JP3314611B2 - Nickel electrode for alkaline storage battery - Google Patents

Nickel electrode for alkaline storage battery

Info

Publication number
JP3314611B2
JP3314611B2 JP07551996A JP7551996A JP3314611B2 JP 3314611 B2 JP3314611 B2 JP 3314611B2 JP 07551996 A JP07551996 A JP 07551996A JP 7551996 A JP7551996 A JP 7551996A JP 3314611 B2 JP3314611 B2 JP 3314611B2
Authority
JP
Japan
Prior art keywords
electrode
nickel
powder
added
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07551996A
Other languages
Japanese (ja)
Other versions
JPH09265981A (en
Inventor
俊樹 田中
健吾 古川
勇一 松村
登 三宅
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13578570&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3314611(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP07551996A priority Critical patent/JP3314611B2/en
Priority to CNB2004100317501A priority patent/CN1244964C/en
Priority to CNB961915048A priority patent/CN1205679C/en
Priority to US08/849,103 priority patent/US6136473A/en
Priority to CNA2004100317516A priority patent/CN1536691A/en
Priority to KR1019970703538A priority patent/KR100416428B1/en
Priority to CNB2004100317520A priority patent/CN1253954C/en
Priority to PCT/JP1996/002761 priority patent/WO1997012408A1/en
Priority to EP96931980A priority patent/EP0794584A4/en
Priority to TW085112495A priority patent/TW335564B/en
Publication of JPH09265981A publication Critical patent/JPH09265981A/en
Publication of JP3314611B2 publication Critical patent/JP3314611B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・金属水
素化物蓄電池、ニッケル・カドミウム蓄電池やニッケル
・亜鉛蓄電池などのアルカリ蓄電池に用いられるニッケ
ル電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel electrode used for an alkaline storage battery such as a nickel metal hydride storage battery, a nickel cadmium storage battery and a nickel zinc storage battery.

【0002】[0002]

【従来の技術】近年のポータブルエレクトロニクス機器
の小型軽量化に伴い、その携帯電源である電池にも高エ
ネルギー密度化が求められている。その要求に対処する
ために、ニッケル・水素化物蓄電池、ニッケル・カドミ
ウム蓄電池やニッケル・亜鉛蓄電池などのアルカリ蓄電
池が開発実用化されている。また、そのエネルギー密度
や寿命などの点から、特にニッケル・水素化物蓄電池
は、電気自動車用電源としても有望視されている。
2. Description of the Related Art As portable electronic devices have become smaller and lighter in recent years, batteries as portable power supplies have been required to have higher energy density. To meet the demand, alkaline storage batteries such as nickel-hydride storage batteries, nickel-cadmium storage batteries, and nickel-zinc storage batteries have been developed and put to practical use. Also, in view of its energy density and life, nickel-hydride storage batteries are particularly promising as electric power sources for electric vehicles.

【0003】[0003]

【発明が解決しようとする課題】これらの蓄電池は、特
に機器内などに設置されるため、高温での使用になり易
い。そのために高温での活物質利用率の向上が要求され
る。しかし、高温になるとニッケル電極の充電効率が低
くなるために活物質利用率は低下し、ガス発生による電
解液の枯渇により、電池寿命が短くなる。
Since these storage batteries are installed particularly in equipment or the like, they are easily used at high temperatures. Therefore, an improvement in the active material utilization rate at a high temperature is required. However, at a high temperature, the charge efficiency of the nickel electrode is reduced, so that the utilization rate of the active material is reduced, and the life of the battery is shortened due to depletion of the electrolyte due to gas generation.

【0004】一般に高温の活物質利用率を向上させるた
めには、電解液組成を変化させる方法や、正極に用いら
れる水酸化ニッケルの結晶中に存在する固溶状態のCo
の量を増加させるなどの方法がとられている。しかし、
電解液組成を変化させると低温での活物質利用率の低下
・高率放電性能の低下、Co量を極端に増加させると放
電電圧の低下・高コスト、などの問題が生ずる。
In general, in order to improve the utilization rate of a high-temperature active material, a method of changing the composition of an electrolytic solution or a solid solution of Co present in crystals of nickel hydroxide used for a positive electrode is used.
For example, a method such as increasing the amount of glycerol is used. But,
Changing the composition of the electrolytic solution causes problems such as a decrease in the utilization rate of the active material at a low temperature and a decrease in the high-rate discharge performance, and an extreme increase in the amount of Co causes a decrease in the discharge voltage and a high cost.

【0005】本発明は上記従来の問題点に鑑みてなされ
たものであり、高温性能に優れ、長寿命のアルカリ蓄電
池用ニッケル電極を提供することを目的とするものであ
る。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a nickel electrode for an alkaline storage battery having excellent high-temperature performance and a long life.

【0006】[0006]

【課題を解決するための手段】アルカリ蓄電池用ニッケ
ル電極を、Co、Zn、Cd、Mgのうちの少なくとも
1種類以上を固溶状態で含む水酸化ニッケルを主成分と
する活物質と、Ho、Er、Tm、Yb、Lu、Yのう
ち少なくとも1種類以上の元素の単体またはその化合物
含有し、該単体またはその化合物と前記活物質が遊離
した電極とする。
Means for Solving the Problems Nickel for alkaline storage batteries
Le electrodes, Co, Zn, Cd, and an active material mainly composed of nickel hydroxide containing in a solid solution state at least one or more of Mg, Ho, Er, Tm, Yb, Lu, of Y least Contains a simple substance or a compound of one or more elements, and the simple substance or the compound and the active material are released
Electrode.

【0007】本発明に於いては、前記Ho、Er、T
m、Yb、Lu、Yのうち少なくとも1種類以上の元素
を含む化合物が、酸化物、水酸化物またはフッ化物であ
ることが望ましい。また、前記水酸化ニッケルを主成分
とする活物質の内部細孔容積が、0.1ml/g以下の
範囲にあることが望ましい。
In the present invention, Ho, Er, T
at least one element among m, Yb, Lu and Y
Compound comprising the oxide, it is desirable that the hydroxide or fluoride. In addition, the nickel hydroxide is a main component.
It is desirable that the internal pore volume of the active material to be used is within a range of 0.1 ml / g or less.

【0008】水酸化ニッケル中にCd、Zn又はMgを
固溶状態で添加すると、電極膨潤が抑制され、電極膨潤
によりセパレータが圧迫されることによるセパレータ内
の電解液枯渇現象を生じにくいため、電池長寿命が期待
される。また、水酸化ニッケル中にCoが固溶状態で含
まれていると、水酸化ニッケルの酸化電位を卑にシフト
させる効果があり、充電効率が高くなる。即ち、水酸化
ニッケルの酸化電位と酸素発生電位の差(以下、過電圧
と略す)は充電効率と相関性があり、過電圧が大きくな
ると充電効率が高くなる傾向がある。特に高温では水酸
化ニッケルの充電において過電圧が低くなるため、Co
が固溶状態で含まれている水酸化ニッケルを正極活物質
として使用した場合に充電効率を高める著しい効果が得
られる。
[0008] When Cd, Zn or Mg is added in a solid solution state to nickel hydroxide, swelling of the electrode is suppressed, and the electrolyte swelling phenomenon in the separator due to compression of the separator due to swelling of the electrode hardly occurs. Long life is expected. In addition, when Co is contained in the nickel hydroxide in a solid solution state, there is an effect of shifting the oxidation potential of the nickel hydroxide to a low level, and the charging efficiency is increased. That is, the difference between the oxidation potential of nickel hydroxide and the oxygen generation potential (hereinafter abbreviated as overvoltage) has a correlation with the charging efficiency, and the charging efficiency tends to increase as the overvoltage increases. Particularly at high temperatures, the overvoltage decreases during charging of nickel hydroxide,
When nickel hydroxide, which is contained in a solid solution state, is used as a positive electrode active material, a remarkable effect of increasing charging efficiency can be obtained.

【0009】しかし、50℃以上の雰囲気温度において
はその充電効率を高めるCoの効果が薄くなることが分
かっている。そこで、酸素発生電位を引き上げる効果の
ある重希土類元素のHo,Er,Tm,Yb,Lu又は
Yの元素のうちの少なくとも1種類以上の元素の単体又
は化合物を添加することにより、さらに充電効率を良く
することができる。これはCoによる効果と上記希土類
元素による相乗効果によって達成されるものである。L
aやCeなどの希土類元素に比べて、上記希土類元素は
高温での充電効率を顕著に引き上げる効果を持ってお
り、特にYb酸化物やEr酸化物などを添加した場合に
その効果は大きい。また、Coを固溶状態で含んでいな
い水酸化ニッケルを用いた場合(極板の膨潤を抑えるた
め、Zn,Cd,Mgの中の少なくとも1種類以上は含
む)においても、上記希土類元素の添加により充電効率
は高くなる。
However, it has been found that the effect of Co, which increases the charging efficiency, becomes thinner at an ambient temperature of 50 ° C. or higher. Therefore, by adding a simple substance or a compound of at least one or more of the heavy rare earth elements Ho, Er, Tm, Yb, Lu or Y, which have the effect of raising the oxygen generation potential, the charging efficiency is further increased. Can be better. This is achieved by the effect of Co and the synergistic effect of the rare earth element. L
Compared to rare earth elements such as a and Ce, the above rare earth elements have an effect of significantly increasing the charging efficiency at high temperatures, and the effect is particularly great when a Yb oxide or Er oxide is added. Also, in the case of using nickel hydroxide not containing Co in a solid solution state (including at least one of Zn, Cd, and Mg in order to suppress swelling of the electrode plate), the addition of the rare earth element As a result, the charging efficiency increases.

【0010】Ho,Er,Tm,Yb,Lu,Yの希土
類元素は、単体元素として使用するとコストのかかるも
のもあるため、これら希土類元素化合物の混合粉末等を
用いることにより、コストの低減を図ることができる。
これらの希土類元素を水酸化ニッケルと遊離した状態で
添加することにより、希土類元素の特性が持続すること
は言うまでもなく、製造上の簡便さも図ることができ
る。
Some of the rare earth elements of Ho, Er, Tm, Yb, Lu and Y are expensive if used as a single element. Therefore, the cost is reduced by using a mixed powder of these rare earth element compounds. be able to.
By adding these rare earth elements in a state of being free from nickel hydroxide, it goes without saying that the properties of the rare earth elements are maintained, and the production can be simplified.

【0011】希土類元素の添加方法としては、水酸化ニ
ッケルを主体とする正極活物質に上記希土類元素の単体
又はその化合物の粉末等を混合したものをニッケル多孔
体の基板等に充填する方法や、水酸化ニッケルを主体と
する活物質を基板に充填した後に上記希土類元素の単体
または化合物をその基板の一部や表面等に塗布するなど
の方法があり、正極に接するセパレータ等に予め塗布し
ておくことなどによっても同様の効果が得られる。
As a method for adding a rare earth element, a method in which a mixture of a positive electrode active material mainly composed of nickel hydroxide and a powder or the like of the above-mentioned rare earth element alone or a compound thereof is filled into a porous nickel substrate or the like, After filling the substrate with an active material mainly composed of nickel hydroxide, there is a method such as applying a simple substance or a compound of the rare earth element to a part or surface of the substrate, etc. The same effect can be obtained also by placing.

【0012】また、上記希土類元素の化合物を酸化物、
水酸化物、フッ化物とすることによりアルカリ中での安
定性が得られる。更に、内部細孔容積が0.1ml/g
以下の範囲にある高密度の水酸化ニッケルを用いること
により、高率放電特性を向上させ、高温で安定かつ高容
量な電極を得ることができる。
The compound of the rare earth element may be an oxide,
By using hydroxide or fluoride, stability in alkali can be obtained. Furthermore, the internal pore volume is 0.1 ml / g
By using high-density nickel hydroxide in the following range, high-rate discharge characteristics can be improved, and a high-temperature stable and high-capacity electrode can be obtained.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施例を図面に即
して説明する。Znを5重量%固溶状態で含む高密度球
状水酸化ニッケル粉末と、10重量%の一酸化コバルト
粉末とを混合し(この混合粉末をAとする)、これに
2.5重量%の酸化ホルミウム粉末を加えてよく混合し
た後に、増粘剤を加えてペースト状としてニッケル多孔
体基板に充填した。この電極を本発明電極Bとする。ま
た、混合粉末Aに2.5重量%の酸化エルビウム粉末を
加えて混合した後、増粘剤を加えてペースト状としてニ
ッケル多孔体基板に充填し、本発明電極Cを得た。ま
た、混合粉末Aに2.5重量%の酸化イッテルビウム粉
末を加えて混合した後、増粘剤を加えてペースト状とし
てニッケル多孔体基板に充填し、本発明電極Dを得た。
比較のため、混合粉末Aに2.5重量%の酸化ランタン
粉末を加えて混合した後、増粘剤を加えてペースト状と
してニッケル多孔体基板に充填し、比較電極Eを得た。
また、同様に混合粉末Aに2.5重量%の酸化セリウム
粉末を加えて混合した後、増粘剤を加えてペースト状と
してニッケル多孔体基板に充填し、比較電極Fを得た。
また、同様に混合粉末Aに2.5重量%の酸化ガドリニ
ウム粉末を加えて混合した後、増粘剤を加えてペースト
状としてニッケル多孔体基板に充填し、比較電極Gを得
た。また、混合粉末Aに増粘剤を加えてペースト状とし
てニッケル多孔体基板に充填し、比較電極Hを得た。
Embodiments of the present invention will be described below with reference to the drawings. A high-density spherical nickel hydroxide powder containing 5 wt% of Zn in a solid solution state and a 10 wt% cobalt monoxide powder were mixed (this mixed powder was designated as A), and 2.5 wt% of oxidized powder was added thereto. After holmium powder was added and mixed well, a thickener was added to form a paste and filled into a nickel porous substrate. This electrode is referred to as electrode B of the present invention. Further, after adding and mixing 2.5% by weight of erbium oxide powder to the mixed powder A, a thickener was added to form a paste and the mixture was filled in a nickel porous substrate to obtain an electrode C of the present invention. Further, after adding and mixing 2.5% by weight of ytterbium oxide powder to the mixed powder A, a thickener was added to form a paste and the mixture was filled into a nickel porous substrate to obtain an electrode D of the present invention.
For comparison, 2.5% by weight of lanthanum oxide powder was added to and mixed with the mixed powder A, and then a thickener was added to form a paste and filled into a nickel porous substrate to obtain a comparative electrode E.
Similarly, 2.5% by weight of cerium oxide powder was added to and mixed with the mixed powder A, and then a thickener was added to form a paste and the mixture was filled in a nickel porous substrate to obtain a comparative electrode F.
Similarly, after adding and mixing 2.5% by weight of gadolinium oxide powder to the mixed powder A, a thickener was added, and the mixture was pasted into a nickel porous substrate to obtain a comparative electrode G. Further, a thickening agent was added to the mixed powder A to form a paste, which was filled in a nickel porous substrate to obtain a comparative electrode H.

【0014】上記のようにして作製したそれぞれのニッ
ケル電極をナイロンセパレータで包み、水素吸蔵電極を
負極として電池を作製し、比重1.28の水酸化カリウ
ム水溶液内で、負極容量よりも正極容量を小さくして充
放電試験を行った。充電は30mA(0.1C相当)で
15時間、放電は60mAでHg/HgO参照極に対し
て0Vで終了する条件で行った。
Each of the nickel electrodes prepared as described above is wrapped with a nylon separator, and a battery is prepared using the hydrogen storage electrode as a negative electrode. In a potassium hydroxide aqueous solution having a specific gravity of 1.28, the capacity of the positive electrode is larger than that of the negative electrode. A smaller charge / discharge test was performed. The charging was performed at 30 mA (corresponding to 0.1 C) for 15 hours, and the discharging was performed at 60 mA under the condition of ending at 0 V with respect to the Hg / HgO reference electrode.

【0015】図1に、温度変化と正極の容量の利用率
(正極の理論容量に対する比率)との関係を示す。温度
の上昇に伴い、比較電極E,F,G,Hでは極端に利用
率が低下するのに対し、本発明電極B,C,Dは容量の
低下が小さい。特に本発明電極Dにおける低下率は小さ
く、低温においても安定な容量を維持している。
FIG. 1 shows the relationship between the temperature change and the utilization rate of the capacity of the positive electrode (ratio to the theoretical capacity of the positive electrode). As the temperature increases, the utilization rates of the comparative electrodes E, F, G, and H decrease extremely, whereas the electrodes B, C, and D of the present invention show a small decrease in capacity. In particular, the decrease rate of the electrode D of the present invention is small, and a stable capacity is maintained even at a low temperature.

【0016】次に、Znを3重量%固溶状態で含む高密
度球状水酸化ニッケル粉末と、10重量%の一酸化コバ
ルト粉末とを混合し(この混合粉末をIとする)、これ
に2.5重量%の酸化イッテルビウム粉末を加えてよく
混合した後に、増粘剤を加えてペースト状としてニッケ
ル多孔体基板に充填した。この電極を本発明電極Jとす
る。比較のため、混合粉末Iに増粘剤を加えてペースト
状としてニッケル多孔体基板に充填し、比較電極Kを得
た。また、Zn,Coをそれぞれ3重量%固溶状態で含
む高密度球状水酸化ニッケル粉末と、10重量%の一酸
化コバルト粉末とを混合し、これに2.5重量%の酸化
イッテルビウム粉末を加えてよく混合した後に、増粘剤
を加えてペースト状としてニッケル多孔体基板に充填し
た。この電極を本発明電極Lとする。また、Zn,Co
をそれぞれ3重量%,5重量%固溶状態で含む高密度球
状水酸化ニッケル粉末と、10重量%の一酸化コバルト
粉末とを混合し、これに2.5重量%の酸化イッテルビ
ウム粉末を加えてよく混合した後に、増粘剤を加えてペ
ースト状としてニッケル多孔体基板に充填した。この電
極を本発明電極Mとする。
Next, a high-density spherical nickel hydroxide powder containing 3% by weight of Zn in a solid solution state and 10% by weight of cobalt monoxide powder are mixed (this mixed powder is referred to as I). After adding 0.5% by weight of ytterbium oxide powder and mixing well, a thickener was added to form a paste and filled in a nickel porous substrate. This electrode is referred to as an electrode J of the present invention. For comparison, a thickener was added to the mixed powder I to form a paste, which was filled in a nickel porous substrate to obtain a comparative electrode K. Also, a high-density spherical nickel hydroxide powder containing 3% by weight of Zn and Co in a solid solution state and 10% by weight of cobalt monoxide powder were mixed, and 2.5% by weight of ytterbium oxide powder was added thereto. After mixing well, a thickener was added to form a paste and filled in a nickel porous substrate. This electrode is referred to as an electrode L of the present invention. Also, Zn, Co
Are mixed with 3% by weight and 5% by weight, respectively, of a high-density spherical nickel hydroxide powder and 10% by weight of cobalt monoxide powder, and 2.5% by weight of ytterbium oxide powder is added thereto. After thorough mixing, a thickener was added to form a paste and filled into a nickel porous substrate. This electrode is referred to as an electrode M of the present invention.

【0017】上記のようにして作製したそれぞれのニッ
ケル電極を用いて、公知の方法で容量1100mAhの
AAサイズのニッケル水素蓄電池を作製した。充電は1
00mAで15時間、放電は200mAで電池電圧1.
0Vで終了する条件で行った。
An AA-size nickel-metal hydride storage battery having a capacity of 1100 mAh was manufactured by a known method using each of the nickel electrodes manufactured as described above. Charge 1
15 hours at 00 mA, discharge at 200 mA and battery voltage 1.
The test was performed under the condition of ending at 0V.

【0018】図2に、試験温度と電池容量との関係を示
す。図から明らかなように、本発明電極J,L,Mを用
いた電池は、比較電極Kを用いた電池に比べ温度変化に
よる低下が小さい。比較電極Kを用いた電池は、40℃
以上の高温においては、20℃の場合に比べて容量は5
0%以下となるのに対して、特に本発明電極Mを用いた
電池においては、60℃の高温時においても、20℃の
場合に比べて70%の容量が得られている。本発明電極
Jを用いた電池と本発明電極Lを用いた電池の容量の差
は、後者においては希土類元素と固溶状態のCoによる
相乗効果のために、より充電効率が高くなったことを示
している。
FIG. 2 shows the relationship between the test temperature and the battery capacity. As is clear from the figure, the battery using the electrodes J, L, and M of the present invention has a smaller decrease due to the temperature change than the battery using the comparative electrode K. The battery using the reference electrode K is 40 ° C.
At the above high temperature, the capacity is 5 times that at 20 ° C.
In contrast to 0% or less, in the battery using the electrode M of the present invention, even at a high temperature of 60 ° C, a capacity of 70% is obtained as compared with the case of 20 ° C. The difference in capacity between the battery using the electrode J of the present invention and the battery using the electrode L of the present invention is due to the fact that the latter has higher charging efficiency due to the synergistic effect of the rare earth element and Co in the solid solution state. Is shown.

【0019】更に、Znを5重量%固溶状態で含む高密
度球状水酸化ニッケル粉末と、10重量%の一酸化コバ
ルト粉末とを混合し(この混合粉末をAとする)、これ
に市販の硝酸イッテルビウム溶液をアルカリで中和して
得られた水酸化物の粉末を2.5重量%加えてよく混合
した後に、増粘剤を加えてペースト状としてニッケル多
孔体基板に充填した。この電極を本発明電極Nとする。
また、混合粉末Aに2.5重量%の市販のフッ化イッテ
ルビウム粉末を加えて混合した後、増粘剤を加えてペー
スト状としてニッケル多孔体基板に充填し、本発明電極
Oを得た。また、混合粉末Aに2.5重量%の酸化イッ
テルビウム粉末を加えて混合した後、増粘剤を加えてペ
ースト状としてニッケル多孔体基板に充填し、本発明電
極Dを得た。比較のため、混合粉末Aに増粘剤を加えて
ペーストとしニッケル多孔体基板に充填し、比較電極H
を得た。
Further, a high-density spherical nickel hydroxide powder containing 5% by weight of Zn in a solid solution state and 10% by weight of cobalt monoxide powder were mixed (this mixed powder was designated as A), and commercially available powder was added thereto. A hydroxide powder obtained by neutralizing the ytterbium nitrate solution with an alkali was added in an amount of 2.5% by weight, mixed well, and then a thickener was added to form a paste and filled in a nickel porous substrate. This electrode is referred to as an electrode N of the present invention.
Further, after adding and mixing 2.5% by weight of commercially available ytterbium fluoride powder to the mixed powder A, a thickener was added to form a paste and the mixture was filled into a nickel porous substrate to obtain an electrode O of the present invention. Further, after adding and mixing 2.5% by weight of ytterbium oxide powder to the mixed powder A, a thickener was added to form a paste and the mixture was filled into a nickel porous substrate to obtain an electrode D of the present invention. For comparison, a thickener was added to the mixed powder A to form a paste, which was filled in a nickel porous substrate, and a comparative electrode H
I got

【0020】上記のようにして作製したそれぞれのニッ
ケル電極をナイロンセパレータで包み、水素吸蔵電極を
負極として電池を作製し、比重1.28の水酸化カリウ
ム水溶液内で、負極容量よりも正極容量を小さくして充
放電試験を行った。充電は30mA(0.1C相当)で
15時間、放電は60mAでHg/HgO参照極に対し
て0Vで終了する条件で行った。
Each of the nickel electrodes prepared as described above is wrapped with a nylon separator, and a battery is prepared using the hydrogen storage electrode as a negative electrode. In a potassium hydroxide aqueous solution having a specific gravity of 1.28, the capacity of the positive electrode is larger than that of the negative electrode. A smaller charge / discharge test was performed. The charging was performed at 30 mA (corresponding to 0.1 C) for 15 hours, and the discharging was performed at 60 mA under the condition of ending at 0 V with respect to the Hg / HgO reference electrode.

【0021】図3に、温度変化と正極の容量の利用率
(正極の理論容量に対する比率)の関係を示す。温度の
上昇に伴い、比較電極Hは極端に利用率が低下するのに
対し、本発明電極D,N,Oは50℃においても高容量
が得られている。
FIG. 3 shows the relationship between the temperature change and the utilization rate of the capacity of the positive electrode (ratio to the theoretical capacity of the positive electrode). As the temperature increases, the utilization rate of the comparative electrode H extremely decreases, whereas the electrodes D, N, and O of the present invention have a high capacity even at 50 ° C.

【0022】また、Znを5重量%固溶状態で含み内部
細孔容積が0.03ml/gの高密度球状水酸化ニッケ
ル粉末と、10重量%の一酸化コバルト粉末とを混合
し、これに2.5重量%の酸化イッテルビウム粉末を加
えてよく混合した後に、増粘剤を加えてペースト状とし
てニッケル多孔体基板に充填した。この電極を本発明電
極Pとする。また、Znを5重量%固溶状態で含み内部
細孔容積が0.14ml/gの中和水酸化ニッケル粉末
に、2.5重量%の酸化イッテルビウム粉末を加えて混
合した後、増粘剤を加えてペーストとしニッケル多孔体
基板に充填し、比較電極Qを得た。
Further, a high-density spherical nickel hydroxide powder containing Zn in a solid solution state of 5% by weight and having an internal pore volume of 0.03 ml / g, and 10% by weight of cobalt monoxide powder were mixed. After adding 2.5% by weight of ytterbium oxide powder and mixing well, a thickener was added to form a paste and filled in a nickel porous substrate. This electrode is referred to as an electrode P of the present invention. Further, 2.5 wt% ytterbium oxide powder was added to a neutralized nickel hydroxide powder containing 5 wt% of Zn in a solid solution state and having an internal pore volume of 0.14 ml / g and mixed, and then a thickener was added. Was added to form a paste into a nickel porous substrate to obtain a comparative electrode Q.

【0023】上記のようにして作製したそれぞれのニッ
ケル電極をナイロンセパレータで包み、水素吸蔵電極を
負極として電池を作製し、比重1.28の水酸化カリウ
ム水溶液内で、負極容量より正極容量を小さくして充放
電試験を行った。充電は30mA(0.1C相当)で1
5時間、放電は60mAでHg/HgO参照極に対して
0Vで終了する条件で行った。
Each nickel electrode prepared as described above is wrapped with a nylon separator, and a battery is prepared using the hydrogen storage electrode as a negative electrode. In a potassium hydroxide aqueous solution having a specific gravity of 1.28, the positive electrode capacity is made smaller than the negative electrode capacity. Then, a charge / discharge test was performed. Charge is 1 at 30mA (0.1C equivalent)
The discharge was performed for 5 hours under the condition that the discharge was completed at 60 mA and 0 V with respect to the Hg / HgO reference electrode.

【0024】20℃で充放電を行った結果、正極利用率
は本発明電極Pは100%の利用率が得られたのに対し
て、比較電極Qは96%の利用率であった。50℃にお
ける充放電を行った結果、本発明電極Pは72%の利用
率が得られたのに対し、比較電極Qは61%の利用率で
あった。1800mAの放電(3C相当)を行った結
果、比較電極Qは極端に利用率が低下したのに対し、本
発明電極Pは高容量が得られた。
As a result of charging / discharging at 20 ° C., the utilization ratio of the positive electrode of the electrode P of the present invention was 100%, while that of the comparison electrode Q was 96%. As a result of performing charging / discharging at 50 ° C., the utilization ratio of the electrode P of the present invention was 72%, while the utilization ratio of the comparative electrode Q was 61%. As a result of discharging at 1800 mA (corresponding to 3C), the utilization rate of the comparative electrode Q was extremely reduced, while the electrode P of the present invention had a high capacity.

【0025】本実施例においては希土類化合物の添加量
を2.5重量%で行ったが、これよりも少ない添加量に
おいても十分な高温での利用率が得られている。また、
2.5重量%以上の添加により高温時の利用率は更に増
加する。ただし、コストの点から考えると、20重量%
までの添加が望ましい。
In this example, the addition amount of the rare earth compound was 2.5% by weight. However, even with the addition amount smaller than this, a sufficient utilization factor at a high temperature was obtained. Also,
Addition of 2.5% by weight or more further increases the utilization factor at high temperatures. However, considering the cost, 20% by weight
Is desirable.

【0026】[0026]

【発明の効果】本発明により、低温から高温の幅広い温
度域において容量増減の少ない安定なニッケル電極を提
供することができるため、そのニッケル電極を用いたア
ルカリ蓄電池の産業上の利用価値は非常に大きい。
According to the present invention, it is possible to provide a stable nickel electrode with a small change in capacity in a wide temperature range from a low temperature to a high temperature. Therefore, the industrial use value of the alkaline storage battery using the nickel electrode is extremely high. large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】温度と利用率との関係図である。FIG. 1 is a relationship diagram between a temperature and a utilization factor.

【図2】温度と電池容量の関係図である。FIG. 2 is a relationship diagram between temperature and battery capacity.

【図3】温度と利用率との関係図である。FIG. 3 is a diagram illustrating a relationship between a temperature and a utilization factor.

フロントページの続き (72)発明者 押谷 政彦 大阪府高槻市城西町6番6号 株式会社 ユアサ コーポレーション内 審査官 高木 正博 (56)参考文献 特開 平4−349353(JP,A) 特開 平8−45508(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/62 Continuation of the front page (72) Inventor Masahiko Oshitani 6-6 Josaicho, Takatsuki-shi, Osaka Examiner in Yuasa Corporation Inc. Masahiro Takagi (56) References JP-A-4-349353 (JP, A) JP-A-8 −45508 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/24-4/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Co、Zn、Cd、Mgのうち少なくと
も1種類以上を固溶状態で含む水酸化ニッケルを主成分
とする活物質と、Ho、Er、Tm、Yb、Lu、Yの
うち少なくとも1種類以上の元素の単体またはその化合
物を含有するアルカリ蓄電池用ニッケル電極において、
該単体またはその化合物と前記活物質が遊離している
とを特徴とするアルカリ蓄電池用ニッケル電極。
1. An active material mainly composed of nickel hydroxide containing at least one of Co, Zn, Cd and Mg in a solid solution state, and at least one of Ho, Er, Tm, Yb, Lu and Y. In a nickel electrode for an alkaline storage battery containing one or more elemental elements or a compound thereof ,
A nickel electrode for an alkaline storage battery , wherein the simple substance or a compound thereof and the active material are free .
【請求項2】 前記Ho、Er、Tm、Yb、Lu、Y
の元素の化合物が、酸化物、水酸化物またはフッ化物で
ある請求項1記載のアルカリ蓄電池用ニッケル電極。
2. Ho, Er, Tm, Yb, Lu, Y
The nickel electrode for an alkaline storage battery according to claim 1, wherein the compound of the element is an oxide, a hydroxide, or a fluoride.
【請求項3】 前記水酸化ニッケルを主成分とする活物
の内部細孔容積が、0.1ml/g以下の範囲にある
請求項1または請求項2記載のアルカリ蓄電池用ニッケ
ル電極。
3. An active material containing nickel hydroxide as a main component.
The nickel electrode for an alkaline storage battery according to claim 1 or 2, wherein the internal pore volume of the material is within a range of 0.1 ml / g or less.
JP07551996A 1995-09-28 1996-03-29 Nickel electrode for alkaline storage battery Expired - Lifetime JP3314611B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP07551996A JP3314611B2 (en) 1996-03-29 1996-03-29 Nickel electrode for alkaline storage battery
CNB2004100317520A CN1253954C (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode and alkaline storage battery
EP96931980A EP0794584A4 (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode, and alkaline storage battery
US08/849,103 US6136473A (en) 1995-09-28 1996-09-25 Hydrogen absorbing electrode, nickel electrode and alkaline storage battery
CNA2004100317516A CN1536691A (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode and alkaline storage battery
KR1019970703538A KR100416428B1 (en) 1995-09-28 1996-09-25 A hydrogen occlusion electrode, a nickel electrode, and an alkaline storage battery
CNB2004100317501A CN1244964C (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode and alkaline storage battery
PCT/JP1996/002761 WO1997012408A1 (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode, and alkaline storage battery
CNB961915048A CN1205679C (en) 1995-09-28 1996-09-25 Hydrogen storage electrode, nickel electrode, and alkaline storage battery
TW085112495A TW335564B (en) 1996-02-09 1996-10-11 An occlusion hydrogen electrode, nickel electrode and alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07551996A JP3314611B2 (en) 1996-03-29 1996-03-29 Nickel electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09265981A JPH09265981A (en) 1997-10-07
JP3314611B2 true JP3314611B2 (en) 2002-08-12

Family

ID=13578570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07551996A Expired - Lifetime JP3314611B2 (en) 1995-09-28 1996-03-29 Nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3314611B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3717786B2 (en) 1998-02-20 2005-11-16 三洋電機株式会社 Nickel electrode for alkaline storage battery, method for producing nickel electrode for alkaline storage battery, and alkaline storage battery
CA2629335C (en) 1998-11-30 2013-07-09 Sanyo Electric Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries
JP3651296B2 (en) * 1999-01-28 2005-05-25 新神戸電機株式会社 Production method of sintered nickel plate for alkaline storage battery
US7527890B2 (en) 2003-01-31 2009-05-05 Yuasa Corporation Sealed alkaline storage battery, electrode structure and charging method for the same, and charger for sealed alkaline storage battery
JP5317507B2 (en) * 2008-03-26 2013-10-16 三洋電機株式会社 Cylindrical alkaline storage battery

Also Published As

Publication number Publication date
JPH09265981A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
EP1100141A1 (en) Nickel-metal hydride storage battery
JP3358702B2 (en) Nickel electrode for alkaline storage battery
JP3314611B2 (en) Nickel electrode for alkaline storage battery
US6472101B1 (en) Nickel-hydrogen storage battery
JP4747233B2 (en) Alkaline storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP2962326B1 (en) Nickel-hydrogen storage battery for backup power supply
JP3113891B2 (en) Metal hydride storage battery
JPH0745281A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using this nickel electrode
JPH1064535A (en) Nickel electrode for alkaline storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP2987873B2 (en) Alkaline storage battery
JP3082348B2 (en) Nickel-hydrogen battery
JP3550838B2 (en) Alkaline storage battery
JP3287386B2 (en) Nickel electrode for alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH04284369A (en) Nickel-metal hydride storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JPH09219214A (en) Alkaline storage battery
von Sturm Secondary Batteries—Nickel-Cadmium Battery
JPH02304874A (en) Metal-hydrogen alkaline storage battery
JPH0883623A (en) Nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

EXPY Cancellation because of completion of term