as an active material, cobalt, cadmium or the like powder is added, a binder, water or the like to add a viscous paste state,
It is prepared by filling a porous body (core material) having a high porosity with this. This nickel electrode is characterized by having a higher energy density than that of the sintered type.

【0004】しかし、ペースト式ニッケル極は焼結式に
比べて水酸化ニッケルの利用率が低く、これを改善する
ために金属コバルトや水酸化コバルト等を添加し、導電
性の高い高次酸化状態のコバルト水酸化物を形成してい
る。特開平1−200555号公報では、水酸化ニッケ
ルの利用率を向上させるために前記水酸化ニッケルを主
とする活物質の粒子表面に水酸化コバルトを形成してア
ルカリ共存下で加熱処理を行うことにより導電性の高い
高次酸化状態のコバルト酸化物CoOOHやCoO等を
活物質粒子表面に形成することが開示されている。ま
た、このほかに水酸化ニッケルを主とする活物質の粒子
表面に導電性の高い高次酸化状態のコバルト酸化物を形
成する方法も提案されている。
However, the paste type nickel electrode has a lower utilization rate of nickel hydroxide than that of the sintering type, and in order to improve this, metallic cobalt, cobalt hydroxide or the like is added, and a highly conductive high-order oxidation state is obtained. Form cobalt hydroxide. In JP-A-1-2005555, in order to improve the utilization rate of nickel hydroxide, cobalt hydroxide is formed on the surface of particles of the active material mainly containing nickel hydroxide, and heat treatment is performed in the presence of an alkali. Discloses that high-oxidation state cobalt oxide CoOOH or CoO having high conductivity is formed on the surface of active material particles. In addition, a method of forming highly conductive cobalt oxide in a higher oxidation state on the surface of particles of an active material mainly containing nickel hydroxide has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
アルカリ蓄電池用正極およびその製造方法では、水酸化
ニッケルの利用率は向上するものの、電池を高温状態で
過放電したときの容量低下が著しいという問題があっ
た。
However, in the conventional positive electrode for alkaline storage battery and the method for producing the same, although the utilization rate of nickel hydroxide is improved, there is a problem that the capacity is significantly reduced when the battery is over-discharged at a high temperature. was there.

【0006】本発明は、このような問題を解決するもの
であり、正極の活物質である水酸化ニッケルの利用率の
向上を図るとともに、電池を高温状態で過放電したとき
の容量低下を防止するものである。
The present invention solves such a problem by improving the utilization rate of nickel hydroxide, which is the active material of the positive electrode, and preventing the capacity from decreasing when the battery is overdischarged at a high temperature. To do.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、正極中に水酸化ニッケルを主とする正極
活物質と、一般式MXCoO2(xは0<x≦1,MはL
i,Na,Kのうちの少なくとも1種の元素)で示され
るコバルト複合酸化物と2価を超える原子価を有する酸
化ニッケル化合物とからなる混合物を水酸化ニッケルの
総量の〜30重量%含むことを特徴とする。
In order to solve the above problems, the present invention provides a positive electrode active material mainly containing nickel hydroxide in a positive electrode and a general formula M X CoO 2 (x is 0 <x ≦ 1. , M is L
A mixture of a cobalt composite oxide represented by at least one element of i, Na and K) and a nickel oxide compound having a valence of more than 2 is contained in an amount of 5 to 30% by weight based on the total amount of nickel hydroxide. It is characterized by

【0008】また、本発明では正極が水酸化ニッケルを
主とする活物質と、一般式MXCoO2(xは0<x≦
1,MはLi,Na,Kのうちの少なくとも1種の元
素)で示されるコバルト複合酸化物と3価以上の原子価
を有する酸化マンガン化合物とからなる混合物を水酸化
ニッケルの総量の〜30重量%含むことを特徴とする
ものである。
In the present invention, the positive electrode is made of an active material mainly containing nickel hydroxide, and the general formula M X CoO 2 (x is 0 <x ≦
1, M is a mixture of a cobalt composite oxide represented by at least one element selected from Li, Na, and K) and a manganese oxide compound having a valence of 3 or more and a total amount of nickel hydroxide of 5 to It is characterized by containing 30% by weight.

【0009】さらに本発明は、正極が水酸化ニッケルを
主とする活物質と、一般式MXCoO2(xは0<x≦
1,MはLi,Na,Kのうちの少なくとも1種の元
素)で示されるコバルト複合酸化物と2価を超える原子
価を有する酸化ニッケル化合物と3価以上の原子価を有
する酸化マンガン化合物とからなる混合物を水酸化ニッ
ケルの総量の〜30重量%含むことを特徴とするもの
でもある。
Further, in the present invention, the positive electrode comprises an active material mainly composed of nickel hydroxide, and the general formula M X CoO 2 (x is 0 <x ≦.
1, M is at least one element selected from Li, Na, and K), a cobalt composite oxide, a nickel oxide compound having a valence of more than 2 and a manganese oxide compound having a valence of 3 or more. It is also characterized by containing 5 to 30% by weight of the total amount of nickel hydroxide.

【0010】[0010]

【発明の実施の形態】請求項1の発明では、水酸化ニッ
ケルを主とするアルカリ蓄電池用正極活物質に、導電性
の高い一般式MXCoO2(xは0<x≦1,MはLi,
Na,Kのうちの少なくとも1種の元素)で示されるコ
バルト複合酸化物と2価を超える原子価を有する酸化ニ
ッケル化合物とからなる混合物を添加したものである。
According to the first aspect of the present invention, a positive electrode active material for an alkaline storage battery mainly containing nickel hydroxide has a general formula M X CoO 2 (where x is 0 <x ≦ 1 and M is high). Li,
A mixture of a cobalt composite oxide represented by at least one element of Na and K) and a nickel oxide compound having a valence of more than 2 is added.

【0011】一般式MXCoO2で示されるコバルト複合
酸化物は導電性が高く、水酸化ニッケルの利用率を高め
ることができる。
The cobalt composite oxide represented by the general formula M X CoO 2 has high conductivity and can increase the utilization rate of nickel hydroxide.

【0012】さらに、この高導電性の酸化物中に2価を
超える原子価を有する酸化ニッケル化合物(例えば、N
iO,Ni(OH)2,NiOOH等の化合物、または
コバルトが含まれるこれら化合物、さらにこれら化合物
とにLi,Na,Kをドープ、あるいは反応させた化合
物)を添加すると、電池充電時に前記酸化ニッケル化合
物は、γ型のニッケルの原子価数が3価を超える、非常
に酸化状態の高い酸化ニッケル化合物に酸化される。こ
の非常に酸化状態の高い酸化ニッケル化合物は、通常、
電池の充放電に寄与しているβ型のNiOOHに比べ、
放電し難い特性がある。
Further, in this highly conductive oxide, a nickel oxide compound having a valence of more than two (for example, N
When a compound such as iO, Ni (OH) 2 , NiOOH, or a compound containing cobalt, or a compound obtained by doping or reacting with these compounds with Li, Na, K) is added, the nickel oxide is charged at the time of battery charging. The compound is oxidized into a nickel oxide compound having a very high oxidation state, in which the valence number of γ-type nickel exceeds 3. This highly oxidized nickel oxide compound is usually
Compared to β-type NiOOH, which contributes to battery charging and discharging,
It has the property of being difficult to discharge.

【0013】このためβ型NiOOHの放電が終了し、
電池が過放電状態になっても、コバルト複合酸化物と2
価を超える原子価を有する酸化ニッケル化合物とからな
る混合物中の酸化ニッケル化合物が高い酸化状態(γ
型)を維持し、コバルト複合酸化物の還元による分解を
防いでいる。
Therefore, the discharge of β-type NiOOH is completed,
Even if the battery is over-discharged, the cobalt composite oxide and 2
The nickel oxide compound in the mixture consisting of the nickel oxide compound having a valence higher than the valence is in a high oxidation state (γ
(Type) to prevent decomposition of the cobalt composite oxide due to reduction.

【0014】つまり、請求項1の発明によれば、水酸化
ニッケルの利用率が高く、電池を高温状態で過放電した
ときでも、その容量低下を防止することができる。
That is, according to the first aspect of the invention, the utilization rate of nickel hydroxide is high, and it is possible to prevent the capacity from decreasing even when the battery is over-discharged at a high temperature.

【0015】請求項2の発明は、請求項1に記載の正極
中における高い導電性を有するコバルト複合酸化物と酸
化ニッケル化合物とからなる混合物の混合割合を規定し
たものであり、この範囲にすることにより、上記の作用
効果を発揮することができる。
The invention of claim 2 defines the mixing ratio of the mixture of the cobalt composite oxide having high conductivity and the nickel oxide compound in the positive electrode according to claim 1, and the mixing ratio is within this range. As a result, the above-mentioned effects can be exhibited.

【0016】請求項3の発明は、コバルト複合酸化物と
酸化ニッケル化合物とからなる混合物の層を水酸化ニッ
ケルを主とする活物質の粒子表面に形成することによ
り、少ない混合物量で高い水酸化ニッケルの利用率を得
ることができる。
According to the third aspect of the present invention, by forming a layer of a mixture of a cobalt composite oxide and a nickel oxide compound on the surface of particles of an active material containing nickel hydroxide as a main component, a high hydroxylation amount can be obtained with a small amount of the mixture. The utilization rate of nickel can be obtained.

【0017】請求項4の発明は、水酸化ニッケルを主と
する活物質に、導電性の高い一般式MXCoO2(xは0
<x≦1,MはLi,Na,Kのうちの少なくとも1種
の元素)で示されるコバルト複合酸化物と3価以上の原
子価を有する酸化マンガン化合物とからなる混合物を添
加したものである。
According to a fourth aspect of the present invention, an active material mainly containing nickel hydroxide is added to the general formula M X CoO 2 (x is 0) having high conductivity.
<X ≦ 1, M is at least one element selected from Li, Na, and K), and a mixture of a cobalt composite oxide represented by the formula and a manganese oxide compound having a valence of 3 or more is added. .

【0018】前述したようにコバルト複合酸化物は導電
性が高く、水酸化ニッケルの利用率を高めることができ
る。さらに、この高導電性の酸化物中に3価を越える原
子価を有する酸化マンガン化合物(例えば、MnOO
H,Mn23,MnO2等の化合物、またはコバルトが
含まれるこれら化合物、さらにこれら化合物とLi,N
a、Kをドープ、あるいは反応した化合物)を添加する
と、正極β型NiOOHの放電が終了し、電池が過放電
状態になっても、コバルト複合酸化物と3価以上の原子
価を有する酸化マンガン化合物とからなる混合物中の酸
化マンガン化合物が高い酸化状態を維持し、コバルト複
合酸化物の還元による分解を防いでいる。
As described above, the cobalt composite oxide has high conductivity and can improve the utilization rate of nickel hydroxide. Further, a manganese oxide compound having a valence of more than 3 (for example, MnOO) is contained in the highly conductive oxide.
Compounds such as H, Mn 2 O 3 , and MnO 2 , or these compounds containing cobalt, and these compounds and Li, N
When a compound doped with or reacting with a, K) is added, even if the discharge of the positive electrode β-type NiOOH ends and the battery goes into an overdischarged state, the cobalt composite oxide and manganese oxide having a valence of 3 or more valences. The manganese oxide compound in the mixture containing the compound maintains a high oxidation state and prevents decomposition of the cobalt composite oxide due to reduction.

【0019】請求項5の発明は、請求項4に記載の正極
活物質において、高い導電性を有するコバルト複合酸化
物と酸化マンガン化合物とからなる混合物の混合割合を
規定したものであり、この範囲にすることにより、上記
に記載の作用効果を発揮することができる。
According to a fifth aspect of the present invention, in the positive electrode active material according to the fourth aspect, a mixing ratio of a mixture of a cobalt composite oxide having a high conductivity and a manganese oxide compound is defined, and this range is specified. By the above, the above-described effects can be exhibited.

【0020】請求項6の発明は、コバルト複合酸化物と
酸化マンガン化合物とからなる混合物の層を水酸化ニッ
ケルを主とする活物質の粒子表面に形成することによ
り、少ない混合物もしくは化合物量で高い水酸化ニッケ
ルの利用率を得ることができる。
According to the invention of claim 6, a layer of a mixture composed of a cobalt composite oxide and a manganese oxide compound is formed on the surface of particles of an active material mainly containing nickel hydroxide, so that a small amount of the mixture or the amount of the compound can be increased. The utilization rate of nickel hydroxide can be obtained.

【0021】請求項7の発明は、水酸化ニッケルを主と
する活物質に、導電性の高い一般式MXCoO2(xは0
<x≦1,MはLi,Na,Kのうちの少なくとも1種
の元素)で示されるコバルト複合酸化物と2価を超える
原子価を有する酸化ニッケル化合物と、さらに3価以上
の原子価を有する酸化マンガン化合物とからなる混合物
を添加したものである。
According to the invention of claim 7, an active material mainly composed of nickel hydroxide is added to a general formula M X CoO 2 (x is 0) having high conductivity.
<X ≦ 1, M is at least one element of Li, Na, and K), a cobalt composite oxide represented by the formula: a nickel oxide compound having a valence of more than two, and a valence of three or more. The mixture containing the manganese oxide compound is added.

【0022】高導電性のコバルト複合酸化物中に2価を
超える原子価を有する酸化ニッケル化合物(例えば、N
iO、Ni(OH)2,NiOOH等の化合物、または
コバルトが含まれるこれら化合物、さらに、これら化合
物とLi,Na,Kをドープ、あるいは反応した化合
物)と、さらに3価を超える原子価を有する酸化マンガ
ン化合物(例えば、MnOOH,Mn23,MnO2
の化合物、また、コバルトが含まれるこれら化合物、さ
らにこれら化合物とLi,Na,Kをドープ、あるいは
反応した化合物)を添加すると、正極β型NiOOHの
放電が終了し、電池が過放電状態になっても、前記混合
物もしくは化合物中の酸化ニッケル化合物や酸化マンガ
ン化合物が高い酸化状態を維持し、コバルト複合酸化物
の還元による分解を防いでいる。この構成でも活物質で
ある水酸化ニッケルの利用率が高く、電池を高温状態で
過放電したときの容量低下を防止することができる。
In the highly conductive cobalt composite oxide, a nickel oxide compound having a valence of more than two (eg N 2
Compounds such as iO, Ni (OH) 2 and NiOOH, or compounds containing cobalt, and compounds obtained by doping or reacting these compounds with Li, Na, K) and further having a valence of more than 3 When a manganese oxide compound (for example, a compound such as MnOOH, Mn 2 O 3 , MnO 2 or the like, cobalt-containing compounds, or a compound obtained by doping or reacting these compounds with Li, Na or K) is added, the positive electrode is added. Even when the β-type NiOOH is discharged and the battery is over-discharged, the nickel oxide compound and the manganese oxide compound in the mixture or compound maintain a high oxidation state and prevent decomposition by reduction of the cobalt composite oxide. I'm out. Even with this configuration, the utilization rate of nickel hydroxide, which is an active material, is high, and it is possible to prevent a decrease in capacity when the battery is overdischarged at a high temperature.

【0023】請求項8の発明は、請求項7に記載の正極
活物質において、高い導電性を有するコバルト複合酸化
物と酸化ニッケル化合物と酸化マンガン化合物とからな
る混合物の混合割合を規定したものである。
The invention of claim 8 defines the mixing ratio of a mixture of a cobalt composite oxide having high conductivity, a nickel oxide compound and a manganese oxide compound in the positive electrode active material according to claim 7. is there.

【0024】請求項9の発明は、コバルト複合酸化物と
酸化ニッケル化合物と酸化マンガン化合物とからなる混
合物の層を水酸化ニッケルを主とする活物質の粒子表面
に形成することにより、少ない混合物量で高い水酸化ニ
ッケルの利用率を得ることができる。
According to the invention of claim 9, a layer of a mixture composed of a cobalt composite oxide, a nickel oxide compound and a manganese oxide compound is formed on the surface of particles of an active material mainly containing nickel hydroxide, whereby a small amount of the mixture is obtained. It is possible to obtain a high utilization rate of nickel hydroxide.

【0025】[0025]

【実施例】以下に本発明の実施例について図面とともに
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0026】(実施例1)一般式LiCoO2で示され
るコバルト複合酸化物と2価を越える原子価を有する酸
化ニッケル化合物とからなる混合物を作成した。
Example 1 A mixture of a cobalt composite oxide represented by the general formula LiCoO 2 and a nickel oxide compound having a valence of more than 2 was prepared.

【0027】硫酸コバルトCoSO4・7H2Oと硫酸ニ
ッケルNiSO4・6H2Oを所定量の水に溶解して混
合、冷却した。この混合溶液にコバルトを酸化するのに
必要な量の過酸化水素水を酸化剤として加えて混合し、
金属塩水溶液を作成した。
Cobalt sulfate CoSO 4 .7H 2 O and nickel sulfate NiSO 4 .6H 2 O were dissolved in a predetermined amount of water, mixed and cooled. Hydrogen peroxide solution in an amount necessary to oxidize cobalt is added to this mixed solution as an oxidant and mixed,
A metal salt aqueous solution was prepared.

【0028】上記金属塩水溶液をpH12以上の水酸化
ナトリウム水溶液中に滴下して、コバルトとニッケルの
水酸化物混合物(A)の沈殿を作成した。この際、pH
値を12以上に保つため水酸化ナトリウム水溶液も滴下
した。また、中和熱による水溶液温度の上昇により、過
酸化水素が生成したコバルトやニッケルの水酸化物によ
って分解するために、水溶液温度は0℃程度にまで冷却
した。
The above metal salt aqueous solution was dropped into an aqueous sodium hydroxide solution having a pH of 12 or more to prepare a precipitate of a hydroxide mixture (A) of cobalt and nickel. At this time, pH
A sodium hydroxide aqueous solution was also added dropwise to maintain the value at 12 or more. Further, the temperature of the aqueous solution was cooled to about 0 ° C. because hydrogen peroxide was decomposed by the hydroxides of cobalt and nickel produced by the rise of the aqueous solution temperature due to the heat of neutralization.

【0029】上記水酸化物混合物(A)を遠心分離器で
回収し、この化合物中のコバルトとニッケルの総量に対
して等モル量以上の水酸化リチウムを含む水溶液と混
合、煮沸し、LiCoO2と酸化ニッケル化合物とから
なる混合物(B)を作成した。
The above hydroxide mixture (A) was recovered by a centrifuge, mixed with an aqueous solution containing lithium hydroxide in an equimolar amount or more with respect to the total amount of cobalt and nickel in this compound, boiled, and LiCoO 2 And a nickel oxide compound was prepared as a mixture (B).

【0030】混合物(B)の酸化ニッケル化合物量が水
酸化ニッケル換算量で10重量%以下の場合、X線回折
パターンはほとんどLiCoO2と同じであった。酸化
ニッケル化合物量の多い場合、X線回折パターンはLi
CoO2とNi(OH)2の回折パターンを示した。
When the amount of the nickel oxide compound in the mixture (B) was 10% by weight or less in terms of nickel hydroxide, the X-ray diffraction pattern was almost the same as that of LiCoO 2 . When the amount of nickel oxide compound is large, the X-ray diffraction pattern is Li
The diffraction patterns of CoO 2 and Ni (OH) 2 are shown.

【0031】上記混合物(B)と水を高速回転する粉砕
攪拌羽根を有する高分散装置を用いて分散処理を行い、
懸濁溶液(C)を作成した。
The mixture (B) and water are dispersed using a high-dispersion device having a crushing stirring blade that rotates at high speed,
A suspension solution (C) was prepared.

【0032】次に、上記懸濁溶液(C)を用いて作成し
た水酸化ニッケル正極と、一般式MmNi3.55Co0.75
Mn0.4Al0.3(Mmはミッシュメタル、La,Ce等
よりなる)水素吸蔵合金粉末からなる負極を用いて、ニ
ッケル−水素蓄電池を作成し、その特性を評価した。
Next, a nickel hydroxide positive electrode prepared by using the above suspension solution (C) and a general formula MmNi 3.55 Co 0.75
A nickel-hydrogen storage battery was prepared using a negative electrode made of Mn 0.4 Al 0.3 (Mm is made of misch metal, La, Ce, etc.) hydrogen storage alloy powder, and its characteristics were evaluated.

【0033】電池の作成方法、試験方法および、その結
果を以下に記述する。
The method of making the battery, the method of testing, and the results are described below.

【0034】水酸化コバルトと水酸化亜鉛を共晶した水
酸化ニッケル粉末に上記懸濁溶液(C)の所定量(重量
%)と、酸化亜鉛1重量%を加えて充分に混合撹拌し、
さらに水を加えてペースト状にし、芯材をなす平均ポア
サイズ150μm、多孔度95%、厚さ1.0mmの発
泡状ニッケルシートに充填した。これを90℃で乾燥
し、ローラプレスで加圧し、さらにその表面にフッ素樹
脂粉末をコーティングして電極を作成した。これらの電
極を幅3.5cm、長さ11cm、厚さ0.7〜0.8
mmに調整し、リードを所定の位置に取り付けて正極板
とした。その容量は約1500mAhとした。
A predetermined amount (% by weight) of the above suspension solution (C) and 1% by weight of zinc oxide were added to nickel hydroxide powder obtained by eutecticizing cobalt hydroxide and zinc hydroxide, and the mixture was thoroughly mixed and stirred.
Further, water was added to form a paste, which was filled in a foamed nickel sheet having an average pore size of 150 μm, a porosity of 95%, and a thickness of 1.0 mm, which constitutes a core material. This was dried at 90 ° C., pressed by a roller press, and the surface thereof was coated with fluororesin powder to prepare an electrode. These electrodes have a width of 3.5 cm, a length of 11 cm, and a thickness of 0.7 to 0.8.
After adjusting to mm, the lead was attached at a predetermined position to obtain a positive electrode plate. Its capacity was about 1500 mAh.

【0035】負極物質としてはMmNi3.55Co0.75
0.4Al0.3合金を用いた。粒径53μm以下の合金粉
末を80℃の31%KOHアルカリ溶液中に1時間投入
して、アルカリ可溶分を取り除く合金の表面活性化処理
を施した。
As the negative electrode material, MmNi 3.55 Co 0.75 M
An n 0.4 Al 0.3 alloy was used. An alloy powder having a particle size of 53 μm or less was placed in a 31% KOH alkaline solution at 80 ° C. for 1 hour to perform surface activation treatment of the alloy to remove alkali-soluble components.

【0036】上記の処理を施した合金試料粉末にカルボ
キシメチルセルロースの希水溶液を加え、混合撹拌して
ペースト状にし、これを平均ポアサイズ150μm、多
孔度95%、厚さ1.0mmの発泡状ニッケルシートに
充填した。これを90℃で乾燥し、ローラプレスで加圧
し、さらにその表面にフッ素樹脂粉末をコーティングし
て電極を作成した。これらの電極を幅3.5cm、長さ
14.5cm、厚さ約0.4mmに調整し、負極板とし
た。
A dilute aqueous solution of carboxymethyl cellulose was added to the alloy sample powder subjected to the above treatment, and mixed and stirred to form a paste, which was a foamed nickel sheet having an average pore size of 150 μm, a porosity of 95% and a thickness of 1.0 mm. Filled. This was dried at 90 ° C., pressed by a roller press, and the surface thereof was coated with fluororesin powder to prepare an electrode. These electrodes were adjusted to have a width of 3.5 cm, a length of 14.5 cm, and a thickness of about 0.4 mm to prepare a negative electrode plate.

【0037】前記正極板1、負極板2および親水性を付
与したポリプロピレン不織布からなるセパレータ3とを
組み合わせ全体を渦巻状に捲回して、4/5Aサイズの
ニッケルメッキした鋼製の電池ケース4内に収納した。
比重1.3の水酸化カリウム水溶液に水酸化リチウムを
30g/l溶解したアルカリ電解液を2.35ml注入
後、ケース4の開口部を封口板5で封口して図1に示す
密閉形電池を作成した。
Inside the battery case 4 made of nickel-plated steel of 4/5 A size by spirally winding the whole in combination with the positive electrode plate 1, the negative electrode plate 2 and the separator 3 made of hydrophilic polypropylene. Stored in.
After injecting 2.35 ml of an alkaline electrolyte in which 30 g / l of lithium hydroxide was dissolved in a potassium hydroxide aqueous solution having a specific gravity of 1.3, the opening of the case 4 was sealed with a sealing plate 5 to obtain the sealed battery shown in FIG. Created.

【0038】なお図中6は、封口板5との間で安全弁7
を加圧状態で収容した正極端子キャップであり、封口板
5とは溶接されていてその周縁にはガスケット8が設置
されている。9は封口板5の下面と正極板1とを電気的
につなぐコネクタリードである。
Reference numeral 6 in the drawing indicates a safety valve 7 with the sealing plate 5.
Is a positive electrode terminal cap that is housed under pressure, is welded to the sealing plate 5, and a gasket 8 is installed on the periphery thereof. Reference numeral 9 is a connector lead that electrically connects the lower surface of the sealing plate 5 and the positive electrode plate 1.

【0039】また、比較として水酸化リチウムと反応さ
せていないコバルトとニッケルの水酸化物混合物(A)
を用いて、上記と同様の方法で正極、さらに密閉型電池
を作成した。
For comparison, a hydroxide mixture of cobalt and nickel (A) not reacted with lithium hydroxide is used.
Using, a positive electrode and a sealed battery were prepared in the same manner as above.

【0040】このようにして作成した電池を20℃にお
いて0.1C(10時間率、例えば1500mAhの電
池では電流150mA)で150%まで充電し、0.2
Cで終止電圧1.0Vまで放電し、放電終了後45℃で
5日間放置した。
The battery thus prepared was charged to 0.1% at 20 ° C. (10 hours, for example, a current of 150 mA for a battery of 1500 mAh) was charged to 150% and charged to 0.2%.
It was discharged to a final voltage of 1.0 V with C, and left at 45 ° C. for 5 days after the discharge was completed.

【0041】放置後、45℃において0.2Cで120
%充電、0.2Cで1.0Vまでの充放電サイクルを1
0〜20サイクル行って化成処理し、試験電池とした。
After being left at 120 ° C. at 0.2 ° C. at 45 ° C.
% Charge, charge / discharge cycle up to 1.0V at 0.2C 1
A test battery was prepared by conducting 0 to 20 cycles for chemical conversion treatment.

【0042】この試験電池で以下の試験を行った。The following tests were conducted with this test battery.

【0043】(1)水酸化ニッケル利用率 これは20℃の温度下で充電電流0.1C(0.15
A)で150%まで充電し、休止1時間後、0.2Cで
1.0Vまで放電した時の放電容量を測定し、これを正
極中の水酸化ニッケルの理論容量(水酸化ニッケルのニ
ッケル価数が1だけ変化したときの電気量)と比較して
次の(式1)により水酸化ニッケル利用率を求めた。
(1) Nickel hydroxide utilization rate This is a charging current of 0.1 C (0.15
The discharge capacity was measured when the battery was charged to 150% in A), and after 1 hour of rest, it was discharged to 0.2 V at 0.2 C, and the discharge capacity was measured to find the theoretical capacity of nickel hydroxide in the positive electrode (nickel value of nickel hydroxide). The utilization rate of nickel hydroxide was calculated by the following (Equation 1) in comparison with the quantity of electricity when the number changed by 1.

【0044】[0044]

【式1】水酸化ニッケル利用率=(放電容量/理論容
量)×100 (2)20℃での1C(1.5A)充放電試験 これは20℃の温度下で0.2C(0.3A)で終止電
圧1.0Vまで放電した後、充電電流1Cで120%
(1.2時間)充電し、休止1時間後、1Cで1.0V
まで放電したときの放電容量を測定し、1C放電時の水
酸化ニッケル利用率とした。
[Formula 1] Nickel hydroxide utilization rate = (discharge capacity / theoretical capacity) × 100 (2) 1 C (1.5 A) charge / discharge test at 20 ° C. This is 0.2 C (0.3 A at 20 ° C.). ), Discharge to a final voltage of 1.0V, then 120% at a charging current of 1C
(1.2 hours) Charge, 1 hour after rest, 1.0V at 1C
The discharge capacity at the time of discharging was measured and taken as the nickel hydroxide utilization rate at 1C discharge.

【0045】(3)高温状態での過放電特性試験 これは20℃,0.2Cで1.0Vまで放電した後、1
kΩの外部負荷をつないで65℃で2ヵ月保存し、保存
前後の20℃,1C充放電試験での放電容量を測定し、
水酸化ニッケルの理論容量と比較して、過放電後の水酸
化ニッケル利用率とした。
(3) Over-discharge characteristic test at high temperature This is a test after discharging to 1.0 V at 20 ° C. and 0.2 C.
Stored at 65 ° C for 2 months by connecting an external load of kΩ, and measure the discharge capacity at 20 ° C and 1C charge / discharge test before and after storage.
The utilization rate of nickel hydroxide after overdischarge was compared with the theoretical capacity of nickel hydroxide.

【0046】まず、酸化ニッケル化合物量を水酸化ニッ
ケル換算量で10重量%とした混合物(B)の添加量を
0〜30重量%とし、20℃,0.2Cと1C放電時の
正極の水酸化ニッケル利用率を調べた。
First, the amount of the mixture (B) whose nickel oxide compound amount was 10% by weight in terms of nickel hydroxide equivalent was 0 to 30% by weight, and the water of the positive electrode at 20 ° C., 0.2 C and 1 C discharge was used. The utilization rate of nickel oxide was investigated.

【0047】図2にその結果を示す。The results are shown in FIG.

【0048】混合物(B)の添加量が0重量%の正極を
用いた電池の水酸化ニッケル利用率は70%程度であっ
たが、混合物(B)を添加することにより利用率は次第
に上昇し、添加量が15重量%以上ではほぼ一定となり
95%の利用率を示した。
The nickel hydroxide utilization rate of the battery using the positive electrode containing 0% by weight of the mixture (B) was about 70%, but the utilization rate was gradually increased by adding the mixture (B). When the addition amount was 15% by weight or more, it became almost constant and the utilization rate was 95%.

【0049】1C放電時の利用率は、添加量20重量%
以上で約90%を示した。
The utilization rate at 1C discharge is 20% by weight
The above shows about 90%.

【0050】このように正極活物質の水酸化ニッケルの
利用率が上昇しても、電池の絶対容量は正極中の水酸化
ニッケル量で決まるため、混合物(B)の添加量が多く
なると、相対的に水酸化ニッケル量は減少して電池の容
量が低下する。このため混合物(B)の添加量を最少限
に抑えて、水酸化ニッケル量の確保と、その利用率を向
上させることが好ましく、混合物(B)の添加量は
30重量%が適当であった。
Even if the utilization rate of nickel hydroxide in the positive electrode active material is increased in this way, the absolute capacity of the battery is determined by the amount of nickel hydroxide in the positive electrode. As a result, the amount of nickel hydroxide decreases and the battery capacity decreases. For this reason, it is preferable to suppress the addition amount of the mixture (B) to the minimum, to secure the amount of nickel hydroxide and to improve the utilization rate thereof. The addition amount of the mixture (B) is 5 to 5 .
30% by weight was suitable.

【0051】また、水酸化物混合物(A)を15重量%
添加した正極を用いた電池の水酸化ニッケル利用率は8
8%と混合物(B)を用いた電池に比べ、低い値を示し
た。このことよりオキシ水酸化コバルトをコバルト酸リ
チウムのような複合酸化物に変える必要があることがわ
かった。
Further, the hydroxide mixture (A) was added in an amount of 15% by weight.
The utilization rate of nickel hydroxide in the battery using the added positive electrode is 8
The value was lower than that of the battery using 8% and the mixture (B). From this, it was found that cobalt oxyhydroxide needs to be changed to a composite oxide such as lithium cobalt oxide.

【0052】次に、酸化ニッケル化合物量を水酸化ニッ
ケル換算量で0〜50重量%とした混合物(B)を15
重量%添加した正極を作成し、それら電池の20℃にお
ける1C放電時の水酸化ニッケル利用率と、65℃での
過放電後の1C放電時の水酸化ニッケル利用率を調べ
た。
Next, 15 parts of the mixture (B) containing the nickel oxide compound in an amount of 0 to 50% by weight in terms of nickel hydroxide equivalent was added.
A positive electrode added with wt% was prepared, and the utilization rate of nickel hydroxide at 1C discharge at 20 ° C and the utilization rate of nickel hydroxide at 1C discharge after overdischarge at 65 ° C were examined.

【0053】図3にその結果を示す。The results are shown in FIG.

【0054】酸化ニッケル化合物を含まない混合物
(B)であるLiCoO2の1C放電時の水酸化ニッケ
ル利用率は高いが、65℃での過放電後の1C放電時の
水酸化ニッケル利用率は86%と低下した。LiCoO
2と酸化ニッケル化合物を混合して混合物(B)とする
ことにより1C放電時の水酸化ニッケル利用率は若干低
下するが、65℃での過放電後の1C放電時の水酸化ニ
ッケル利用率は高くなった。
LiCoO 2 which is a mixture (B) containing no nickel oxide compound has a high utilization rate of nickel hydroxide at 1C discharge, but a utilization rate of nickel hydroxide at 1C discharge after overdischarge at 65 ° C. is 86. Fell to%. LiCoO
By mixing 2 and a nickel oxide compound to form a mixture (B), the utilization rate of nickel hydroxide at 1C discharge is slightly lowered, but the utilization rate of nickel hydroxide at 1C discharge after overdischarge at 65 ° C is It became high.

【0055】混合物(B)の酸化ニッケル化合物量が水
酸化ニッケル換算量で40重量%になると、1C充放電
時の放電率が80%を下回る。このため酸化ニッケル化
合物は水酸化ニッケル換算量で40重量%以下が適量で
ある。
When the amount of the nickel oxide compound in the mixture (B) is 40% by weight in terms of nickel hydroxide, the discharge rate at 1C charging / discharging falls below 80%. Therefore, a suitable amount of the nickel oxide compound is 40% by weight or less in terms of nickel hydroxide conversion.

【0056】(実施例2)水酸化コバルトと水酸化亜鉛
を共晶した水酸化ニッケル粉末を、一般式Na0. 6Co
2で示されるコバルト複合酸化物と3価を越える原子
価を有する酸化マンガン化合物とからなる混合物で被覆
して水酸化ニッケル粉末を作成した。
[0056] (Example 2) nickel hydroxide powder cobalt hydroxide and zinc hydroxide was eutectic formula Na 0. 6 Co
A nickel hydroxide powder was prepared by coating with a mixture of a cobalt composite oxide represented by O 2 and a manganese oxide compound having a valence of more than three.

【0057】これは以下の方法で調整した。硫酸コバル
トCoSO4・7H2Oと硫酸マンガンMnSO4・5H2
Oを所定量、水に溶解し、混合、冷却した。この混合溶
液にコバルト、マンガンを酸化するのに必要な量の過酸
化水素水を加えて混合し、金属塩水溶液を作成した。
This was adjusted by the following method. Cobalt sulfate CoSO 4 · 7H 2 O and manganese sulfate MnSO 4 · 5H 2
A predetermined amount of O was dissolved in water, mixed, and cooled. A hydrogen peroxide solution in an amount necessary for oxidizing cobalt and manganese was added to this mixed solution and mixed to prepare an aqueous metal salt solution.

【0058】次に、pH12以上の水酸化ナトリウム水
溶液中に所定量の水酸化コバルトと水酸化亜鉛を共晶し
た水酸化ニッケル粉末を入れ、分散攪拌させながら、上
記金属塩水溶液を徐々に所定量滴下して、水酸化ニッケ
ル粉末の表面にコバルトとマンガンの水酸化物の混合沈
殿物を作成した。この水酸化ニッケル粉末を水酸化ニッ
ケル粉末(D)とする。この際、pH値を12以上に保
つため水酸化ナトリウム水溶液も徐々に滴下した。ま
た、中和熱による水溶液温度の上昇によって過酸化水素
が生成したコバルトやマンガンの水酸化化合物により分
解するために、水溶液温度は0℃程度にまで冷却した。
Next, a predetermined amount of nickel hydroxide powder eutectic of cobalt hydroxide and zinc hydroxide was placed in a sodium hydroxide aqueous solution having a pH of 12 or more, and the metal salt aqueous solution was gradually added to a predetermined amount while dispersing and stirring. By dropping, a mixed precipitate of cobalt and manganese hydroxide was formed on the surface of the nickel hydroxide powder. This nickel hydroxide powder is referred to as nickel hydroxide powder (D). At this time, an aqueous sodium hydroxide solution was gradually added dropwise to maintain the pH value at 12 or more. Further, since the hydrogen peroxide was decomposed by the hydroxide compound of cobalt and manganese generated by the rise of the temperature of the aqueous solution due to the heat of neutralization, the temperature of the aqueous solution was cooled to about 0 ° C.

【0059】上記水酸化ニッケル粉末(D)を分離、回
収し、この化合物中のコバルトとマンガンの総量に対し
て等モル量以上の水酸化ナトリウムを含む水溶液を加え
て混合後、120℃で加熱乾燥してNa0.6CoO2と酸
化マンガン化合物とからなる混合物で表面を被覆した水
酸化ニッケルを作成した。この水酸化ニッケル粉末を水
酸化ニッケル粉末(E)とする。
The nickel hydroxide powder (D) is separated and recovered, and an aqueous solution containing sodium hydroxide in an equimolar amount or more with respect to the total amount of cobalt and manganese in this compound is added and mixed, and then heated at 120 ° C. After drying, nickel hydroxide having a surface coated with a mixture of Na 0.6 CoO 2 and a manganese oxide compound was prepared. This nickel hydroxide powder is referred to as nickel hydroxide powder (E).

【0060】混合物のX線解析を行うために、水酸化ニ
ッケル粉末を混合分散していない水酸化ナトリウム水溶
液でコバルトとマンガンの水酸化物の混合物を沈殿させ
てNa0.6CoO2と酸化マンガン化合物とからなる混合
物だけを作成し、その解析を行った。
In order to perform an X-ray analysis of the mixture, a mixture of cobalt and manganese hydroxide was precipitated with an aqueous sodium hydroxide solution in which nickel hydroxide powder was not mixed and dispersed, and Na 0.6 CoO 2 and a manganese oxide compound were added. Only the mixture consisting of was prepared and analyzed.

【0061】酸化マンガン化合物を添加することによ
り、Na0.6CoO2のピーク強度の減少が認められた。
酸化マンガン化合物のオキシ水酸化マンガン換算量が1
0重量%以下の場合、X線回折パターンでは若干未反応
のCoOOHが認められたが、ほぼNa0.6CoO2の回
折パターンを示した。酸化マンガン化合物量の多い混合
物のX線解析ではNa0.6CoO2以外に、Na0.9Mn
2,Na4Mn1427・9H2O,MnCoO2.5等の化
合物の存在が認められた。
A decrease in the peak intensity of Na 0.6 CoO 2 was observed by adding the manganese oxide compound.
The manganese oxyhydroxide equivalent of manganese oxide compound is 1
When the content was 0% by weight or less, some unreacted CoOOH was recognized in the X-ray diffraction pattern, but a diffraction pattern of almost Na 0.6 CoO 2 was exhibited. X-ray analysis of a mixture containing a large amount of manganese oxide compounds revealed that Na 0.9 Mn was used in addition to Na 0.6 CoO 2.
The presence of O 2, Na 4 Mn 14 O 27 · 9H 2 O, compounds such MnCoO 2.5 were observed.

【0062】次に、上記水酸化ニッケル粉末(E)、さ
らに比較のために水酸化ニッケル(D)を用いて作成し
た水酸化ニッケル正極と一般式MmNi3.55Co0.75
0. 4Al0.3(Mmはミッシュメタル、La,Ce等よ
りなる)水素吸蔵合金粉末からなる負極を用いて、実施
例1と同様の方法でニッケル−水素蓄電池を作成し、実
施例1と同様の評価を行った。
Next, a nickel hydroxide positive electrode prepared by using the above nickel hydroxide powder (E) and nickel hydroxide (D) for comparison and a general formula MmNi 3.55 Co 0.75 M
n 0. 4 Al 0.3 (Mm is misch metal, La, consisting Ce, etc.) using a negative electrode comprising a hydrogen absorbing alloy powder, nickel in the same manner as in Example 1 - Create a hydride storage battery, as in Example 1 Similar evaluation was performed.

【0063】まず、酸化マンガン化合物量をオキシ水酸
化マンガン換算量で5重量%としたNa0.6CoO2と酸
化マンガン化合物とからなる混合物の添加量を0〜30
重量%とし、20℃,0.2Cと1C放電時の水酸化ニ
ッケル利用率を調べた。
First, the addition amount of the mixture of Na 0.6 CoO 2 and the manganese oxide compound was adjusted to 0 to 30 with the amount of the manganese oxide compound being 5% by weight in terms of manganese oxyhydroxide.
%, And the utilization rate of nickel hydroxide at 20 ° C. and 0.2 C and 1 C discharge was examined.

【0064】図4にその結果を示す。The results are shown in FIG.

【0065】Na0.6CoO2と酸化マンガン化合物とか
らなる混合物で表面を被覆していない水酸化ニッケルを
用いた電池の水酸化ニッケルの利用率は70%程度であ
ったが、Na0.6CoO2と酸化マンガン化合物とからな
る混合物で水酸化ニッケル粉末表面を被覆することによ
り利用率は次第に上昇し、添加量15重量%以上ではほ
ぼ一定となり約96%の利用率を示した。1C放電時の
水酸化ニッケル利用率は添加量20重量%以上で約90
%を示した。
[0065] Na 0.6 CoO 2 and utilization of nickel hydroxide battery using the nickel hydroxide which is not a surface coated with a mixture comprising manganese oxide compound was the approximately 70%, and Na 0.6 CoO 2 By coating the surface of the nickel hydroxide powder with a mixture containing a manganese oxide compound, the utilization rate gradually increased, and when the addition amount was 15% by weight or more, the utilization rate became almost constant and the utilization rate was about 96%. The utilization rate of nickel hydroxide during 1C discharge is about 90 when the added amount is 20% by weight or more.
%showed that.

【0066】このように正極の水酸化ニッケルの利用率
が上昇しても、電池の絶対容量は正極中の水酸化ニッケ
ル量で決まるため、Na0.6CoO2と酸化マンガン化合
物とからなる混合物の添加量が多くなると、相対的に水
酸化ニッケル量が減少して電池の容量は低下する。この
ためNa0.6CoO2と酸化マンガン化合物とからなる混
合物の添加量を最少限に抑えて、水酸化ニッケル量の確
保と、その利用率を向上させることが好ましく、混合物
の添加量は〜30重量%が適当であった。
Even if the utilization rate of nickel hydroxide in the positive electrode rises in this way, the absolute capacity of the battery is determined by the amount of nickel hydroxide in the positive electrode, so a mixture of Na 0.6 CoO 2 and a manganese oxide compound is added. When the amount is large, the amount of nickel hydroxide is relatively reduced and the battery capacity is reduced. For this reason, it is preferable to minimize the amount of the mixture of Na 0.6 CoO 2 and the manganese oxide compound added to secure the amount of nickel hydroxide and improve its utilization rate. The amount of the mixture added is 5 to 30. Weight percent was suitable.

【0067】また、水酸化ニッケル粉末(D)を用いた
電池の正極利用率は91%であり、水酸化ニッケル粉末
(E)を用いた電池に比べ、低い値を示した。このこと
よりオキシ水酸化コバルトやオキシ水酸化マンガンをコ
バルト酸ナトリウムやマンガン酸ナトリウムのような複
合酸化物に変える必要があることがわかった。
The positive electrode utilization rate of the battery using the nickel hydroxide powder (D) was 91%, which was lower than that of the battery using the nickel hydroxide powder (E). From this, it was found that cobalt oxyhydroxide or manganese oxyhydroxide needs to be changed to a complex oxide such as sodium cobaltate or sodium manganate.

【0068】次に、Na0.6CoO2と酸化マンガン化合
物とからなる混合物の添加量を15重量%とし、その混
合物中に含まれる酸化マンガン化合物量をオキシ水酸化
マンガン換算量で0〜30重量%とし、20℃,1C放
電時の水酸化ニッケル利用率と65℃、過放電後の1C
放電時の水酸化ニッケル利用率を調べた。
Next, the amount of the mixture of Na 0.6 CoO 2 and the manganese oxide compound added was 15% by weight, and the amount of the manganese oxide compound contained in the mixture was 0 to 30% by weight in terms of manganese oxyhydroxide. And nickel hydroxide utilization at 20 ° C, 1C discharge and 65 ° C, 1C after overdischarge
The utilization rate of nickel hydroxide during discharge was investigated.

【0069】図5にその結果を示す。The results are shown in FIG.

【0070】酸化マンガン化合物を含まないNa0.6
oO2の1C放電時の水酸化ニッケル率は高いが、65
℃で過放電後の1C放電時の水酸化ニッケル利用率は7
6%と低下した。一方、Na0.6CoO2と酸化マンガン
化合物を混合することにより1C放電時の水酸化ニッケ
ル利用率は若干低下するが、65℃で過放電後の1C放
電時の水酸化ニッケル利用率は高くなった。
Na 0.6 C containing no manganese oxide compound
The nickel hydroxide ratio at 1C discharge of oO 2 is high, but 65%
The utilization rate of nickel hydroxide during 1C discharge after overdischarge at ℃ was 7
It fell to 6%. On the other hand, by mixing Na 0.6 CoO 2 and a manganese oxide compound, the utilization rate of nickel hydroxide during 1C discharge was slightly lowered, but the utilization rate of nickel hydroxide during 1C discharge after overdischarge at 65 ° C. increased. .

【0071】Na0.6CoO2と酸化マンガン化合物とか
らなる混合物中の酸化マンガン化合物量がオキシ水酸化
マンガン換算量で20重量%以上となると、1C充放電
時の水酸化ニッケル利用率が80%を下回る。このこと
から酸化マンガン化合物量はオキシ水酸化マンガン換算
量で20重量%以下が適量である。
When the amount of the manganese oxide compound in the mixture of Na 0.6 CoO 2 and the manganese oxide compound is 20% by weight or more in terms of manganese oxyhydroxide, the utilization rate of nickel hydroxide during 1C charging / discharging is 80%. Fall below. From this, an appropriate amount of manganese oxide compound is 20% by weight or less in terms of manganese oxyhydroxide.

【0072】(実施例3)実施例1と同様の方法で一般
式LiCoO2で示されるコバルト複合酸化物と2価を
越える原子価を有する酸化ニッケル化合物と3価以上の
原子価を有する酸化マンガン化合物とからなる混合物を
作成した。
Example 3 In the same manner as in Example 1, a cobalt composite oxide represented by the general formula LiCoO 2 , a nickel oxide compound having a valence of more than 2 and manganese oxide having a valence of 3 or more were used. A mixture consisting of the compound was made.

【0073】これは次の方法で調整した。すなわち硫酸
コバルトCoSO4・7H2Oと硫酸ニッケルNiSO4
・6H2Oと硫酸マンガンMnSO4・5H2Oを所定量
水に溶解し、混合、冷却した。この混合溶液にコバルト
とマンガンを酸化するに必要な量の過酸化水素水を加え
て混合し、金属塩水溶液を作成した。
This was adjusted by the following method. That cobalt sulfate CoSO 4 · 7H 2 O and nickel sulfate NiSO 4
6H 2 O and manganese sulfate MnSO 4 .5H 2 O were dissolved in water in predetermined amounts, mixed, and cooled. An aqueous solution of metal salt was prepared by adding an amount of hydrogen peroxide solution necessary for oxidizing cobalt and manganese to the mixed solution and mixing them.

【0074】上記金属塩水溶液をpH12以上の水酸化
ナトリウム水溶液中に滴下して、コバルト、ニッケル、
マンガンの水酸化物混合物の沈殿を作成した。この混合
物を水酸化物混合物(F)とした。この際、pH値を1
2以上に保つため水酸化ナトリウム水溶液も滴下した。
また、中和熱による水溶液温度の上昇によって過酸化水
素が生成したコバルト、ニッケル、マンガンの水酸化物
により分解するために、水溶液温度は0℃程度にまで冷
却した。
The above metal salt aqueous solution was dropped into a sodium hydroxide aqueous solution having a pH of 12 or more to prepare cobalt, nickel,
A precipitate of the manganese hydroxide mixture was made. This mixture was designated as a hydroxide mixture (F). At this time, set the pH value to 1
A sodium hydroxide aqueous solution was also added dropwise in order to keep it at 2 or more.
Further, since the hydrogen peroxide was decomposed by the hydroxides of cobalt, nickel and manganese produced by the rise in the temperature of the aqueous solution due to the heat of neutralization, the temperature of the aqueous solution was cooled to about 0 ° C.

【0075】上記水酸化物混合物(F)を遠心分離器で
回収し、この化合物中のコバルト、ニッケル、マンガン
の総量に対して等モル量以上の水酸化リチウムを含む水
溶液を加えて混合、煮沸し、LiCoO2と酸化ニッケ
ル化合物と酸化マンガン化合物とからなる混合物(G)
を作成した。
The hydroxide mixture (F) was recovered by a centrifuge, and an aqueous solution containing lithium hydroxide in an equimolar amount or more with respect to the total amount of cobalt, nickel and manganese in this compound was added, mixed and boiled. And a mixture (G) of LiCoO 2 , nickel oxide compound and manganese oxide compound
It was created.

【0076】混合物(G)の酸化ニッケル化合物の水酸
化ニッケル換算量と酸化マンガン化合物のオキシ水酸化
マンガン換算量の総量が10重量%以下の場合、X線回
折パターンはほとんどLiCoO2と同じであったが、
酸化ニッケル化合物や酸化マンガン化合物量の多い場合
ではX線回折パターンはLiCoO2とNi(OH)2
LiMn24,MnCoO2.5等の回折パターンを示し
た。
When the total amount of the nickel oxide compound equivalent to the nickel hydroxide compound and the manganese oxide compound equivalent to the manganese oxyhydroxide of the mixture (G) was 10% by weight or less, the X-ray diffraction pattern was almost the same as that of LiCoO 2. But
When the amount of nickel oxide compound or manganese oxide compound was large, the X-ray diffraction pattern showed that of LiCoO 2 and Ni (OH) 2 , LiMn 2 O 4 , MnCoO 2.5 or the like.

【0077】上記混合物(G)と水を高速回転する粉砕
攪拌羽根を有する高分散装置を用いて分散処理を行い、
混合物(G)の懸濁溶液(H)を作成した。
The mixture (G) and water are dispersed using a high-dispersion device having a crushing stirring blade that rotates at high speed,
A suspension solution (H) of the mixture (G) was prepared.

【0078】次に、上記の高分散処理を行った懸濁溶液
(H)を用いて作成した水酸化ニッケル正極と、一般式
MmNi3.55Co0.75Mn0.4Al0.3(Mmはミッシュ
メタル、La,Ce等よりなる)水素吸蔵合金粉末から
なる負極を用いて、実施例1と同様の方法でニッケル−
水素蓄電池を作成し、実施例1と同様の評価を行った。
Next, a nickel hydroxide positive electrode prepared by using the suspension solution (H) subjected to the above high dispersion treatment and a general formula MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (Mm is misch metal, La, Ce) Nickel-containing powder in the same manner as in Example 1 except that the negative electrode is made of a hydrogen storage alloy powder.
A hydrogen storage battery was prepared and evaluated in the same manner as in Example 1.

【0079】また、比較のために水酸化物混合物(F)
を用いて、上記と同様の方法で電池を作成し、特性を評
価した。
For comparison, the hydroxide mixture (F)
Using, the battery was prepared in the same manner as above, and the characteristics were evaluated.

【0080】酸化ニッケル化合物量が水酸化ニッケル換
算量で15重量%、酸化マンガン化合物量がオキシ水酸
化マンガン換算量で5重量%として混合物(G)の添加
量を0〜30重量%とし、20℃における0.2Cと1
C放電時の水酸化ニッケル利用率を調べた。
The amount of nickel oxide compound is 15% by weight in terms of nickel hydroxide, the amount of manganese oxide compound is 5% by weight in terms of manganese oxyhydroxide, and the amount of the mixture (G) added is 0 to 30% by weight. 0.2C and 1 at ℃
The utilization rate of nickel hydroxide during C discharge was investigated.

【0081】図6にその結果を示す。The results are shown in FIG.

【0082】混合物(G)の添加量が0重量%の正極を
用いた電池の水酸化ニッケル利用率は70%程度であっ
たが、混合物(G)を添加することにより利用率は次第
に上昇し、添加量が15重量%以上ではほぼ一定となり
96%の利用率を示した。
The nickel hydroxide utilization rate of the battery using the positive electrode containing 0% by weight of the mixture (G) was about 70%, but the utilization rate was gradually increased by adding the mixture (G). When the addition amount was 15% by weight or more, it became almost constant, and the utilization rate was 96%.

【0083】1C放電時の水酸化ニッケル利用率は添加
量20重量%以上で約90%の放電率を示した。
The utilization rate of nickel hydroxide during 1C discharge was about 90% when the addition amount was 20% by weight or more.

【0084】しかし、正極の水酸化ニッケルの利用率が
上昇しても、電池の絶対容量は正極中の水酸化ニッケル
量で決まるため、この混合物(G)の添加量が多くなる
と、相対的に水酸化ニッケル量が減少して電池の容量は
低下する。このため混合物(G)の添加量を最少限に抑
えて、水酸化ニッケル量の確保と、その利用率を向上さ
せることが好ましく、混合物の添加量は〜30重量%
が適当であった。
However, even if the utilization rate of nickel hydroxide in the positive electrode rises, the absolute capacity of the battery is determined by the amount of nickel hydroxide in the positive electrode. The amount of nickel hydroxide decreases and the battery capacity decreases. For this reason, it is preferable to minimize the amount of the mixture (G) added to secure the amount of nickel hydroxide and improve the utilization rate thereof. The amount of the mixture added is 5 to 30% by weight.
Was appropriate.

【0085】また、混合物(F)を15重量%添加した
正極を用いた電池の水酸化ニッケル利用率は87%と混
合物(G)を用いた電池に比べ、低い値を示した。この
ことよりオキシ水酸化コバルトやオキシ水酸化マンガン
をコバルト酸リチウムやマンガン酸リチウムのような複
合酸化物に変える必要があることがわかった。
The nickel hydroxide utilization rate of the battery using the positive electrode containing 15% by weight of the mixture (F) was 87%, which was lower than that of the battery using the mixture (G). From this, it was found that cobalt oxyhydroxide or manganese oxyhydroxide needs to be changed to a composite oxide such as lithium cobalt oxide or lithium manganate.

【0086】次に、酸化マンガン化合物をオキシ水酸化
マンガン換算量で5重量%、酸化ニッケル化合物量を水
酸化ニッケル換算量で0〜50重量%とした混合物
(G)を15重量%添加した正極を作成し、それら電池
の20℃における1C放電時の水酸化ニッケルの利用率
と65℃での過放電後の1C放電時の水酸化ニッケル利
用率を調べた。
Next, a positive electrode containing 15% by weight of a mixture (G) containing 5% by weight of manganese oxide compound in terms of manganese oxyhydroxide and 0 to 50% by weight of nickel oxide compound in terms of nickel hydroxide. And the utilization rate of nickel hydroxide during 1 C discharge at 20 ° C. and the utilization rate of nickel hydroxide during 1 C discharge after overdischarging at 65 ° C. were investigated.

【0087】図7にその結果を示す。The results are shown in FIG.

【0088】混合物(G)の酸化ニッケル化合物の水酸
化ニッケル換算量と酸化マンガン化合物のオキシ水酸化
マンガン換算量が総量で40重量%となると、1C放電
時の水酸化ニッケル利用率が80%を下回る。従って前
記水酸化ニッケル換算量と前記オキシ水酸化マンガン換
算量の総量は40重量%以下が適量である。
When the nickel hydroxide compound equivalent amount of the mixture (G) and the manganese oxyhydroxide equivalent amount of the manganese oxide compound are 40% by weight in total, the utilization rate of nickel hydroxide at 1C discharge is 80%. Fall below. Therefore, a total amount of the nickel hydroxide equivalent amount and the manganese oxyhydroxide equivalent amount is 40% by weight or less.

【0089】以上の実施例では、一般式MxCoO2で示
されるコバルト複合酸化物のMとしてLi,Naについ
てのみ述べたが、Kについても同様の効果を得ることが
できる。また、負極として水素吸蔵合金を用いたニッケ
ル−水素蓄電池について述べたが、負極としてカドミウ
ムや亜鉛を用いたアルカリ蓄電池においても同様の効果
を得ることができる。
In the above examples, only Li and Na were described as M of the cobalt composite oxide represented by the general formula M x CoO 2 , but the same effect can be obtained for K. Further, the nickel-hydrogen storage battery using the hydrogen storage alloy as the negative electrode has been described, but the same effect can be obtained also in the alkaline storage battery using cadmium or zinc as the negative electrode.

【0090】[0090]

【発明の効果】以上、本発明によれば、活物質である水
酸化ニッケルの利用率が高く、かつ高温状態での過放電
においても優れた容量回復率を有する優れたアルカリ蓄
電池を得ることができる。
As described above, according to the present invention, it is possible to obtain an excellent alkaline storage battery having a high utilization rate of nickel hydroxide as an active material and an excellent capacity recovery rate even in overdischarge at high temperature. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒型電池の基本構成図FIG. 1 is a basic configuration diagram of a cylindrical battery of the present invention.

【図2】LiCoO2と酸化ニッケル化合物とからなる
混合物の添加量と0.2Cおよび1C放電時の水酸化ニ
ッケル利用率との関係図
FIG. 2 is a graph showing the relationship between the amount of a mixture of LiCoO 2 and a nickel oxide compound added and the utilization rate of nickel hydroxide during 0.2 C and 1 C discharge.

【図3】LiCoO2と酸化ニッケル化合物とからなる
混合物中の酸化ニッケル化合物の水酸化ニッケル換算量
と、65℃での過放電前後の1C放電時の水酸化ニッケ
ル利用率との関係図
FIG. 3 is a relational diagram between nickel hydroxide conversion amount of nickel oxide compound in a mixture of LiCoO 2 and nickel oxide compound and utilization ratio of nickel hydroxide at 1C discharge before and after overdischarge at 65 ° C.

【図4】Na0.6CoO2と酸化マンガン化合物からなる
混合物の添加量と0.2Cおよび1C放電時の水酸化ニ
ッケル利用率との関係図
FIG. 4 is a graph showing the relationship between the amount of a mixture of Na 0.6 CoO 2 and a manganese oxide compound added and the utilization rate of nickel hydroxide during 0.2 C and 1 C discharge.

【図5】Na0.6CoO2と酸化マンガン化合物からなる
混合物中の酸化マンガン化合物のオキシ水酸化マンガン
換算量と65℃での過放電前後の1C放電時の水酸化ニ
ッケル利用率との関係図
FIG. 5 is a relational diagram between the manganese oxyhydroxide equivalent amount of the manganese oxide compound in the mixture of Na 0.6 CoO 2 and the manganese oxide compound and the nickel hydroxide utilization rate at 1C discharge before and after overdischarge at 65 ° C.

【図6】LiCoO2と酸化ニッケル化合物と酸化マン
ガン化合物とからなる混合物の添加量と0.2Cおよび
1C放電時の水酸化ニッケル利用率との関係図
FIG. 6 is a diagram showing the relationship between the amount of a mixture of LiCoO 2 , a nickel oxide compound, and a manganese oxide compound added, and the utilization ratio of nickel hydroxide during 0.2 C and 1 C discharge.

【図7】LiCoO2と酸化ニッケル化合物と酸化マン
ガン化合物とからなる混合物中の酸化ニッケル化合物の
水酸化ニッケル換算量とマンガン化合物のオキシ水酸化
マンガン換算量の総量と、65℃での過放電前後の1C
放電時の水酸化ニッケル利用率との関係図
FIG. 7: Total amount of nickel hydroxide compound equivalent amount of nickel oxide compound and manganese oxyhydroxide equivalent amount of manganese compound in a mixture consisting of LiCoO 2 , nickel oxide compound and manganese oxide compound, and before and after overdischarge at 65 ° C. 1C
Relationship diagram with nickel hydroxide utilization rate during discharge

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレータ 4 電池ケース 5 封口板 6 正極端子キャップ 7 安全弁 8 ガスケット 9 コネクタリード 1 Positive plate 2 Negative electrode plate 3 separator 4 battery case 5 Seal plate 6 Positive terminal cap 7 Safety valve 8 gasket 9 Connector lead

フロントページの続き (56)参考文献 特開 平8−264177(JP,A) 特開 平8−241713(JP,A) 特開 平6−260166(JP,A) 特開 平10−1317(JP,A) 特開 平8−227711(JP,A) 特開 平10−326617(JP,A) 特開 平9−219192(JP,A) 特開 平9−50808(JP,A) 特開 平9−199131(JP,A) 特開 平10−255788(JP,A) 特開 平10−284113(JP,A) 特開 平11−97008(JP,A) 特開 平11−149921(JP,A) 特開 昭62−296365(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/38 H01M 4/62 H01M 4/32 H01M 10/30 Continuation of front page (56) Reference JP-A-8-264177 (JP, A) JP-A-8-241713 (JP, A) JP-A-6-260166 (JP, A) JP-A-10-1317 (JP , A) JP 8-227711 (JP, A) JP 10-326617 (JP, A) JP 9-219192 (JP, A) JP 9-50808 (JP, A) JP 9-199131 (JP, A) JP 10-255788 (JP, A) JP 10-284113 (JP, A) JP 11-97008 (JP, A) JP 11-149921 (JP, A) JP 62-296365 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/38 H01M 4/62 H01M 4/32 H01M 10/30

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、負極と、アルカリ電解液とから構
成されたアルカリ蓄電池であり、前記正極は水酸化ニッ
ケルを主とする活物質と、一般式MXCoO2(xは0<
x≦1,MはLi,Na,Kのうちの少なくとも1種の
元素)で示されるコバルト複合酸化物と2価を超える原
子価を有する酸化ニッケル化合物とからなる混合物を前
記水酸化ニッケルの総量の〜30重量%含むことを特
徴とするアルカリ蓄電池。
1. An alkaline storage battery comprising a positive electrode, a negative electrode, and an alkaline electrolyte, wherein the positive electrode contains an active material mainly containing nickel hydroxide, and a general formula M X CoO 2 (x is 0 <
x ≦ 1, M is at least one element of Li, Na and K), and a mixture of a cobalt composite oxide represented by the formula: nickel oxide compound having a valence of more than 2 is added to the total amount of nickel hydroxide. 5 to 30% by weight of the alkaline storage battery.
【請求項2】酸化ニッケル化合物の量が、前記混合物の
重量に対して水酸化ニッケル換算量で40重量%以下
範囲であることを特徴とする請求項1記載のアルカリ蓄
電池。
2. The alkaline storage battery according to claim 1, wherein the amount of the nickel oxide compound is in the range of 40 % by weight or less in terms of nickel hydroxide based on the weight of the mixture.
【請求項3】混合物により前記水酸化ニッケルを主とす
る活物質の粒子表面が被覆されていることを特徴とする
請求項1記載のアルカリ蓄電池。
3. The alkaline storage battery according to claim 1, wherein the surface of the particles of the active material mainly containing nickel hydroxide is coated with the mixture.
【請求項4】正極と、負極と、アルカリ電解液とから構
成されたアルカリ蓄電池であり、前記正極は水酸化ニッ
ケルを主とする活物質と、一般式MXCoO2(xは0<
x≦1,MはLi,Na,Kのうちの少なくとも1種の
元素)で示されるコバルト複合酸化物と3価以上の原子
価を有する酸化マンガン化合物とからなる混合物を前記
水酸化ニッケルの総量の〜30重量%含むことを特徴
とするアルカリ蓄電池。
4. An alkaline storage battery comprising a positive electrode, a negative electrode and an alkaline electrolyte, wherein the positive electrode contains an active material mainly containing nickel hydroxide, and a general formula M X CoO 2 (x is 0 <
x ≦ 1, M is at least one element of Li, Na, and K), and a mixture of a cobalt composite oxide represented by a formula (3) and a manganese oxide compound having a valence of 3 or more is added to the total amount of the nickel hydroxide. 5 to 30% by weight of the alkaline storage battery.
【請求項5】酸化マンガン化合物の量が、前記混合物の
重量に対してオキシ水酸化マンガン換算量で20重量%
以下の範囲であることを特徴とする請求項4記載のアル
カリ蓄電池。
5. The amount of manganese oxide compound is 20 % by weight in terms of manganese oxyhydroxide, based on the weight of the mixture.
It is the following ranges, The alkaline storage battery of Claim 4 characterized by the above-mentioned.
【請求項6】混合物により前記水酸化ニッケルを主とす
る活物質の粒子表面が被覆されていることを特徴とする
請求項4記載のアルカリ蓄電池。
6. The alkaline storage battery according to claim 4, wherein the surface of particles of the active material mainly containing nickel hydroxide is coated with the mixture.
【請求項7】正極と、負極と、アルカリ電解液とから構
成されたアルカリ蓄電池であり、前記正極は水酸化ニッ
ケルを主とする活物質と、一般式MXCoO2(xは0<
x≦1,MはLi,Na,Kのうちの少なくとも1種の
元素)で示されるコバルト複合酸化物と2価を超える原
子価を有する酸化ニッケル化合物と3価以上の原子価を
有する酸化マンガン化合物とからなる混合物を前記水酸
化ニッケルの総量の〜30重量%含むことを特徴とす
るアルカリ蓄電池。
7. An alkaline storage battery comprising a positive electrode, a negative electrode and an alkaline electrolyte, wherein the positive electrode contains an active material mainly containing nickel hydroxide, and a general formula M X CoO 2 (x is 0 <
x ≦ 1, M is at least one element of Li, Na and K), a cobalt composite oxide represented by the formula: nickel oxide compound having a valence of more than 2 and manganese oxide having a valence of 3 or more. An alkaline storage battery comprising a mixture of a compound and 5 to 30% by weight of the total amount of the nickel hydroxide.
【請求項8】前記混合物により前記水酸化ニッケルを主
とする粒子表面が被覆されたことを特徴とする請求項7
記載のアルカリ蓄電池。
8. The surface of the particles mainly containing nickel hydroxide is coated with the mixture.
The alkaline storage battery described.
JP13812097A 1997-05-28 1997-05-28 Alkaline storage battery Expired - Fee Related JP3414200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13812097A JP3414200B2 (en) 1997-05-28 1997-05-28 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13812097A JP3414200B2 (en) 1997-05-28 1997-05-28 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH10326616A JPH10326616A (en) 1998-12-08
JP3414200B2 true JP3414200B2 (en) 2003-06-09

Family

ID=15214444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13812097A Expired - Fee Related JP3414200B2 (en) 1997-05-28 1997-05-28 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3414200B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017655A (en) * 1998-08-18 2000-01-25 Ovonic Battery Company Nickel hydroxide positive electrode material exhibiting improved conductivity and engineered activation energy
FR2788886B1 (en) * 1999-01-21 2001-03-30 Cit Alcatel NON-SINTERED NICKEL ELECTRODE FOR ALKALINE ELECTROLYTE SECONDARY ELECTROCHEMICAL GENERATOR
FR2803104B1 (en) * 1999-12-23 2002-03-15 Cit Alcatel NON-SINTERED NICKEL ELECTRODE FOR ALKALI ELECTROLYTE SECONDARY ELECTROCHEMICAL GENERATOR
JP4578038B2 (en) * 2001-04-17 2010-11-10 三洋電機株式会社 Nickel electrode for alkaline storage battery and alkaline storage battery
JP2008084738A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Non-sintered positive electrode for alkaline storage battery
JP2008084736A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Non-sintered positive electrode for alkaline storage battery

Also Published As

Publication number Publication date
JPH10326616A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
EP0774793B1 (en) Alkaline storage battery and method for producing positive electrode thereof
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
EP0869565B1 (en) Alkaline storage battery
US5965295A (en) Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery
US6471890B2 (en) Method for producing a positive electrode active material for an alkaline storage battery
US8951666B2 (en) Nickel hydrogen rechargeable battery with rare earth-Mg-Ni based hydrogen storage
JPH0278155A (en) Dry manufacturing process of hydrogen storage alloy electrode
US6251538B1 (en) Positive active material for alkaline battery and electrode using the same
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
US5744259A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
JP2001338645A (en) Paste type positive electrode for alkaline battery and nickel hydrogen battery
US6620549B2 (en) Alkaline storage battery
JP3414200B2 (en) Alkaline storage battery
JP2004235088A (en) Nickel-hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3543607B2 (en) Alkaline storage battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3518259B2 (en) Nickel-hydrogen storage battery and method for producing positive electrode active material thereof
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2001176505A (en) Electrode and alkaline secondary battery
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
CN112740441A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with same
CN114203999A (en) Hydrogen storage alloy, negative electrode containing hydrogen storage alloy and nickel-hydrogen secondary battery containing negative electrode
JP2013211122A (en) Alkaline storage battery
JP2000277101A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees