JP3518259B2 - Nickel-hydrogen storage battery and method for producing positive electrode active material thereof - Google Patents

Nickel-hydrogen storage battery and method for producing positive electrode active material thereof

Info

Publication number
JP3518259B2
JP3518259B2 JP18105397A JP18105397A JP3518259B2 JP 3518259 B2 JP3518259 B2 JP 3518259B2 JP 18105397 A JP18105397 A JP 18105397A JP 18105397 A JP18105397 A JP 18105397A JP 3518259 B2 JP3518259 B2 JP 3518259B2
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
transition metal
positive electrode
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18105397A
Other languages
Japanese (ja)
Other versions
JPH1125968A (en
Inventor
慶孝 暖水
健二 鈴木
浩次 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18105397A priority Critical patent/JP3518259B2/en
Publication of JPH1125968A publication Critical patent/JPH1125968A/en
Application granted granted Critical
Publication of JP3518259B2 publication Critical patent/JP3518259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル−水素蓄
電池に関するもので、正極活物質を改良して、その容量
密度を向上させるとともに、正極の特性を高めたもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen storage battery, in which a positive electrode active material is improved to improve its capacity density and the characteristics of the positive electrode.

【0002】[0002]

【従来の技術】近年、アルカリ蓄電池は、携帯機器の普
及に伴いその高容量化が要望されている。特にニッケル
−水素蓄電池は、水酸化ニッケルを主体とした活物質か
らなる正極と、水素吸蔵合金を主体とした負極からなる
電池であり、高容量で高信頼性の電池として急速に普及
してきている。
2. Description of the Related Art In recent years, alkaline storage batteries have been required to have a higher capacity with the spread of portable devices. In particular, a nickel-hydrogen storage battery is a battery having a positive electrode made of an active material mainly containing nickel hydroxide and a negative electrode mainly made of a hydrogen storage alloy, and has rapidly spread as a high-capacity and highly reliable battery. .

【0003】アルカリ蓄電池用の正極としては、大別し
て焼結式と非焼結式とがある。焼結式正極は、ニッケル
粉末を焼結して得た多孔度80%程度の多孔質ニッケル
焼結基板に、硝酸ニッケル水溶液等のニッケル塩溶液を
含浸し、次いで、アルカリ水溶液に浸漬するなどして多
孔質ニッケル焼結基板中に水酸化ニッケル活物質を生成
させて製造するものである。この電極は基板の多孔度を
これ以上大きくする事が困難であるため、充填される活
物質量を増加させる事ができず、高容量化には限界があ
る。
Positive electrodes for alkaline storage batteries are roughly classified into a sintered type and a non-sintered type. The sintered positive electrode is obtained by impregnating a porous nickel sintered substrate having a porosity of about 80% obtained by sintering nickel powder with a nickel salt solution such as a nickel nitrate aqueous solution, and then immersing it in an alkaline aqueous solution. It is manufactured by producing a nickel hydroxide active material in a porous nickel sintered substrate. Since it is difficult to increase the porosity of the substrate in this electrode any more, the amount of the active material to be filled cannot be increased, and there is a limit to increase the capacity.

【0004】非焼結式正極は、例えば、特開昭60−4
0667号公報に開示された、ニッケル金属よりなる三
次元的に連続した多孔度95%以上のスポンジ状多孔体
の孔部に、活物質である水酸化ニッケルを充填するもの
である。これは現在高容量のアルカリ蓄電池の正極とし
て広く用いられている。
A non-sintered positive electrode is disclosed, for example, in JP-A-60-4.
The three-dimensionally continuous sponge-like porous body made of nickel metal and having a porosity of 95% or more, as disclosed in Japanese Patent No. 0667, is filled with nickel hydroxide as an active material. It is currently widely used as a positive electrode for high capacity alkaline storage batteries.

【0005】この非焼結式正極においては、高容量化の
点から、球状の水酸化ニッケルをスポンジ状ニッケル多
孔体の孔部に充填することが提案されている。これはス
ポンジ状ニッケル多孔体の孔部(ポア)サイズが、20
0〜500μm程度であり、このポアに粒径が数μm〜
数10μmの球状水酸化ニッケルを充填するものであ
る。この構成では、ニッケル多孔体の骨格近傍の水酸化
ニッケルは導電性が保たれているので、充放電反応がス
ムーズに進行するが、骨格から離れた水酸化ニッケルの
反応は十分に進まない。
In this non-sintered positive electrode, it has been proposed to fill the pores of the sponge-like nickel porous body with spherical nickel hydroxide in order to increase the capacity. This is because the sponge-like nickel porous body has a pore size of 20
0 to 500 μm, and the pores have a particle size of several μm
It is filled with spherical nickel hydroxide having a diameter of several tens of μm. In this structure, since the nickel hydroxide in the vicinity of the skeleton of the nickel porous body maintains conductivity, the charge / discharge reaction proceeds smoothly, but the reaction of nickel hydroxide separated from the skeleton does not proceed sufficiently.

【0006】このため、非焼結式正極は、充填した水酸
化ニッケルの利用率を向上させるために、活物質である
水酸化ニッケル以外に導電剤を用いて、これで球状水酸
化ニッケルの粒子間を電気的に接続させて導電性ネット
ワークを形成している。この導電剤としては、水酸化コ
バルト、一酸化コバルトのようなコバルト化合物や、金
属コバルト、金属ニッケル等が用いられる。これによ
り、非焼結式正極では、活物質を高密度に充填しても導
電性を保つことが可能となり、高容量化が図れる。
Therefore, in the non-sintered positive electrode, in order to improve the utilization rate of the filled nickel hydroxide, a conductive agent is used in addition to the active material, nickel hydroxide, to form spherical nickel hydroxide particles. The electrically connecting portions are electrically connected to each other to form a conductive network. As the conductive agent, a cobalt compound such as cobalt hydroxide or cobalt monoxide, metallic cobalt, metallic nickel, or the like is used. As a result, in the non-sintered positive electrode, it is possible to maintain the conductivity even when the active material is densely packed, and it is possible to increase the capacity.

【0007】[0007]

【発明が解決しようとする課題】しかし、非焼結式正極
の活物質として用いられる球状水酸化ニッケルは、その
放電状態では活性水酸化ニッケル(β−Ni(O
H)2)とよばれるもので、ニッケルの平均価数は2.
2価である。この活物質は、充電状態ではβ型オキシ水
酸化ニッケル(β−NiOOH)になり、ニッケルの平
均価数3.2価近傍といわれている。
However, the spherical nickel hydroxide used as the active material of the non-sintered positive electrode is activated nickel hydroxide (β-Ni (O
H) 2 ) and the average valence of nickel is 2.
It is bivalent. This active material becomes β-type nickel oxyhydroxide (β-NiOOH) in a charged state, and it is said that the average valence of nickel is around 3.2.

【0008】したがって、充放電では、ほぼ一電子反応
で利用率が100%となる。(利用率は一電子反応を仮
定した理論単位重量当り容量289mAh/gで実際に
計測される容量を割った値の百分率)その結果、この活
物質を用いると正極の容量密度は650mAh/cc程
度になる。
Therefore, in charge and discharge, the utilization rate becomes 100% in almost one electron reaction. (The utilization rate is a percentage of the value obtained by dividing the capacity actually measured by the theoretical unit weight of 289 mAh / g assuming a one-electron reaction.) As a result, when this active material is used, the capacity density of the positive electrode is about 650 mAh / cc. become.

【0009】また、ニッケル−水素蓄電池は、低温で微
小電流の連続過充電を行なうと、正極のニッケル価数
は、さらに高次になり、3.67価まで価数が上昇する
事も確認されている。
It has also been confirmed that, when a nickel-hydrogen storage battery is continuously overcharged with a small current at a low temperature, the nickel valence of the positive electrode becomes higher and the valence rises to 3.67. ing.

【0010】しかし、ニッケルの平均価数が3.5価付
近を越えると水酸化ニッケルはγ型オキシ水酸化ニッケ
ル(γ−NiOOH)になる。γ−NiOOHは、Cu
Kαを線源としたX線回折における回折角2θが12度
(λ=1.5405)に(003)面の回折ピークをも
つ物質で、ニッケル−ニッケル金属面の層間にカチオ
ン、アニオンや水等が挿入されており、β−NiOOH
(密度4.68g/cm 3)に比較して結晶が膨張し易
い。
However, the average valence of nickel is 3.5
Nickel hydroxide is gamma type oxyhydroxide nickel over
(Γ-NiOOH). γ-NiOOH is Cu
Diffraction angle 2θ in X-ray diffraction using Kα as a radiation source is 12 degrees
There is also a diffraction peak of the (003) plane at (λ = 1.5405)
It is a material that has a nickel-nickel metal surface between layers.
, Anions, water, etc. are inserted, β-NiOOH
(Density 4.68 g / cm 3), The crystal expands more easily than
Yes.

【0011】γ−NiOOH(密度3.79g/c
3)は、放電する際にα−3Ni(OH)2・2H2
(密度2.82g/cm3)になる。また、充電状態の
γ−NiOOHはニッケルの価数が3価以上であり、そ
の組成式はNiOOH1-Xで表される。ここでのXは0
より大きく1より小さい値をとる。つまり、プロトン
(H +)が欠損した状態となる。するとニッケルと結合
した酸素はδ-を帯びる。
Γ-NiOOH (density 3.79 g / c
m3) Is α-3Ni (OH) when discharged.2・ 2H2O
(Density 2.82 g / cm3)become. In addition,
γ-NiOOH has a nickel valence of 3 or more.
Composition formula is NiOOH1-XIt is represented by. X here is 0
It takes a value larger than 1 and smaller than 1. That is, proton
(H +) Will be missing. Then bond with nickel
Oxygen is δ-Take on.

【0012】このδ-とのクーロン力により、たとえば
+のようなカチオンがニッケル−ニッケル金属面の層
間に取り込まれる。1価のK+とδ-の余剰電荷を打ち消
し電荷的中性を維持するためにアニオンもニッケル−ニ
ッケル金属面の層間に取り込まれた結晶構造をとる。
Due to this Coulomb force with δ , cations such as K + are taken in between the layers of the nickel-nickel metal surface. Anions also have a crystal structure incorporated between the layers of the nickel-nickel metal surface in order to cancel the excess charges of monovalent K + and δ and maintain charge neutrality.

【0013】このγ−NiOOHは電気化学的に放電さ
せるとニッケル−ニッケル金属面の層間に取り込まれた
カチオンやアニオンは、電解液中に放出されα−3Ni
(OH)2・2H2Oになると考えられている。しかしな
がら、カチオンやアニオンを層間に取り込んだγ−Ni
OOHが放電する場合、プロトン(H+)が結晶内に拡
散して酸素と結合する。この酸素がδ-を帯びることに
より結晶層間に取り込まれていたカチオンはクーロン力
による結晶層間での安定力がなくなり、拡散して電解液
に放出されるはずであるが、拡散速度がプロトン
(H+)に比較して遅いと考えられ、放電状態において
もカチオンやアニオンは層間に残存することになる。
When this γ-NiOOH is electrochemically discharged, cations and anions taken in between the layers of the nickel-nickel metal surface are released into the electrolytic solution and α-3Ni.
It is considered to be (OH) 2 .2H 2 O. However, γ-Ni having cations and anions incorporated between layers is used.
When OOH is discharged, protons (H + ) diffuse into the crystal and combine with oxygen. Since the oxygen takes on δ , the cations taken in between the crystal layers lose the stability between the crystal layers due to the Coulomb force and should diffuse and be released into the electrolytic solution. It is considered to be slower than that of + ), and cations and anions remain between layers even in the discharged state.

【0014】このため、密閉型ニッケル−水素蓄電池等
においては、電解液の希薄化が起こり電池特性が劣化す
る。また、γ−NiOOHとα−3Ni(OH)2・2
2Oの充電反応では活物質の密度の変化が大きく、活
物質は膨張を繰り返す。ここで生成したα−3Ni(O
H)2・2H2Oは、化学的にゆっくりと活性水酸化ニッ
ケル(β−Ni(OH)2)に結晶構造を変化すること
が確認されている。
Therefore, in a sealed nickel-hydrogen storage battery or the like, the electrolyte is diluted and the battery characteristics are deteriorated. In addition, γ-NiOOH and α-3Ni (OH) 2 · 2
In the charging reaction of H 2 O, the density of the active material changes greatly, and the active material repeatedly expands. The α-3Ni (O generated here
It has been confirmed that H) 2 .2H 2 O chemically slowly changes the crystal structure to active nickel hydroxide (β-Ni (OH) 2 ).

【0015】そのため球状水酸化ニッケルは、球状が崩
れてしまったり、充電状態のγ−NiOOHが放電しな
いで蓄積されて、正極が膨潤して、電池内の電解液を吸
ってしまう。
Therefore, spherical nickel hydroxide has a spherical shape that collapses, or γ-NiOOH in a charged state accumulates without discharging, and the positive electrode swells and absorbs the electrolytic solution in the battery.

【0016】その結果として、セパレータの保有してい
る電解液量が減少して液がれ状態になり、電池の内部抵
抗が上昇して放電が不可能になる。この現象は焼結式正
極を用いた場合でも古くから知られており、とくに密閉
型電池では正極の膨潤による電池特性の劣化が起こる。
As a result, the amount of the electrolytic solution held by the separator is reduced and the separator is drained, and the internal resistance of the battery is increased to make discharge impossible. This phenomenon has been known for a long time even when a sintered positive electrode is used, and particularly in a sealed battery, deterioration of battery characteristics occurs due to swelling of the positive electrode.

【0017】したがって、高次水酸化ニッケルを利用す
るためには、常温領域で可逆性に優れたγ−NiOOH
を生成する必要がある。また、放電過程でα−3Ni
(OH)2・2H2Oを経由しないで活性水酸化ニッケル
(β−Ni(OH)2)に放電させる必要がある。さら
に、充電状態で密閉型電池内の電解液のカチオンの取り
込み量をできる限り少なくすることが必要である。
Therefore, in order to utilize high-order nickel hydroxide, γ-NiOOH, which is excellent in reversibility at room temperature, is used.
Needs to be generated. Also, in the discharge process, α-3Ni
It is necessary to discharge to active nickel hydroxide (β-Ni (OH) 2 ) without passing through (OH) 2 .2H 2 O. Furthermore, it is necessary to minimize the amount of cations taken up by the electrolytic solution in the sealed battery in the charged state.

【0018】本発明は、上記課題を解決するもので、正
極活物質を改良して、その容量密度を向上させるととも
に、正極の特性を高めたニッケル−水素蓄電池を提供す
ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a nickel-hydrogen storage battery in which the positive electrode active material is improved to improve its capacity density and the characteristics of the positive electrode.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、水酸化ニッケルを活物質とした正極と、
水素吸蔵合金を主体とした負極と、アルカリ電解液と、
セパレータとからなる電池であって、水酸化ニッケル
は、遷移金属のうちの少なくとも1種類とこの遷移金属
よりも少ない量でアルカリ金属のうちの少なくとも1種
類をそれぞれ固溶していて、遷移金属の固溶量は水酸化
ニッケルの金属ニッケル換算量に対して2〜12重量%
であり、アルカリ金属の固溶量は遷移金属のそれに対し
て10〜70原子%であるニッケル−水素蓄電池とした
ものである。
In order to achieve the above object, the present invention provides a positive electrode using nickel hydroxide as an active material,
A negative electrode mainly composed of a hydrogen storage alloy, an alkaline electrolyte,
A battery comprising a separator, wherein nickel hydroxide is a solid solution of at least one transition metal and at least one alkali metal in an amount smaller than the transition metal. The amount of solid solution is 2 to 12% by weight with respect to the amount of nickel hydroxide converted to metallic nickel.
In the nickel-hydrogen storage battery, the solid solution amount of the alkali metal is 10 to 70 atom% with respect to that of the transition metal.

【0020】また、正極活物質である水酸化ニッケルの
製造方法は、ニッケル化合物に遷移金属を固溶させる第
1工程と、第1工程で得たニッケル化合物をアルカリと
反応させて水酸化ニッケルを得る第2の工程と、第2の
工程で得られた水酸化ニッケル中の遷移金属を酸化させ
る第3の工程と、第3の工程で得られた水酸化ニッケル
をアルカリ溶液中で撹拌加熱処理して水酸化ニッケルに
アルカリ金属を固溶させる第4の工程とからなる製造方
法としたものである。
Further, in the method for producing nickel hydroxide which is the positive electrode active material, nickel hydroxide is prepared by reacting the nickel compound obtained in the first step with alkali in the first step of solid-dissolving the transition metal in the nickel compound. The second step of obtaining, the third step of oxidizing the transition metal in the nickel hydroxide obtained in the second step, and the stirring and heat treatment of the nickel hydroxide obtained in the third step in an alkaline solution And a fourth step of solid-dissolving an alkali metal in nickel hydroxide.

【0021】[0021]

【発明の実施の形態】本発明の請求項1に記載の発明
は、水酸化ニッケルを活物質とした正極と、水素吸蔵合
金を主体とした負極と、アルカリ電解液と、セパレータ
とからなる電池であって、前記水酸化ニッケルは、
n,Fe,CrおよびCoのうちの少なくとも1種類の
遷移金属とこの遷移金属よりも少ない量でアルカリ金属
のうちの少なくとも1種類をそれぞれ固溶していて、前
記遷移金属の固溶量は前記水酸化ニッケルの金属ニッケ
ル換算量に対して2〜12重量%であり、前記アルカリ
金属の固溶量は前記遷移金属のそれに対して10〜70
原子%としたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is a battery comprising a positive electrode using nickel hydroxide as an active material, a negative electrode mainly containing a hydrogen storage alloy, an alkaline electrolyte, and a separator. And the nickel hydroxide is M
At least one kind of transition metal of n, Fe, Cr and Co and at least one kind of alkali metal are dissolved in a smaller amount than the transition metal, and the solid solution amount of the transition metal is The amount of nickel hydroxide is 2 to 12% by weight based on the metallic nickel equivalent, and the amount of the solid solution of the alkali metal is 10 to 70 relative to that of the transition metal.
It is expressed in atomic%.

【0022】ここで言う固溶は、結晶学的に水酸化ニッ
ケルのニッケル原子に遷移金属が置換固溶した構造のも
のを示す。
The solid solution referred to herein has a structure in which a transition metal is crystallographically substituted with a nickel atom of nickel hydroxide to form a solid solution.

【0023】この水酸化ニッケルは、ニッケル−水素蓄
電池の充放電状態における正極の電位範囲で、ニッケル
の価数が常に3価以上になるので、カチオンやアニオン
を伴わないと考えられ、電解液の希薄化も起こらない。
また、水酸化ニッケルは、遷移金属の近傍にカチオンを
トラップしており、結晶に歪みをもたせるため、常温で
は、充電状態でγ−NiOOH、放電状態で(β−Ni
(OH)2)になり、このγ−βの反応が可逆的に起こ
すことができ、高エネルギー密度のニッケル−水素蓄電
池を提供できる。
This nickel hydroxide is considered to be free from cations and anions because the valence of nickel is always 3 or more in the potential range of the positive electrode in the charge / discharge state of the nickel-hydrogen storage battery, and it is considered that cations and anions are not involved. Dilution does not occur either.
Further, nickel hydroxide traps cations in the vicinity of the transition metal and causes strain in the crystal. Therefore, at room temperature, γ-NiOOH is charged and (β-NiOOH is discharged at normal temperature.
(OH) 2 ) and the reaction of γ-β can occur reversibly, and a nickel-hydrogen storage battery with high energy density can be provided.

【0024】請求項4に記載の発明は、ニッケル化合物
Mn,Fe,CrおよびCoのうちの少なくとも1種
類の遷移金属を固溶させる第1工程と、第1工程で得た
ニッケル化合物をアルカリと反応させて水酸化ニッケル
を得る第2の工程と、第2の工程で得られた水酸化ニッ
ケル中の前記遷移金属を酸化させる第3の工程と、第3
の工程で得られた水酸化ニッケルをアルカリ溶液中で撹
拌加熱処理して水酸化ニッケルにアルカリ金属を固溶さ
せる第4の工程とからなるアルカリ蓄電池用正極活物質
の製造方法としたものである。
The invention according to claim 4 is a nickel compound containing at least one of Mn, Fe, Cr and Co.
A first step of forming a solid solution of a transition metal of the same class , a second step of reacting the nickel compound obtained in the first step with an alkali to obtain nickel hydroxide, and a nickel hydroxide obtained in the second step a third step of oxidizing the transition metal, a third
The method for producing a positive electrode active material for an alkaline storage battery, comprising the fourth step of stirring and heating the nickel hydroxide obtained in the step of 1) in an alkaline solution to form a solid solution of the alkali metal in the nickel hydroxide. .

【0025】遷移金属を固溶した水酸化ニッケルは、酸
素雰囲気下で熱処理を施すか、酸化剤を含む水溶液で加
熱処理することで、ニッケルを酸化させることなく遷移
金属を優先的に酸化させることができる。
Nickel hydroxide in which a transition metal is solid-dissolved is subjected to heat treatment in an oxygen atmosphere or heat treatment with an aqueous solution containing an oxidant to preferentially oxidize the transition metal without oxidizing nickel. You can

【0026】この遷移金属を酸化させた水酸化ニッケル
は、ニッケルの価数は2価であり、遷移金属の酸化数は
3価以上となっている。つまり、遷移金属だけに注目す
ると、MeOOH1-Xと表され(Meは遷移金属、Xは
0より大きく1より小さい値)遷移金属Meと結合して
いる酸素はプロトン(H+)が欠損状態となりδ-を帯び
る。次に、この水酸化ニッケルを水酸化アルカリ水溶液
中で攪拌処理を行うこと、正の電荷をもったカチオンは
δ-を帯びた酸素近傍に安定的に配位することが可能で
ある。この時にカチオンの価数は1価であるため余剰の
δ+が発生する。この電荷を補うためにアニオンも同時
に侵入する。
In the nickel hydroxide obtained by oxidizing the transition metal, the valence of nickel is divalent, and the oxidation number of the transition metal is trivalent or higher. In other words, focusing only on the transition metal, it is represented as MeOOH 1-X (Me is a transition metal, X is a value larger than 0 and smaller than 1), and oxygen bound to the transition metal Me has a proton (H + ) deficient state. next to δ - take on. Next, it is possible to stir the nickel hydroxide in an aqueous solution of alkali hydroxide so that the positively charged cations can be stably coordinated in the vicinity of δ -bearing oxygen. At this time, since the valence of the cation is monovalent, surplus δ + is generated. Anions also enter at the same time to compensate for this charge.

【0027】その結果、水酸化ニッケルに遷移金属が固
溶しており、この水酸化ニッケルを酸化させて水酸化ア
ルカリ水溶液中で攪拌処理することにより、この水酸化
ニッケルに固溶した遷移金属の近傍にアルカリカチオン
を選択的に固溶した活物質を得ることができる。
As a result, the transition metal is solid-dissolved in nickel hydroxide, and the nickel hydroxide is oxidized and subjected to stirring treatment in an aqueous alkali hydroxide solution, whereby the transition metal of the transition metal dissolved in nickel hydroxide is dissolved. An active material in which an alkali cation is selectively solid-dissolved in the vicinity can be obtained.

【0028】[0028]

【実施例】以下に本発明の実施例における具体例を示
す。
EXAMPLES Specific examples of the examples of the present invention will be shown below.

【0029】正極活物質である水酸化ニッケルにMnを
固溶させたものを以下に示す方法で作製した。
A solution of Mn in nickel hydroxide, which is a positive electrode active material, was prepared by the following method.

【0030】原料液として、硫酸ニッケル水溶液と硫酸
マンガンを金属Niに対してMn量が5重量%となるよ
うにその量を調整した。この原料液を実質的に密閉され
た状態に保ち得る反応容器に投入するとともに不活性ガ
スを導入、排気する部位が設けてあり、不活性ガスを反
応系に供給しながら反応させた。
As raw material liquids, nickel sulfate aqueous solution and manganese sulfate were adjusted so that the amount of Mn was 5% by weight with respect to metallic Ni. The raw material liquid was charged into a reaction vessel capable of being kept substantially sealed, and a portion for introducing and exhausting an inert gas was provided, and the reaction was performed while supplying the inert gas to the reaction system.

【0031】反応液としては、原料液と水酸化ナトリウ
ム水溶液とアンモニア水を濃度比1:2.3:2のもの
を用意した。この反応液を反応容器内に滴下した。この
時、反応温度は40℃とした。またこの時のpHは12
に保った。
As the reaction liquid, a raw material liquid, an aqueous solution of sodium hydroxide and aqueous ammonia having a concentration ratio of 1: 2.3: 2 were prepared. This reaction liquid was dropped into the reaction container. At this time, the reaction temperature was 40 ° C. The pH at this time is 12
Kept at.

【0032】この反応で得られた析出物を水洗乾燥し、
水酸化ニッケル粉末にその金属ニッケル換算量に対して
Mnを5重量%固溶したものを得た。
The precipitate obtained by this reaction is washed with water and dried,
There was obtained nickel hydroxide powder in which 5% by weight of Mn was formed as a solid solution based on the metal nickel equivalent.

【0033】この水酸化ニッケル粉末を通常80〜12
0℃で1〜30時間加熱処理するがここでは100℃で
24時間加熱処理してMnを選択的に酸化させ、この水
酸化ニッケル粉末を水酸化リチウム10mol/lの水
溶液中で通常30〜100℃で1〜30時間加熱撹拌処
理するがここでは80℃で10時間加熱撹拌処理して水
酸化ニッケル粉末にLiを固溶させた。
This nickel hydroxide powder is usually used in the range of 80-12.
It is heat-treated at 0 ° C. for 1 to 30 hours, but here, it is heat-treated at 100 ° C. for 24 hours to selectively oxidize Mn, and the nickel hydroxide powder is usually added to an aqueous solution of lithium hydroxide 10 mol / l for 30 to 100 hours. The mixture is heated and stirred at 1 ° C. for 1 to 30 hours, but here, the mixture is heated and stirred at 80 ° C. for 10 hours to dissolve Li in the nickel hydroxide powder.

【0034】この水酸化ニッケル粉末100重量部に、
結着剤としてポリテトラフルオロエチレン0.5重量部
と、導電剤として水酸化コバルト10重量部と、分散媒
としての適量の水を加えてペースト状とし、これをスポ
ンジ状ニッケル多孔体の孔部に充填した後乾燥し、ロー
ルプレス機で圧延して正極板1を作製した。この正極板
1の寸法は、幅35mm、長さ120mm、厚さ0.7
8mmとした。この正極の理論容量(水酸化ニッケルが
1電子反応であると仮定して289mAh/gとして計
算する)は1600mAhであった。
To 100 parts by weight of this nickel hydroxide powder,
0.5 parts by weight of polytetrafluoroethylene as a binder, 10 parts by weight of cobalt hydroxide as a conductive agent, and an appropriate amount of water as a dispersion medium were added to form a paste, which was formed into a pore portion of a sponge-like nickel porous body. Then, the positive electrode plate 1 was manufactured by rolling it in a roll press and rolling it. The positive electrode plate 1 has dimensions of width 35 mm, length 120 mm, and thickness 0.7.
It was 8 mm. The theoretical capacity of this positive electrode (calculated as 289 mAh / g assuming that nickel hydroxide is a one-electron reaction) was 1600 mAh.

【0035】負極板2としては、AB5型水素吸蔵合金
粉末100重量部と、炭素粉末1重量部と、ポリテトラ
フルオロエチレン1重量部と、適量の水を加えてペース
ト状とし、これをパンチングメタルに塗布して乾燥した
後、圧延した。この負極板2の寸法は、幅35mm、長
さ145mm、厚み0.39mmとした。この負極の理
論容量(水素吸蔵合金の単位重量当りの電気量は280
mAh/gとして計算する)は2900mAhであっ
た。
As the negative electrode plate 2, 100 parts by weight of AB 5 type hydrogen storage alloy powder, 1 part by weight of carbon powder, 1 part by weight of polytetrafluoroethylene and 1 part by weight of water were added to form a paste, which was punched. It was applied to metal, dried, and then rolled. The dimensions of the negative electrode plate 2 were 35 mm in width, 145 mm in length, and 0.39 mm in thickness. The theoretical capacity of this negative electrode (the quantity of electricity per unit weight of the hydrogen storage alloy is 280
(calculated as mAh / g) was 2900 mAh.

【0036】上記で作製した正極板1と、負極板2と、
この両者間にポリプロピレン不織布製セパレータ3を配
して全体を渦巻状に巻回して極板群を構成し、これを電
池ケース4に挿入し、アルカリ電解液として水酸化カリ
ウム10mol/lの水溶液を所定量注入した後、正極
端子を兼ねる封口板5で密閉して4/5Aサイズで、公
称容量1600mAhのニッケル−水素蓄電池Aを構成
した。この電池Aの構成図を図1に示す。
The positive electrode plate 1 and the negative electrode plate 2 produced above,
A polypropylene non-woven fabric separator 3 is placed between the two, and the whole is spirally wound to form an electrode plate group, which is inserted into a battery case 4 and an aqueous solution of potassium hydroxide 10 mol / l is used as an alkaline electrolyte. After injecting a predetermined amount, a nickel-hydrogen storage battery A having a size of 4/5 A and a nominal capacity of 1600 mAh was constructed by sealing with a sealing plate 5 also serving as a positive electrode terminal. A configuration diagram of the battery A is shown in FIG.

【0037】また、上記で作製した正極板1において、
MnもLiも固溶していない水酸化ニッケルを用いた以
外は、上記と同様な構成とした電池を比較例の電池Bと
した。
Further, in the positive electrode plate 1 produced above,
A battery having the same configuration as the above except that nickel hydroxide in which neither Mn nor Li was solid-solved was used was designated as Battery B of Comparative Example.

【0038】この電池A,Bそれぞれを160mAで1
5時間充電し、1時間放置した後、320mAで端子電
圧が1Vに至るまで放電する充放電サイクルを2回行な
った。
Each of the batteries A and B was set to 1 at 160 mA.
After charging for 5 hours and leaving for 1 hour, a charging / discharging cycle of discharging at 320 mA until the terminal voltage reaches 1 V was performed twice.

【0039】さらに45℃の温度雰囲気で3日間放置す
るエージングを行なった後、20℃の温度雰囲気下で1
60mAの電流で18時間充電し、1時間放置した後、
320mAで端子電圧1Vに至るまで放電した。この時
の放電容量から求めた正極の活物質利用率(実際の放電
容量/正極理論容量を289mAhとした際の百分率)
は、電池Aが112%であり、電池Bは98%であっ
た。
Further, after aging by leaving it in an atmosphere of a temperature of 45 ° C. for 3 days, it is subjected to 1-amount in an atmosphere of a temperature of 20 ° C.
After charging for 18 hours with a current of 60 mA and leaving it for 1 hour,
The battery was discharged at 320 mA until the terminal voltage reached 1 V. Utilization rate of positive electrode active material obtained from discharge capacity at this time (percentage when actual discharge capacity / positive electrode theoretical capacity is 289 mAh)
The battery A was 112% and the battery B was 98%.

【0040】確認のために、充電状態の電池A,Bをそ
れぞれ分解して正極板を取り出し、活物質のCuKαを
線源とした(波長λが1.5405)X線回折による分
析を行った。この分析により、回折角2θを求めた結
果、電池Aの正極板はγ−NiOOHに起因する(00
3)面の回折ピークが2θ=12度近くに観察され、β
−NiOOHに起因する(00l)面の回折ピークも2
θ=20度付近に観察され、充電状態ではγ−NiOO
Hとβ−NiOOHの混合相であることが確認できた。
また、放電状態では活性水酸化ニッケル(β−Ni(O
H)2)の回折ピークだけが確認できた。さらに、この
水酸化ニッケル粉末には、Mnの固溶量に対して50原
子%のLiが固溶していた。これに対して電池Bの正極
板は、電池Aのそれと同様な回折ピークを確認できなか
った。
For confirmation, the batteries A and B in the charged state were disassembled, the positive electrode plate was taken out, and analyzed by X-ray diffraction using CuKα of the active material as a radiation source (wavelength λ is 1.5405). . As a result of obtaining the diffraction angle 2θ by this analysis, the positive electrode plate of the battery A is due to γ-NiOOH (00
3) The diffraction peak of the plane was observed near 2θ = 12 degrees, and β
-The diffraction peak of the (001) plane due to NiOOH is also 2
Observed around θ = 20 degrees, γ-NiOO in the charged state
It was confirmed to be a mixed phase of H and β-NiOOH.
In the discharged state, activated nickel hydroxide (β-Ni (O
Only the diffraction peak of H) 2 ) could be confirmed. Further, in this nickel hydroxide powder, 50 atomic% of Li was solid-solved with respect to the solid solution amount of Mn. On the other hand, in the positive electrode plate of the battery B, the same diffraction peak as that of the battery A could not be confirmed.

【0041】このことより、比較例の電池Bは、正極活
物質が充電状態では、β−NiOOHになり、そのニッ
ケルの平均価数は3.2価であるので、その正極活物質
の利用率は98%になったものである。
From the above, in the battery B of the comparative example, the positive electrode active material becomes β-NiOOH in the charged state, and the average valence of nickel is 3.2, so that the utilization rate of the positive electrode active material is high. Is 98%.

【0042】実施例の電池Aは、その正極活物質の水酸
化ニッケルに、Mnをその金属ニッケル換算量に対して
5重量%固溶しており、このMnの固溶量に対してLi
が50原子%固溶しているので充電状態では高次のニッ
ケル酸化状態となり、平均価数も3.5価と高まるの
で、比較例よりも反応電子数が増加し、水酸化ニッケル
そのものの容量密度が向上する。そのため正極活物質の
利用率は112%となり、比較例より14%向上した。
さらに、正極活物質中にはLiが固溶しているため、電
解液の希薄化が起こらない。それに加えて放電状態でも
α−3Ni(OH)2・2H2Oを生成しないので、容量
密度を向上させることができるとともに、充放電サイク
ル特性に優れたニッケル−水素蓄電池となる。
In the battery A of the example, 5% by weight of Mn was dissolved in nickel hydroxide as the positive electrode active material with respect to the amount of metallic nickel converted.
Is a solid solution of 50 atomic%, it becomes a higher-order nickel oxidation state in the charged state, and the average valence increases to 3.5 valence, so the number of reaction electrons increases compared to the comparative example, and the capacity of nickel hydroxide itself The density is improved. Therefore, the utilization rate of the positive electrode active material was 112%, which was 14% higher than that of the comparative example.
Further, since Li is solid-dissolved in the positive electrode active material, the electrolyte is not diluted. In addition, since α-3Ni (OH) 2 .2H 2 O is not generated even in a discharged state, the capacity density can be improved and the nickel-hydrogen storage battery has excellent charge / discharge cycle characteristics.

【0043】なお、本発明の実施例では、正極活物質で
ある水酸化ニッケルに、その金属ニッケル換算量に対し
てMnを5重量%、そのMnに対して50原子%のLi
を固溶させたものを用いたが、Mnの固溶量は2〜10
重量%、Liの固溶量はそのMnの固溶量に対して10
〜70原子%の範囲であれば、実施例とほぼ同様な効果
が得られる。また、最も好ましいLiの固溶量の範囲は
Mnの固溶量に対して20〜60原子%であった。
In the examples of the present invention, nickel hydroxide, which is the positive electrode active material, contains 5% by weight of Mn based on the amount of metallic nickel converted, and 50 atomic% of Mn with respect to Li.
Was used as a solid solution, but the solid solution amount of Mn is 2 to 10
The solid solution amount of wt% and Li is 10 with respect to the solid solution amount of Mn.
In the range of up to 70 atomic%, almost the same effect as the embodiment can be obtained. The most preferable range of the solid solution amount of Li was 20 to 60 atom% with respect to the solid solution amount of Mn.

【0044】また、実施例では、正極活物質である水酸
化ニッケルへの固溶金属としては、遷移金属がMn、ア
ルカリ金属がLiを用いたが、この外に遷移金属はF
e,Cr,およびCoのうちの少なくともいずれか1種
類と、アルカリ金属はNa,K,RbおよびCsのうち
の少なくともいずれか1種類を用いても実施例とほぼ同
様な効果が得られる。
In the examples, Mn was used as the transition metal and Li was used as the alkali metal as the solid solution metal in the nickel hydroxide as the positive electrode active material.
Even if at least one of e, Cr, and Co and at least one of Na, K, Rb, and Cs are used as the alkali metal, substantially the same effect as the embodiment can be obtained.

【0045】実施例の正極活物質の製造方法としては、
遷移金属を固溶させた水酸化ニッケル粉末を酸素存在下
において100℃で24時間加熱処理して水酸化ニッケ
ルに固溶した遷移金属を選択的に酸化させ、この水酸化
ニッケル粉末を80℃の水酸化リチウム水溶液中で10
時間加熱撹拌処理することによってアルカリ金属である
Liを水酸化ニッケル粉末に固溶させる方法を示した
が、遷移金属を固溶させた水酸化ニッケル粉末を過酸化
水素水などの酸化剤を用いて水酸化ニッケル粉末に固溶
した遷移金属を化学酸化させて、その後の工程を実施例
と同様な方法としても水酸化ニッケル粉末にアルカリ金
属であるLiを固溶させることができる。
The method for producing the positive electrode active material of the embodiment is as follows:
The nickel hydroxide powder having a transition metal dissolved therein is heat-treated in the presence of oxygen at 100 ° C. for 24 hours to selectively oxidize the transition metal dissolved in nickel hydroxide, and the nickel hydroxide powder is heated at 80 ° C. 10 in aqueous lithium hydroxide
The method of dissolving Li, which is an alkali metal, in nickel hydroxide powder by heating and stirring for a time was shown. Nickel hydroxide powder in which a transition metal was solid-dissolved was used with an oxidizing agent such as hydrogen peroxide solution. The alkali metal Li can be solid-dissolved in the nickel hydroxide powder by chemically oxidizing the transition metal solid-dissolved in the nickel hydroxide powder and using the subsequent steps in the same manner as in the example.

【0046】また、前記の製造方法としては、遷移金属
の固溶した水酸化ニッケル粉末を酸化させて、アルカリ
塩水溶液である水酸化リチウム水溶液を用いてアルカリ
金属であるLiを水酸化ニッケル粉末に固溶させたが、
アルカリ塩水溶液としては水酸化リチウム,水酸化ナト
リウム,水酸化カリウム,水酸化ルビジウムおよび水酸
化セシウムのうちの少なくとも1種類の水溶液を用いて
も、アルカリ金属であるLi,Na,K,RbおよびC
sのうちの少なくとも1種類を水酸化ニッケル粉末に固
溶させることができる。
As the above-mentioned manufacturing method, nickel hydroxide powder in which a transition metal is solid-dissolved is oxidized, and Li, which is an alkali metal, is converted into nickel hydroxide powder by using an aqueous solution of lithium hydroxide which is an aqueous solution of alkali salt. I made it a solid solution,
Even if an aqueous solution of at least one of lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide and cesium hydroxide is used as the alkaline salt aqueous solution, alkali metals such as Li, Na, K, Rb and C are used.
At least one of s can be solid-dissolved in the nickel hydroxide powder.

【0047】[0047]

【発明の効果】以上のように本発明のニッケル−水素蓄
電池では 正極の活物質である水酸化ニッケルは、
n,Fe,CrおよびCoのうちの少なくとも1種類の
遷移金属のうちの少なくとも1種類とこの遷移金属より
も少ない量でアルカリ金属のうちの少なくとも1種類を
それぞれ固溶していて、この遷移金属の固溶量は水酸化
ニッケルの金属ニッケル換算量に対して2〜10重量%
であり、アルカリ金属の固溶量はその遷移金属のそれに
対して10〜70原子%であるので、水酸化ニッケル
は、充電状態ではγ−NiOOHとβ−NiOOHの混
合体となり、ニッケルの平均価数が3.5価と高次の価
数になるので、反応電子数が増加して活物質の容量密度
が向上する。また、水酸化ニッケルがアルカリ金属を固
溶しているため、密閉型電池内での電解液の希薄化が起
こらず、電池の充放電サイクル特性を高めることができ
る。
As described above, in the nickel-hydrogen storage battery of the present invention, the nickel hydroxide which is the active material of the positive electrode is M
at least one transition metal of at least one transition metal of n, Fe, Cr and Co and at least one transition metal of an alkali metal in a smaller amount than the transition metal. , The solid solution amount of this transition metal is 2 to 10% by weight based on the nickel equivalent of nickel hydroxide.
Since the solid solution amount of the alkali metal is 10 to 70 atom% with respect to that of the transition metal, nickel hydroxide becomes a mixture of γ-NiOOH and β-NiOOH in the charged state, and the average value of nickel is Since the number is 3.5 and a higher valence, the number of reaction electrons is increased and the capacity density of the active material is improved. Further, since nickel hydroxide is a solid solution of alkali metal, the electrolyte is not diluted in the sealed battery, and the charge / discharge cycle characteristics of the battery can be improved.

【0048】[0048]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるニッケル−水素蓄電池
の構成図
FIG. 1 is a configuration diagram of a nickel-hydrogen storage battery according to an embodiment of the present invention.

【符号の説明】 1 正極板 2 負極板 3 セパレータ 4 電池ケース 5 封口板[Explanation of symbols] 1 Positive plate 2 Negative electrode plate 3 separator 4 battery case 5 Seal plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−126074(JP,A) 国際公開97/019478(WO,A1)   ─────────────────────────────────────────────────── ─── Continued front page       (56) References JP-A-57-126074 (JP, A)                 International Publication 97/019478 (WO, A1)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水酸化ニッケルを活物質とした正極と、水
素吸蔵合金を主体とした負極と、アルカリ電解液と、セ
パレータとからなる電池であって、前記水酸化ニッケル
は、Mn,Fe,CrおよびCoのうちの少なくとも1
種類の遷移金属を固溶しているとともに、それよりも少
ない量でLi,Na,K,RbおよびCsのうちの少な
くとも1種類のアルカリ金属を固溶しているものであ
り、前記遷移金属の固溶量は前記水酸化ニッケル金属
ニッケルに換算した量に対して2〜10重量%であり、
前記アルカリ金属の固溶量は前記遷移金属のそれに対し
て10〜70原子%であり、前記遷移金属は酸化されて
いるニッケル−水素蓄電池。
1. A battery comprising a positive electrode having nickel hydroxide as an active material, a negative electrode mainly having a hydrogen storage alloy, an alkaline electrolyte and a separator, wherein the nickel hydroxide is Mn, Fe, At least one of Cr and Co
It is a solid solution of several kinds of transition metals and is less than that.
A small amount of Li, Na, K, Rb and Cs with no amount
At least one type of alkali metal is in solid solution
Ri, solid solution amount of the transition metal is from 2 to 10 wt% relative to the amount obtained by converting the nickel hydroxide to the metallic nickel,
Solid solution amount of the alkali metal Ri 10-70 atomic% der to that of the transition metal, the transition metal is oxidized
It is nickel - hydrogen storage battery.
【請求項2】水酸化ニッケルを活物質とした正極と、水
素吸蔵合金を主体とした負極と、アルカリ電解液と、セ
パレータとからなる電池であって、前記水酸化ニッケル
は、MnとこのMnよりも少ない量でLiを固溶してい
るものであり、前記Mnの固溶量は水酸化ニッケルを金
属ニッケルに換算した量に対して3〜8重量%であり、
前記Liの固溶量は前記Mnのそれに対して20〜60
原子%であり、前記遷移金属は酸化されているニッケル
−水素蓄電池。
2. A battery comprising a positive electrode containing nickel hydroxide as an active material, a negative electrode mainly containing a hydrogen storage alloy, an alkaline electrolyte and a separator, wherein the nickel hydroxide is Mn and Mn. Li is dissolved in a smaller amount than
The solid solution amount of Mn is nickel hydroxide and gold.
3 to 8% by weight based on the amount converted to group nickel,
The solid solution amount of Li is 20 to 60 with respect to that of Mn.
Nickel-hydrogen storage battery , wherein the transition metal is atomic% and the transition metal is oxidized .
【請求項3】ニッケル化合物にMn,Fe,Crおよび
Coのうちの少なくとも1種類の遷移金属を固溶させる
第1工程と、 第1工程で得たニッケル化合物をアルカリと反応させて
水酸化ニッケルを得る第2の工程と、 第2の工程で得られた水酸化ニッケル中の前記遷移金属
を酸化させる第3の工程と、 第3の工程で得られた水酸化ニッケルをアルカリ溶液中
で撹拌加熱処理して水酸化ニッケルにアルカリ金属を固
溶させる第4の工程とからなるアルカリ蓄電池用正極活
物質の製造方法。
3. A nickel compound containing Mn, Fe, Cr and
A first step of forming a solid solution with at least one transition metal of Co , a second step of reacting the nickel compound obtained in the first step with an alkali to obtain nickel hydroxide, and a second step a third step of oxidizing the transition metal of nickel hydroxide, which is, to a solid solution of an alkali metal to a stirred heated to nickel hydroxide obtained nickel hydroxide in the alkaline solution in the third step A method for producing a positive electrode active material for an alkaline storage battery, which comprises the fourth step.
【請求項4】ニッケル化合物にこのニッケル化合物の金
属ニッケル換算量に対して2〜12重量%のMn,F
e,CrおよびCoのうちの少なくとも1種類の遷移金
属を固溶させる第1の工程と、 第1の工程で得られたニッケル化合物をアルカリと反応
させて水酸化ニッケルを得る第2の工程と、 第2の工程で得られた水酸化ニッケルを空気または酸素
雰囲気下において80〜120℃の温度で1〜30時間
加熱処理し、水酸化ニッケル中の前記遷移金属を酸化さ
せる第3の工程と、 第3の工程で得られた水酸化ニッケルをアルカリ溶液中
で撹拌加熱処理して水酸化ニッケルにアルカリ金属を固
溶させる第4の工程とからなるアルカリ蓄電池用正極活
物質の製造方法。
4. A nickel compound containing 2 to 12% by weight of Mn and F based on the amount of nickel metal converted to the nickel compound.
a first step of forming a solid solution with at least one transition metal of e, Cr and Co, and a second step of reacting the nickel compound obtained in the first step with an alkali to obtain nickel hydroxide the nickel hydroxide obtained in the second step was 30 hours of heat treatment at a temperature of 80 to 120 ° C. in an air or oxygen atmosphere, a third step of oxidizing the transition metal hydroxide in the nickel A method for producing a positive electrode active material for an alkaline storage battery, which comprises a fourth step of stirring and heating the nickel hydroxide obtained in the third step in an alkali solution to form a solid solution of an alkali metal in the nickel hydroxide.
【請求項5】アルカリ塩水溶液は、LiOH,NaO
H,KOH,RbOHおよびCsOHのうちの少なくと
も1種類からなる水溶液である請求項記載のアルカリ
蓄電池用正極活物質の製造方法。
5. The alkaline salt aqueous solution is LiOH, NaO.
The method for producing a positive electrode active material for an alkaline storage battery according to claim 4, which is an aqueous solution containing at least one of H, KOH, RbOH and CsOH.
【請求項6】ニッケル化合物にこのニッケル化合物の金
属ニッケル換算量に対して2〜12重量%のMn,F
e,CrおよびCoのうちの少なくとも1種類の遷移金
属を固溶させる第1の工程と、 第1の工程で得られたニッケル化合物をアルカリと反応
させて水酸化ニッケルを得る第2の工程と、 第2の工程で得られた水酸化ニッケルを酸化剤を含む水
溶液中で80〜120℃の温度で1〜30時間加熱処理
し、水酸化ニッケル中の前記遷移金属を酸化させる第3
の工程と、 第3の工程で得られた水酸化ニッケルを酸化剤を含む水
溶液中で80〜120℃の温度で1〜30時間撹拌処理
して水酸化ニッケルにアルカリ金属を固溶させる第4の
工程とからなるアルカリ蓄電池用正極活物質の製造方
法。
6. A nickel compound containing 2 to 12% by weight of Mn, F based on the nickel equivalent of the nickel compound.
a first step of forming a solid solution with at least one transition metal of e, Cr and Co, and a second step of reacting the nickel compound obtained in the first step with an alkali to obtain nickel hydroxide the nickel hydroxide obtained in the second step was 30 hours of heat treatment at a temperature of 80 to 120 ° C. in an aqueous solution containing an oxidizing agent, a third oxidizing the transition metal hydroxide in the nickel
And a step of stirring the nickel hydroxide obtained in the third step in an aqueous solution containing an oxidizing agent at a temperature of 80 to 120 ° C. for 1 to 30 hours to form an alkali metal solid solution in nickel hydroxide. A method for producing a positive electrode active material for an alkaline storage battery, which comprises the step of.
【請求項7】アルカリ塩水溶液は、LiOH,NaO
H,KOH,RbOHおよびCsOHのうちの少なくと
も1種類からなる水溶液である請求項記載のアルカリ
蓄電池用正極活物質の製造方法。
7. The alkaline salt aqueous solution is LiOH, NaO.
The method for producing a positive electrode active material for an alkaline storage battery according to claim 6, which is an aqueous solution containing at least one of H, KOH, RbOH and CsOH.
JP18105397A 1997-07-07 1997-07-07 Nickel-hydrogen storage battery and method for producing positive electrode active material thereof Expired - Fee Related JP3518259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18105397A JP3518259B2 (en) 1997-07-07 1997-07-07 Nickel-hydrogen storage battery and method for producing positive electrode active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18105397A JP3518259B2 (en) 1997-07-07 1997-07-07 Nickel-hydrogen storage battery and method for producing positive electrode active material thereof

Publications (2)

Publication Number Publication Date
JPH1125968A JPH1125968A (en) 1999-01-29
JP3518259B2 true JP3518259B2 (en) 2004-04-12

Family

ID=16093961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18105397A Expired - Fee Related JP3518259B2 (en) 1997-07-07 1997-07-07 Nickel-hydrogen storage battery and method for producing positive electrode active material thereof

Country Status (1)

Country Link
JP (1) JP3518259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307739C (en) * 2001-03-05 2007-03-28 株式会社汤浅 Method for manufacturing nickel hydrogen battery

Also Published As

Publication number Publication date
JPH1125968A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
JP3624539B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery
JP2004179064A (en) Nickel-hydrogen secondary battery
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
US7393612B2 (en) Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
US7147676B2 (en) Method of preparing a nickel positive electrode active material
JP2002216752A (en) Cobalt compound, method for manufacturing the same, positive electrode plate for alkaline storage battery using the same and alkaline storage battery
EP1054463A1 (en) Positive electrode, alkaline secondary battery, and method for manufacturing alkaline secondary battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
JP3518259B2 (en) Nickel-hydrogen storage battery and method for producing positive electrode active material thereof
JPWO2014049966A1 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery for alkaline storage battery containing the same, and nickel metal hydride storage battery
JP3414200B2 (en) Alkaline storage battery
US6368748B1 (en) Nickel-metal hydride storage cell having a high capacity and an excellent cycle characteristic and manufacturing
JP2011249238A (en) Power storage device with proton as insertion species
JP2008235173A (en) Nickel-hydrogen secondary battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP2001313069A (en) Nickel hydrogen storage battery
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3436060B2 (en) Nickel-hydrogen storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3624508B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees