JP5317507B2 - Cylindrical alkaline storage battery - Google Patents

Cylindrical alkaline storage battery Download PDF

Info

Publication number
JP5317507B2
JP5317507B2 JP2008080431A JP2008080431A JP5317507B2 JP 5317507 B2 JP5317507 B2 JP 5317507B2 JP 2008080431 A JP2008080431 A JP 2008080431A JP 2008080431 A JP2008080431 A JP 2008080431A JP 5317507 B2 JP5317507 B2 JP 5317507B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
plate
cobalt
nickel hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008080431A
Other languages
Japanese (ja)
Other versions
JP2009238447A (en
Inventor
武 伊藤
大 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008080431A priority Critical patent/JP5317507B2/en
Publication of JP2009238447A publication Critical patent/JP2009238447A/en
Application granted granted Critical
Publication of JP5317507B2 publication Critical patent/JP5317507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は円筒形アルカリ蓄電池に関する。   The present invention relates to a cylindrical alkaline storage battery.

アルカリ蓄電池の1種であるニッケル水素二次電池は、電動工具、アシスト自転車、電気自動車等の電源として使用され、その更なる高容量化、高出力化、あるいは高率放電特性の向上が望まれている。
例えば特許文献1は、高率放電特性に優れた円筒形のニッケル水素二次電池を開示している。この電池は、セパレータを介して正極及び負極を渦巻き状に巻回して形成された電極群を備えている。
特開2005−285638号公報
Nickel metal hydride secondary batteries, which are a type of alkaline storage battery, are used as power sources for electric tools, assist bicycles, electric vehicles, etc., and further increase in capacity, output, or improvement in high rate discharge characteristics are desired. ing.
For example, Patent Document 1 discloses a cylindrical nickel-hydrogen secondary battery excellent in high rate discharge characteristics. This battery includes an electrode group formed by spirally winding a positive electrode and a negative electrode with a separator interposed therebetween.
JP 2005-285638 A

アルカリ蓄電池の高出力化のための有力な手段として、電極の面積又は長さを増大させて、反応面積を増大させることが考えられる。しかしながら、円筒形アルカリ蓄電池にあっては、電極の面積又は長さを増大させた場合、寿命が低下してしまう。これは以下の理由による。
充放電反応中、電池内部には熱が蓄積されるため、電極群の径方向中心側と外側との間で反応の不均一が生じる。例えば、円筒形電池の充電中には、径方向中心側の蓄熱量が径方向外側の蓄熱量を上回り、径方向中心側の方で温度が上昇する。
As an effective means for increasing the output of the alkaline storage battery, it is conceivable to increase the reaction area by increasing the area or length of the electrode. However, in the case of a cylindrical alkaline storage battery, when the area or length of the electrode is increased, the life is reduced. This is due to the following reason.
During the charge / discharge reaction, heat is accumulated inside the battery, and therefore, non-uniform reaction occurs between the radial center side and the outside of the electrode group. For example, during charging of the cylindrical battery, the amount of heat stored on the radial center side exceeds the amount of heat stored on the radially outer side, and the temperature rises toward the radial center side.

温度上昇は酸素過電圧の低下をもたらし、径方向中心側において、充電効率が低下するとともに酸素が発生する。発生した酸素は対極である負極を腐食し、腐食は径方向外側よりも径方向中心側にて相対的に早く進行する。
ここで、蓄熱による反応の不均一は、高出力化のために電極の面積又は長さが増大された円筒形アルカリ蓄電池において特に顕著になる。このため、高出力化のために電極の面積又は長さが増大された円筒形アルカリ蓄電池においては、負極が早期に局所的に腐食してしまい、電池内圧が上昇し易くなって寿命が低下してしまう。
The increase in temperature causes a decrease in oxygen overvoltage, and at the center side in the radial direction, the charging efficiency decreases and oxygen is generated. The generated oxygen corrodes the negative electrode which is the counter electrode, and the corrosion proceeds relatively faster on the radial center side than on the radial outer side.
Here, the non-uniformity of the reaction due to heat storage becomes particularly significant in a cylindrical alkaline storage battery in which the area or length of the electrode is increased for higher output. For this reason, in a cylindrical alkaline storage battery in which the area or length of the electrode is increased for higher output, the negative electrode is locally corroded at an early stage, and the internal pressure of the battery is likely to increase, resulting in a decrease in life. End up.

本発明は上述の事情に基づいてなされたものであって、その目的とするところは、電極群における径方向中心側での充電効率の低下が抑制され、高出力且つ長寿命の円筒形アルカリ蓄電池を提供することにある。   The present invention has been made on the basis of the above-described circumstances, and its object is to suppress a decrease in charging efficiency on the center side in the radial direction of the electrode group, and to provide a high output and long life cylindrical alkaline storage battery. Is to provide.

上記目的を達成するために、本発明によれば、正極と負極とをセパレータを介して渦巻き状に巻回してなる電極群を有する円筒形アルカリ蓄電池において、前記正極は、前記電極群の径方向中心側に配置された巻き始め端部と径方向外側に配置された巻き終わり端部とを有し、活物質としての水酸化ニッケル及び温度上昇に伴う充電効率の低下を抑制するための前記水酸化ニッケルに固溶されたコバルトを含み、そして、前記水酸化ニッケルに固溶されたコバルト濃度についてみたとき、前記巻き始め端部側に、前記巻き終わり端部側の部位に比べて高い部位を有することを特徴とする円筒形アルカリ蓄電池が提供される(請求項1)。
In order to achieve the above object, according to the present invention, a cylindrical alkaline storage battery having an electrode group in which a positive electrode and a negative electrode are spirally wound via a separator, the positive electrode is in the radial direction of the electrode group. The winding water having a winding start end portion disposed on the center side and a winding end end portion disposed on the radially outer side, and nickel hydroxide as an active material and the water for suppressing a decrease in charging efficiency due to a temperature rise Cobalt dissolved in nickel oxide is included, and when looking at the concentration of cobalt dissolved in nickel hydroxide , a portion higher than the portion on the winding end portion side is formed on the winding start end portion side. A cylindrical alkaline storage battery is provided (claim 1).

ましくは、前記正極は、前記巻き始め端部を有する第1の正極板と、前記第1の正極板の後に巻回され前記巻き終わり端部を有する第2の正極板とにより構成され、前記第1の正極板における水酸化ニッケルに固溶されたコバルト濃度は、前記第2の正極板における水酸化ニッケルに固溶されたコバルト濃度よりも高い(請求項)。
Good Mashiku, the positive electrode is composed of the first positive electrode plate having the winding start portion by the second positive electrode plate having the winding end portion is wound after said first positive electrode plate The cobalt concentration dissolved in nickel hydroxide in the first positive electrode plate is higher than the cobalt concentration dissolved in nickel hydroxide in the second positive electrode plate (claim 2 ).

好ましくは、前記正極は、1つの正極板により構成され、前記正極板における前記水酸化ニッケルに固溶されたコバルト濃度は、前記巻き始め端部側から前記巻き終わり端部側に向けて徐々に減少している(請求項)。
Preferably, the positive electrode is constituted by one positive electrode plate, and the concentration of cobalt dissolved in the nickel hydroxide in the positive electrode plate is gradually increased from the winding start end side toward the winding end end side. (Claim 3 )

本発明の請求項1の円筒形アルカリ蓄電池では、正極の巻き始め端部側に、巻き終わり端部側よりも水酸化ニッケルに固溶されたコバルトの濃度が高い部位を設けたことにより、たとえ高出力化のために電極の面積又は長さを増大したとしても、充電反応が均一に進行する。すなわち、径方向中心側において、温度上昇に伴う充電効率の低下が抑制されるとともに酸素発生が抑制される。
In the cylindrical alkaline storage battery according to claim 1 of the present invention, a portion having a higher concentration of cobalt dissolved in nickel hydroxide than the winding end portion side is provided on the winding start end portion side of the positive electrode. Even if the electrode area or length is increased for higher output, the charging reaction proceeds uniformly. That is, on the radial center side, a decrease in charging efficiency due to a temperature rise is suppressed and oxygen generation is suppressed.

かくして酸素発生反応の不均一な進行が抑制されることで、負極の腐食が径方向中心側と外側とで均一に進行する。この結果として、この円筒形アルカリ蓄電池は、高出力化し
たとしても、負極の局所的な腐食が防止され、長い寿命を有する。つまり、この円筒形アルカリ蓄電池によれば、高出力化と長寿命化の両立が可能となる
Thus, by suppressing the non-uniform progress of the oxygen generation reaction, the corrosion of the negative electrode proceeds uniformly on the radial center side and the outer side. As a result, even if this cylindrical alkaline storage battery has a higher output, local corrosion of the negative electrode is prevented and it has a long life. That is, according to this cylindrical alkaline storage battery, it is possible to achieve both high output and long life .

請求項の円筒形アルカリ蓄電池では、2つの正極板を用いることによって、簡単な構成にて、正極の巻き始め端部側に、巻き終わり端部側よりも水酸化ニッケルに固溶されたコバルトの濃度が高い部位を設けられる。
請求項の円筒形アルカリ蓄電池では、径方向中心側から外側に向かうにつれて水酸化ニッケルに固溶されたコバルトの濃度が徐々に低くなることで、電極群の温度勾配に合わせて水酸化ニッケルに固溶されたコバルトが分布される。この結果として、より少量の水酸化ニッケルに固溶されたコバルト濃度にて、酸素発生反応の不均一な進行が抑制される。
In the cylindrical alkaline storage battery according to claim 2 , by using two positive electrode plates, cobalt is dissolved in nickel hydroxide in a simple configuration on the winding start end side of the positive electrode rather than on the winding end end side. A site with a high concentration of is provided.
In the cylindrical alkaline storage battery according to claim 3 , the concentration of cobalt dissolved in nickel hydroxide gradually decreases from the radial center to the outside, so that the nickel hydroxide conforms to the temperature gradient of the electrode group. Dissolved cobalt is distributed. As a result, the non-uniform progress of the oxygen generation reaction is suppressed at a cobalt concentration dissolved in a smaller amount of nickel hydroxide .

図1は、本発明の一実施形態に係る円筒形のニッケル水素二次電池を示す。
ニッケル水素二次電池は、一端が開口した金属製の円筒状の容器(外装缶)2を備え、外装缶2は導電性を有する。外装缶2の中には、アルカリ電解液(図示せず)とともに略円筒状の電極群4が収容されている。
電極群4は、それぞれ帯状の第1の正極板6、第2の正極板8、負極板10、第1のセパレータ12及び第2のセパレータ14を渦巻き状に巻回して形成されている。
FIG. 1 shows a cylindrical nickel-metal hydride secondary battery according to an embodiment of the present invention.
The nickel metal hydride secondary battery includes a metal cylindrical container (exterior can) 2 having one end opened, and the external can 2 has conductivity. In the outer can 2, a substantially cylindrical electrode group 4 is accommodated together with an alkaline electrolyte (not shown).
The electrode group 4 is formed by spirally winding a belt-like first positive electrode plate 6, second positive electrode plate 8, negative electrode plate 10, first separator 12, and second separator 14.

より詳しくは、図2に示したように、第2の正極板8は、第1の正極板6の後に連続して巻回されており、渦巻きに沿う方向でみて、第1の正極板6が巻き始め側(径方向中心側)に位置付けられ、第2の正極板8が巻き終わり側(径方向外側)に位置付けられている。換言すれば、渦巻きに沿う方向でみて、第1の正極板6及び第2の正極板8は直列に配置されている。   More specifically, as shown in FIG. 2, the second positive electrode plate 8 is wound continuously after the first positive electrode plate 6, and the first positive electrode plate 6 is viewed along the spiral. Is positioned on the winding start side (radial direction center side), and the second positive electrode plate 8 is positioned on the winding end side (radial direction outer side). In other words, the first positive electrode plate 6 and the second positive electrode plate 8 are arranged in series when viewed in the direction along the spiral.

このため、第1の正極板6及び第2の正極板8が1つの電極(正極)を構成しているとみなしたとき、第1の正極板6が正極の巻き始め端部を有し、第2の正極板8が正極の巻き終わり端部を有する。
第1の正極板6及び第2の正極板8は、負極板10の径方向内側の部分及び径方向外側の部分と、第1のセパレータ12及び第2のセパレータ14を介してそれぞれ重ね合わされている。
Therefore, when the first positive electrode plate 6 and the second positive electrode plate 8 are regarded as constituting one electrode (positive electrode), the first positive electrode plate 6 has a positive electrode winding start end, The second positive electrode plate 8 has a positive electrode winding end.
The first positive electrode plate 6 and the second positive electrode plate 8 are overlapped with the radially inner portion and the radially outer portion of the negative electrode plate 10 via the first separator 12 and the second separator 14, respectively. Yes.

なお、図1及び図2においては、線の錯綜を避けるため、負極10、第1のセパレータ12及び第2のセパレータ14のハッチングを省略した。
外装缶2の開口端部は蓋体16によって閉塞されている。蓋体16は円形の蓋板18を含み、蓋板18は中央に弁孔20を有する。蓋板18の外周部は、絶縁ガスケット22を介して外装缶2の開口縁をかしめ加工して固定され、蓋板18の外面上には、弁孔20を閉塞するようにゴムからなる弁体24が配置されている。また、蓋板18の外面上には、弁体24を覆うようにフランジ付きの円筒形状の正極端子26が固定され、正極端子26内には、弁体24を蓋板18に押し付けている。
In FIGS. 1 and 2, hatching of the negative electrode 10, the first separator 12, and the second separator 14 is omitted in order to avoid complex lines.
The open end of the outer can 2 is closed by a lid 16. The lid body 16 includes a circular lid plate 18, and the lid plate 18 has a valve hole 20 in the center. The outer peripheral portion of the cover plate 18 is fixed by caulking the opening edge of the outer can 2 via an insulating gasket 22, and a valve body made of rubber is provided on the outer surface of the cover plate 18 so as to close the valve hole 20. 24 is arranged. A cylindrical positive terminal 26 with a flange is fixed on the outer surface of the cover plate 18 so as to cover the valve body 24, and the valve body 24 is pressed against the cover plate 18 in the positive terminal 26.

蓋板18の内面には、折り曲げられた正極リード28の一端が溶接され、正極リード28の他端は、円形の集電板30に一体に連なっている。電極群4の一端側において、集電板30と正極板6とは電気的に接続され、これにより、正極板6と正極端子26とが電気的に接続される。
より詳しくは、第1の正極板6及び第2の正極板8はそれぞれ非焼結式のニッケル電極であって、帯状をなす導電性の正極基板を有する。正極基板は多孔質構造を有する金属多孔体であり、無数の空孔を含む3次元網目構造の骨格を有する。正極基板の空孔内には、正極合剤が充填・保持されている。正極活物質として水酸化ニッケル粒子を含むが充填されている。
One end of the bent positive electrode lead 28 is welded to the inner surface of the lid plate 18, and the other end of the positive electrode lead 28 is integrally connected to a circular current collector plate 30. On one end side of the electrode group 4, the current collector plate 30 and the positive electrode plate 6 are electrically connected, whereby the positive electrode plate 6 and the positive electrode terminal 26 are electrically connected.
More specifically, each of the first positive electrode plate 6 and the second positive electrode plate 8 is a non-sintered nickel electrode, and has a conductive positive electrode substrate having a strip shape. The positive electrode substrate is a porous metal body having a porous structure, and has a three-dimensional network structure skeleton including numerous pores. A positive electrode mixture is filled and held in the pores of the positive electrode substrate. The positive electrode active material is filled with nickel hydroxide particles.

図3に示したように、集電板30側の第1の正極板6及び第2の正極板8の端部からは、連結部32,34が軸線方向にてそれぞれ突出し、連結部32,34は、第1の正極板6及び第2の正極板8に沿ってそれぞれ延びている。連結部32,34は金属多孔体からなり、第1の正極板6及び第2の正極板8中の金属体とそれぞれ一体である。ただし、連結部32,34には正極合剤は充填されておらず、連結部32,34は、圧縮されることにより第1の正極板6及び第2の正極板8よりも薄く形成されている。   As shown in FIG. 3, connecting portions 32 and 34 protrude in the axial direction from the ends of the first positive electrode plate 6 and the second positive electrode plate 8 on the current collector plate 30 side. Reference numerals 34 respectively extend along the first positive electrode plate 6 and the second positive electrode plate 8. The connecting portions 32 and 34 are made of a metal porous body, and are integrated with the metal bodies in the first positive electrode plate 6 and the second positive electrode plate 8, respectively. However, the connecting portions 32 and 34 are not filled with the positive electrode mixture, and the connecting portions 32 and 34 are formed thinner than the first positive electrode plate 6 and the second positive electrode plate 8 by being compressed. Yes.

連結部32,34の径方向外面には、例えばニッケルリボン等からなる1つの金属薄板36が溶接又は導電性接着剤によって固定され、金属薄板36の端部が集電板30に溶接されている。従って、第1の正極板6及び第2の正極板8は、連結部32,34、金属薄板36、集電板30、正極リード28、蓋板18を介して正極端子26と電気的に接続されている。   One thin metal plate 36 made of, for example, a nickel ribbon or the like is fixed to the outer surfaces in the radial direction of the connecting portions 32 and 34 by welding or a conductive adhesive, and the end of the thin metal plate 36 is welded to the current collector plate 30. . Therefore, the first positive electrode plate 6 and the second positive electrode plate 8 are electrically connected to the positive electrode terminal 26 via the connecting portions 32 and 34, the metal thin plate 36, the current collector plate 30, the positive electrode lead 28, and the lid plate 18. Has been.

なお、図4に展開して示したように、金属薄板36は連結部32,34の略全域に渡って延び、第1の正極板6及び第2の正極板8は金属薄板36によって相互に連結されている。
一方、再び図3を参照すると、負極板10は、負極基板38と負極基板38の両面に保持された負極合剤40とからなる。負極基板38としては、例えばパンチングメタルを用いることができる。負極合剤40は、負極活物質としての水素を吸蔵放出可能な水素吸蔵合金の粒子と、必要に応じて導電剤と、水素吸蔵合金粒子を負極基板38に結着するための結着剤とを含む。
As shown in FIG. 4, the thin metal plate 36 extends over substantially the entire area of the connecting portions 32, 34, and the first positive plate 6 and the second positive plate 8 are mutually connected by the thin metal plate 36. It is connected.
On the other hand, referring to FIG. 3 again, the negative electrode plate 10 includes a negative electrode substrate 38 and a negative electrode mixture 40 held on both surfaces of the negative electrode substrate 38. As the negative substrate 38, for example, a punching metal can be used. The negative electrode mixture 40 includes hydrogen storage alloy particles capable of occluding and releasing hydrogen as a negative electrode active material, a conductive agent as necessary, and a binder for binding the hydrogen storage alloy particles to the negative electrode substrate 38. including.

なお、負極板10の負極基板38は、集電板30とは反対側にて電極群4から突出し、負極基板38の突出した部分が、負極用の集電板42に溶接される(図1参照)。すなわち、負極板10は、負極用集電板42を介して負極端子としての外装缶2と電気的に接続される。
ここで、第1の正極板6及び第2の正極板8において正極基板に保持された正極合剤は、正極活物質を主成分として含む正極活物質粒子と、酸素発生抑制成分と、必要に応じて添加剤粒子と、正極活物質粒子及び添加剤粒子の混合粒子を正極基板に結着するための結着剤とからなる。
The negative electrode substrate 38 of the negative electrode plate 10 protrudes from the electrode group 4 on the side opposite to the current collector plate 30, and the protruding portion of the negative electrode substrate 38 is welded to the negative electrode current collector plate 42 (FIG. 1). reference). That is, the negative electrode plate 10 is electrically connected to the outer can 2 as a negative electrode terminal via the negative electrode current collector plate 42.
Here, the positive electrode mixture held on the positive electrode substrate in the first positive electrode plate 6 and the second positive electrode plate 8 includes positive electrode active material particles containing a positive electrode active material as a main component, an oxygen generation suppression component, and a necessity. Correspondingly, it consists of additive particles and a binder for binding the mixed particles of the positive electrode active material particles and the additive particles to the positive electrode substrate.

正極活物質は水酸化ニッケルであるが、本明細書では、水酸化ニッケルには、ニッケルの平均価数が二価を超えている水酸化ニッケル(高次水酸化ニッケル)も含まれるものとする。好ましくは、正極活物質粒子の表面は、アルカリ熱処理されたコバルト化合物で被覆されている
Although the positive electrode active material is nickel hydroxide, in this specification, nickel hydroxide includes nickel hydroxide (high-order nickel hydroxide) in which the average valence of nickel exceeds divalent. . Preferably, the surfaces of the positive electrode active material particles are coated with a cobalt compound that has been subjected to an alkali heat treatment .

結着剤としては親水性若しくは疎水性のポリマー等を用いることができる。
酸素発生抑制成分は、温度上昇に伴う酸素過電圧の低下を抑制するための成分であり、正極活物質粒子の水酸化ニッケルに固溶されたコバルト(以下、固溶Coともいう)である。つまり、正極活物質粒子は、水酸化ニッケル及びコバルトを含む。
なお正極活物質粒子は、コバルト以外に、亜鉛、カドミウム等を含んでいてもよい。
As the binder, a hydrophilic or hydrophobic polymer or the like can be used.
The oxygen generation suppression component is a component for suppressing a decrease in oxygen overvoltage accompanying a temperature rise, and is cobalt (hereinafter also referred to as solid solution Co) dissolved in nickel hydroxide of the positive electrode active material particles. That is, the positive electrode active material particles include nickel hydroxide and cobalt.
The positive electrode active material particles may contain zinc, cadmium and the like in addition to cobalt.

ここで、第1の正極板6と第2の正極板8とでは、酸素発生抑制成分の濃度が異なり、第1の正極板6における酸素発生抑制成分の濃度の方が第2の正極板8における酸素発生抑制成分の濃度よりも高い。例えば、第1の正極板6は、100質量部のニッケルあたり、2.0質量部以上4.0質量部以下の固溶Coを含み、第2の正極板8は、100質量部のニッケルあたり、0.5質量部以上2.0質量部以下の固溶Coを含む。   Here, the first positive electrode plate 6 and the second positive electrode plate 8 have different oxygen generation suppression component concentrations, and the concentration of the oxygen generation suppression component in the first positive electrode plate 6 is the second positive electrode plate 8. It is higher than the concentration of the oxygen generation inhibiting component. For example, the first positive electrode plate 6 contains 2.0 parts by mass or more and 4.0 parts by mass or less of solid solution Co per 100 parts by mass of nickel, and the second positive electrode plate 8 per 100 parts by mass of nickel. 0.5 to 2.0 parts by mass of solute Co.

上述したニッケル水素二次電池では、巻き始め端部側の第1の正極板6における酸素発生抑制成分の濃度が、巻き終わり端部側の第2の正極板8における酸素発生抑制成分の濃度よりも高い。このように正極の巻き始め端部側に、巻き終わり端部側よりも酸素発生抑制成分の濃度が高い部位を設けたことにより、このニッケル水素二次電池では、たとえ高出力化のために第1の正極板6、第2の負極板8及び負極板10の面積又は長さを増大したとしても、充電反応が均一に進行する。すなわち、径方向中心側において、温度上昇に伴う充電効率の低下が抑制されるとともに不均一な酸素発生が抑制される。   In the nickel hydride secondary battery described above, the concentration of the oxygen generation suppression component in the first positive electrode plate 6 on the winding start end side is higher than the concentration of the oxygen generation suppression component in the second positive electrode plate 8 on the winding end end side. Is also expensive. Thus, by providing the portion where the concentration of the oxygen generation suppression component is higher on the winding start end side of the positive electrode than on the winding end end side, in this nickel metal hydride secondary battery, even for the sake of higher output, Even if the areas or lengths of the first positive electrode plate 6, the second negative electrode plate 8, and the negative electrode plate 10 are increased, the charging reaction proceeds uniformly. That is, on the radial center side, a decrease in charging efficiency due to a temperature rise is suppressed, and nonuniform oxygen generation is suppressed.

かくして酸素発生反応の不均一な進行が抑制されることで、負極板10の水素吸蔵合金の腐食が径方向中心側と外側とで均一に進行する。この結果として、このニッケル水素二次電池は、高出力化したとしても、負極板10の局所的な腐食が防止され、長い寿命を有する。つまり、このニッケル水素二次電池によれば、高出力化と長寿命化の両立が可能となる。   Thus, by suppressing the non-uniform progress of the oxygen generation reaction, the corrosion of the hydrogen storage alloy of the negative electrode plate 10 proceeds uniformly on the central side and the outer side in the radial direction. As a result, even if the nickel hydride secondary battery has a high output, local corrosion of the negative electrode plate 10 is prevented and the battery has a long life. That is, according to the nickel metal hydride secondary battery, it is possible to achieve both high output and long life.

また、上述したニッケル水素二次電池では、水酸化ニッケルに固溶されたコバルトによって、温度上昇に伴う充電効率の低下が確実に抑制される。固溶コバルトは水酸化ニッケルの充電電位を卑にシフトさせるため、温度上昇に伴い酸素過電圧が低下した場合においても、十分に充電反応を進行させることが可能となる。
更に、上述したニッケル水素二次電池では、正極として2つの正極板6,8を用いることによって、簡単な構成にて、正極の巻き始め端部側に、巻き終わり端部側よりも酸素発生抑制成分の濃度が高い部位を設けられる。
Moreover, in the nickel hydride secondary battery mentioned above, the fall of the charge efficiency accompanying a temperature rise is reliably suppressed by the cobalt dissolved in nickel hydroxide. Since solute cobalt shifts the charge potential of nickel hydroxide to the base, even when the oxygen overvoltage is lowered as the temperature rises, the charge reaction can sufficiently proceed.
Further, in the above-described nickel-metal hydride secondary battery, by using the two positive plates 6 and 8 as the positive electrodes, the generation of oxygen is more suppressed at the winding start end side than the winding end end side with a simple configuration. Sites with high component concentrations are provided.

1.電池の製作
実施例1
(1)第1の正極板の作製
換算量でNi:Zn:Coの質量比が94:3:3となるように、硫酸ニッケル、硫酸亜鉛および硫酸コバルトの混合水溶液を調製した。この混合水溶液に対し、攪拌しながら、水酸化ナトリウム水溶液を徐々に添加して反応させた。このとき、反応中の混合水溶液のpHを13〜14に保持し、混合水溶液中に亜鉛及びコバルトを含む略球形状の水酸化ニッケル粒子を析出させた。
1. Battery production example 1
(1) Production of first positive electrode plate A mixed aqueous solution of nickel sulfate, zinc sulfate and cobalt sulfate was prepared so that the mass ratio of Ni: Zn: Co was 94: 3: 3 in terms of conversion amount. To this mixed aqueous solution, a sodium hydroxide aqueous solution was gradually added and reacted with stirring. At this time, the pH of the mixed aqueous solution during the reaction was maintained at 13 to 14, and substantially spherical nickel hydroxide particles containing zinc and cobalt were precipitated in the mixed aqueous solution.

次いで、水酸化ニッケル粒子が析出した混合水溶液中に、硫酸コバルト水溶液を添加して反応させた。このとき、反応中の混合水溶液のpHを9〜10に保持し、先に析出した略球状の水酸化ニッケル粒子の表面に水酸化コバルトを析出させた。そして、この水酸化コバルトで表面が被覆された略球状の水酸化ニッケル粒子を、10倍量の純水にて3回洗浄したのち、脱水、乾燥し、表面が水酸化コバルトで被覆された水酸化ニッケル粒子を得た。   Next, an aqueous cobalt sulfate solution was added to the mixed aqueous solution in which nickel hydroxide particles were precipitated, and reacted. At this time, the pH of the mixed aqueous solution during the reaction was maintained at 9 to 10, and cobalt hydroxide was deposited on the surface of the substantially spherical nickel hydroxide particles deposited earlier. The substantially spherical nickel hydroxide particles whose surface is coated with cobalt hydroxide are washed three times with 10 times the amount of pure water, then dehydrated and dried, and water whose surface is coated with cobalt hydroxide. Nickel oxide particles were obtained.

この後、得られた粒子に対し、アルカリ熱処理を施した。すなわち、表面が水酸化コバルトで被覆された水酸化ニッケル粒子に対し、温度100℃の加熱雰囲気下で撹拌しながら、濃度25質量%の水酸化ナトリウム水溶液を0.5時間に亘り噴霧した。これにより、水酸化ニッケル粒子を覆う水酸化コバルトが酸化されて、高次コバルト化合物になった。   Thereafter, the obtained particles were subjected to alkali heat treatment. That is, an aqueous solution of sodium hydroxide having a concentration of 25% by mass was sprayed over 0.5 hours while stirring in a heated atmosphere at a temperature of 100 ° C. on nickel hydroxide particles whose surfaces were coated with cobalt hydroxide. Thereby, the cobalt hydroxide covering the nickel hydroxide particles was oxidized to be a higher cobalt compound.

そして、アルカリ熱処理された粒子を10倍量の純水にて3回洗浄したのち、脱水、乾燥して、亜鉛及びコバルトを含む水酸化ニッケル粒子の表面が、結晶構造を乱されるとともにアルカリカチオンを含有する高次コバルト化合物からなる被覆層で覆われた複合粒子を得た。
それから、100質量部の複合粒子と、0.3質量部のHPC(ヒドロキシプロピルセルロース)分散液(分散媒:水40質量部、固形分60質量部)とを混合して、正極用スラリを得た。この正極用スラリをNi製の金属多孔体に充填してから、充填された金属多孔体を、正極用スラリの乾燥を経た後、プレス、裁断した。
Then, the alkali-heat-treated particles are washed three times with 10 times the amount of pure water, dehydrated and dried, and the surface of the nickel hydroxide particles containing zinc and cobalt disturbs the crystal structure and alkali cations. Composite particles covered with a coating layer made of a higher cobalt compound containing
Then, 100 parts by mass of composite particles and 0.3 part by mass of HPC (hydroxypropylcellulose) dispersion (dispersion medium: 40 parts by mass of water, solid content of 60 parts by mass) are mixed to obtain a slurry for positive electrode. It was. After filling this positive electrode slurry into a metal porous body made of Ni, the filled metal porous body was pressed and cut after drying the positive electrode slurry.

この後、裁断された金属多孔体において、連結部となる部分から、超音波を印加することにより正極合剤を除去した。そして、正極合剤が除去された部分を更に圧延し、長さが150mmであり、かつ、1500mAhの容量を有するように活物質量が調整された非焼結式の第1の正極板を作製した。
(2)第2の正極板の作製
硫酸ニッケル、硫酸亜鉛および硫酸コバルトの混合水溶液を調製した以外は、第1の正極板の場合と同様にして、長さが150mmであり、かつ、1500mAhの容量を有するように活物質量が調整された非焼結式の第2の正極板を作製した。
(3)負極の作製
平均粒径が30μmで最大粒径が45μmの水素吸蔵合金の粒子を用意し、この合金粒子100質量部に対してポリアクリル酸ナトリウム0.4質量部、カルボキシメチルセルロース0.1質量部、および、ポリテトラフルオロエチレン分散液(分散媒:水、固形分60質量部)2.5質量部を加えた後、混練して負極用スラリを得た。
Thereafter, in the cut metal porous body, the positive electrode material mixture was removed by applying ultrasonic waves from the portion to be the connecting portion. Then, the portion from which the positive electrode mixture is removed is further rolled to produce a non-sintered first positive electrode plate having a length of 150 mm and an active material amount adjusted to have a capacity of 1500 mAh. did.
(2) Production of second positive plate Except that a mixed aqueous solution of nickel sulfate, zinc sulfate and cobalt sulfate was prepared, it was 150 mm in length and 1500 mAh in the same manner as in the case of the first positive plate. A non-sintered second positive electrode plate having an active material amount adjusted so as to have a capacity was produced.
(3) Production of Negative Electrode Hydrogen storage alloy particles having an average particle size of 30 μm and a maximum particle size of 45 μm were prepared. 0.4 parts by mass of sodium polyacrylate, 0.1 part of carboxymethylcellulose with respect to 100 parts by mass of the alloy particles. After adding 1 part by mass and 2.5 parts by mass of a polytetrafluoroethylene dispersion (dispersion medium: water, solid content 60 parts by mass), kneading was performed to obtain a slurry for negative electrode.

この負極用スラリを、Niめっきを施した厚さ60μmのFe製パンチングメタルの両面の全面に均等に、かつ厚さが一定になるように塗着した。負極用スラリの乾燥を経て、このパンチングメタルをプレスして裁断し、SCサイズ用の負極板を作製した。
(4)ニッケル水素二次電池の組立て
上記のようにして得られた第1の正極板及び第2の正極板を並べて、連結部に抵抗電気溶接によりニッケルリボンを固定した。それから、第1の正極板、第2の正極板及び負極板を、ポリプロピレンまたはナイロン製の不織布よりなるセパレータを介して渦巻状に巻回して電極群を形成した。
This negative electrode slurry was applied evenly and uniformly on both surfaces of a 60 μm thick Fe punching metal plated with Ni. After the slurry for the negative electrode was dried, the punching metal was pressed and cut to prepare a negative electrode plate for SC size.
(4) Assembly of nickel-hydrogen secondary battery The first positive electrode plate and the second positive electrode plate obtained as described above were arranged, and a nickel ribbon was fixed to the connecting portion by resistance electric welding. Then, the first positive electrode plate, the second positive electrode plate, and the negative electrode plate were spirally wound through a separator made of a polypropylene or nylon nonwoven fabric to form an electrode group.

得られた電極群の両端に正極用及び負極用の集電板をそれぞれ溶接した後、電極群を外装缶内に挿入した。それから、負極用の集電板を外装缶の底壁にスポット溶接するとともに正極用の正極リードを蓋板に溶接した。
この後、外装缶内に、アルカリ電解液として、リチウム、カリウムを含有した濃度30質量%の水酸化ナトリウム水溶液を注入した。そして、封口体によって外装缶を密閉し、図1に示した構成を有し、公称容量が3000mAhであるSCサイズのニッケル水素二次電池を組立てた。
After the positive electrode and negative electrode current collector plates were welded to both ends of the obtained electrode group, the electrode group was inserted into an outer can. Then, the negative electrode current collector plate was spot welded to the bottom wall of the outer can and the positive electrode positive electrode lead was welded to the lid plate.
Thereafter, an aqueous sodium hydroxide solution containing 30% by mass of lithium and potassium as an alkaline electrolyte was poured into the outer can. Then, the outer can was sealed with a sealing body, and an SC size nickel-hydrogen secondary battery having the configuration shown in FIG. 1 and having a nominal capacity of 3000 mAh was assembled.

比較例1
実施例1で用いた第2の正極板を第1の正極板として用いた以外は実施例1の場合と同様にして、比較例1のニッケル水素二次電池を組み立てた。
比較例2
実施例1で用いた第1の正極板を第2の正極板として用いた以外は実施例1の場合と同様にして、比較例1のニッケル水素二次電池を組み立てた。
Comparative Example 1
A nickel hydride secondary battery of Comparative Example 1 was assembled in the same manner as in Example 1 except that the second positive electrode plate used in Example 1 was used as the first positive electrode plate.
Comparative Example 2
A nickel-metal hydride secondary battery of Comparative Example 1 was assembled in the same manner as in Example 1 except that the first positive electrode plate used in Example 1 was used as the second positive electrode plate.

比較例3
実施例1で用いた第2の正極板を第1の正極板として用い、且つ、実施例1で用いた第1の正極板を第2の正極板として用いた以外は実施例1の場合と同様にして、比較例3のニッケル水素二次電池を組み立てた。
2.電池の評価方法
(1)高温充電試験
上記のようにして作製した実施例1及び比較例1〜3の各電池に対して、25℃の周囲温度にて、300mA(0.1It)の充電電流で16時間充電を行い、その後、25℃の周囲温度にて、3000mA(1It)の放電電流で1.0Vの放電終止電圧まで放電させた。このとき各電池の放電容量(初期放電容量)を測定した。
Comparative Example 3
The case of Example 1 except that the second positive electrode plate used in Example 1 was used as the first positive electrode plate, and the first positive electrode plate used in Example 1 was used as the second positive electrode plate. Similarly, the nickel metal hydride secondary battery of Comparative Example 3 was assembled.
2. Battery Evaluation Method (1) High-Temperature Charge Test For each battery of Example 1 and Comparative Examples 1 to 3 manufactured as described above, a charging current of 300 mA (0.1 It) at an ambient temperature of 25 ° C. And then discharged at an ambient temperature of 25 ° C. with a discharge current of 3000 mA (1 It) to a discharge end voltage of 1.0 V. At this time, the discharge capacity (initial discharge capacity) of each battery was measured.

この後初期放電容量を測定した各電池に対して、60℃の周囲温度にて、300mA(0.1It)の充電電流で16時間充電を行ってから、25℃の周囲温度にて、3000mA(1It)の放電電流で1.0Vの放電終止電圧まで放電させた。このときの各電池の放電容量(高温放置後放電容量)を測定した。
各電池について、初期放電容量に対する高温放置後放電容量の比を求め、この結果を高温充電効率として百分率にて表1に示す。
After that, each battery whose initial discharge capacity was measured was charged at a charging current of 300 mA (0.1 It) at an ambient temperature of 60 ° C. for 16 hours, and then, at a ambient temperature of 25 ° C., 3000 mA ( 1 It) was discharged to a discharge end voltage of 1.0 V with a discharge current of 1 It). The discharge capacity (discharge capacity after being left at high temperature) of each battery at this time was measured.
For each battery, the ratio of the discharge capacity after standing at high temperature to the initial discharge capacity was determined, and the result is shown in Table 1 as a percentage as the high temperature charge efficiency.

(2)高率放電試験
上記のようにして作製した実施例1及び比較例1〜3の各電池について、25℃の周囲温度にて、300mA(0.1It)の充電電流で16時間充電を行ってから、25℃の周囲温度にて、30A(10It)の放電電流で0.6Vの放電終止電圧まで放電させた。この放電時に測定した各電池の作動電圧を、高率放電作動電圧として表1に示す。
(3)サイクル試験
上記のようにして作製した実施例1及び比較例1〜3の各電池について、3000mA(1.0It)の充電電流でdV制御(ΔV=−10mV)にて充電してから、30分の休止をおいて、9000mA(3.0It)の放電電流で0.8Vの終止電圧まで放電させる充放電サイクルを、放電容量が1800mAh以下になるまで繰り返し、そのサイクル数を測定した。この結果をサイクル寿命(∞)として表1に示す。
(2) High rate discharge test About each battery of Example 1 and Comparative Examples 1 to 3 manufactured as described above, charging was performed at an ambient temperature of 25 ° C. with a charging current of 300 mA (0.1 It) for 16 hours. Then, it was discharged to a discharge end voltage of 0.6 V with a discharge current of 30 A (10 It) at an ambient temperature of 25 ° C. The operating voltage of each battery measured at the time of discharging is shown in Table 1 as a high rate discharge operating voltage.
(3) Cycle test Each battery of Example 1 and Comparative Examples 1 to 3 manufactured as described above was charged with dV control (ΔV = −10 mV) at a charging current of 3000 mA (1.0 It). A charge / discharge cycle in which a discharge was performed at a discharge current of 9000 mA (3.0 It) to a final voltage of 0.8 V after a 30-minute pause was repeated until the discharge capacity became 1800 mAh or less, and the number of cycles was measured. The results are shown in Table 1 as the cycle life (∞).

Figure 0005317507
Figure 0005317507

3.電池の評価結果
表1からは以下のことが明らかである。
(1)実施例1の高温充電効率は、比較例1の高温充電効率よりも大である。これは、実施例1では、固溶Coの濃度が、径方向外側の第2の正極板よりも径方向中心側の第1の正極板で高いことにより、径方向中心側での温度上昇に伴う充電効率の低下が抑制されたためと考えられる。
(2)実施例1のサイクル寿命は、比較例1のサイクル寿命よりも大である。これは、実施例1では、径方向中心側での温度上昇に伴う充電効率の低下が抑制されたことにより、酸素が径方向中心側と外側とで均一に発生し、負極板の腐食が均一に進行したためと考えられる。
3. Battery Evaluation Results From Table 1, the following is clear.
(1) The high temperature charging efficiency of Example 1 is greater than the high temperature charging efficiency of Comparative Example 1. This is because, in Example 1, the concentration of solute Co is higher in the first positive electrode plate on the radial center side than the second positive electrode plate on the outer side in the radial direction, thereby increasing the temperature on the radial center side. This is considered to be because the accompanying decrease in charging efficiency was suppressed.
(2) The cycle life of Example 1 is greater than the cycle life of Comparative Example 1. This is because, in Example 1, since the decrease in charging efficiency due to the temperature increase at the radial center side is suppressed, oxygen is uniformly generated at the radial center side and outside, and the corrosion of the negative electrode plate is uniform. This is thought to be due to progress.

(3)実施例1のサイクル寿命は、比較例3のサイクル寿量よりも極めて大である。これは、比較例3では、固溶Coの濃度が、径方向中心側の第1の正極板よりも径方向外側の第2の正極板で高いことにより、径方向中心側での温度上昇に伴う充電効率の低下が大きく、径方向中心側で多くの酸素が発生し、負極板が局所的に腐食したためと考えられる。
(4)実施例1の高率放電作動電圧は、比較例2の高率放電作動電圧よりも高い。これは、実施例1では、比較例2に比べて、第2の正極板における固溶Coの濃度が低減されているためと考えられる。これより実施例1の電池は、サイクル寿命に優れるとともに大電流放電特性においても優れていることがわかる。
(3) The cycle life of Example 1 is much greater than the cycle life of Comparative Example 3. This is because, in Comparative Example 3, the concentration of solute Co is higher in the second positive electrode plate on the radially outer side than the first positive electrode plate on the radial center side, thereby increasing the temperature on the radial center side. The accompanying decrease in charging efficiency is large, and it is considered that a large amount of oxygen is generated on the center side in the radial direction and the negative electrode plate is locally corroded.
(4) The high rate discharge operating voltage of Example 1 is higher than the high rate discharge operating voltage of Comparative Example 2. This is presumably because the concentration of the solid solution Co in the second positive electrode plate was reduced in Example 1 as compared with Comparative Example 2. From this, it can be seen that the battery of Example 1 is excellent in cycle life and also in high current discharge characteristics.

本発明は上記した一実施形態及び実施例に限定されることはなく、種々変形が可能であり、例えば、電池の種類は、ニッケル水素二次電池に限定されず、ニッケル−カドミウム二次電池であってもよい
The present invention is not limited to the above-described embodiment and examples, and various modifications can be made. For example, the type of battery is not limited to a nickel-hydrogen secondary battery, but a nickel-cadmium secondary battery. There may be .

記した一実施形態においては、第1の正極板6及び第2の正極板8を用いたけれども、正極を構成する正極板の数は特には限定されない。ただし、製造工程が煩雑になるのを防止するためには、正極板は2つ以下であるのが好ましい。
In one embodiment noted above, but using the first positive electrode plate 6 and the second of the positive electrode plate 8, the number of the positive electrode plate constituting the positive electrode is not particularly limited. However, in order to prevent the manufacturing process from becoming complicated, the number of positive electrode plates is preferably two or less.

上記した一実施形態においては、第1の正極板6及び第2の正極板8を用いたことにより、図5に示したように、固溶Co濃度が不連続に変化したけれども、1つの正極板を用いて、図6に示したように、渦巻き方向に沿って、径方向中心側から外側に向けて、固溶Co濃度を徐々に減少させてもよい。この場合、電極群4の温度勾配に合わせて固溶Coが分布され、より少量の固溶Coにて、酸素発生反応の不均一な進行が抑制される。   In the above-described embodiment, the use of the first positive electrode plate 6 and the second positive electrode plate 8 changes the solid solution Co concentration discontinuously as shown in FIG. As shown in FIG. 6, the solute Co concentration may be gradually decreased from the radial center side toward the outside along the spiral direction using a plate. In this case, solid solution Co is distributed in accordance with the temperature gradient of the electrode group 4, and the non-uniform progress of the oxygen generation reaction is suppressed with a smaller amount of solid solution Co.

また、図7に示したように、1つ又は複数の正極板を用いて、径方向中心側と外側との中間に、固溶Coの濃度が徐々に傾斜する部位を設けてもよい。   In addition, as shown in FIG. 7, one or a plurality of positive electrode plates may be used to provide a portion where the concentration of solute Co gradually inclines between the radial center side and the outer side.

本発明の一実施形態に係るニッケル水素二次電池の概略を示す図であり、左側は側面図であり、右側は断面図である。It is a figure which shows the outline of the nickel-hydrogen secondary battery which concerns on one Embodiment of this invention, the left side is a side view, and the right side is sectional drawing. 図1のII-II線に沿う断面図である。It is sectional drawing which follows the II-II line of FIG. 図1の領域IIIの拡大図である。It is an enlarged view of the area | region III of FIG. 第1の正極板及び第2の正極板を金属薄板とともに展開して示す概略的な斜視図である。It is a schematic perspective view which expands and shows the 1st positive electrode plate and the 2nd positive electrode plate with a metal thin plate. 図1の電池における、渦巻き方向位置と固溶Co濃度との関係を示すグラフである。2 is a graph showing a relationship between a position in a spiral direction and a solute Co concentration in the battery of FIG. 変形例の電池における、渦巻き方向位置と固溶Co濃度との関係を示すグラフである。It is a graph which shows the relationship between a spiral direction position and solid solution Co density | concentration in the battery of a modification. 他の変形例における、渦巻き方向位置と固溶Co濃度との関係を示すグラフである。It is a graph which shows the relationship between a spiral direction position and solid solution Co density | concentration in another modification.

符号の説明Explanation of symbols

4 電極群
6 第1の正極板(正極)
8 第2の正極板(正極)
10 負極板(負極)
12 第1のセパレータ(セパレータ)
14 第2のセパレータ(セパレータ)
4 Electrode group 6 First positive electrode plate (positive electrode)
8 Second positive electrode plate (positive electrode)
10 Negative electrode plate (negative electrode)
12 First separator (separator)
14 Second separator (separator)

Claims (3)

正極と負極とをセパレータを介して渦巻き状に巻回してなる電極群を有する円筒形アルカリ蓄電池において、
前記正極は、
前記電極群の径方向中心側に配置された巻き始め端部と径方向外側に配置された巻き終わり端部とを有し、
活物質としての水酸化ニッケル及び温度上昇に伴う充電効率の低下を抑制するための前記水酸化ニッケルに固溶されたコバルトを含み、そして、
前記水酸化ニッケルに固溶されたコバルト濃度についてみたとき、前記巻き始め端部側に、前記巻き終わり端部側の部位に比べて高い部位を有する
ことを特徴とする円筒形アルカリ蓄電池。
In a cylindrical alkaline storage battery having an electrode group formed by spirally winding a positive electrode and a negative electrode through a separator,
The positive electrode is
A winding start end disposed on the radial center side of the electrode group and a winding end end disposed on the radial outside;
Nickel hydroxide as an active material and cobalt dissolved in the nickel hydroxide for suppressing a decrease in charging efficiency due to temperature rise, and
A cylindrical alkaline storage battery characterized by having a higher portion on the winding start end side than on the winding end end side when the concentration of cobalt dissolved in nickel hydroxide is viewed.
前記正極は、前記巻き始め端部を有する第1の正極板と、前記第1の正極板の後に巻回され前記巻き終わり端部を有する第2の正極板とにより構成され、The positive electrode is composed of a first positive electrode plate having the winding start end portion and a second positive electrode plate wound after the first positive electrode plate and having the winding end end portion,
前記第1の正極板における水酸化ニッケルに固溶されたコバルト濃度は、前記第2の正極板における水酸化ニッケルに固溶されたコバルト濃度よりも高いThe cobalt concentration dissolved in nickel hydroxide in the first positive electrode plate is higher than the cobalt concentration dissolved in nickel hydroxide in the second positive electrode plate.
ことを特徴とする請求項1に記載の円筒形アルカリ蓄電池。The cylindrical alkaline storage battery according to claim 1.
前記正極は、1つの正極板により構成され、The positive electrode is composed of one positive electrode plate,
前記正極板における前記水酸化ニッケルに固溶されたコバルト濃度は、前記巻き始め端部側から前記巻き終わり端部側に向けて徐々に減少しているThe concentration of cobalt dissolved in the nickel hydroxide in the positive electrode plate gradually decreases from the winding start end side toward the winding end end side.
ことを特徴とする請求項1に記載の円筒形アルカリ蓄電池。The cylindrical alkaline storage battery according to claim 1.
JP2008080431A 2008-03-26 2008-03-26 Cylindrical alkaline storage battery Active JP5317507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080431A JP5317507B2 (en) 2008-03-26 2008-03-26 Cylindrical alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080431A JP5317507B2 (en) 2008-03-26 2008-03-26 Cylindrical alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2009238447A JP2009238447A (en) 2009-10-15
JP5317507B2 true JP5317507B2 (en) 2013-10-16

Family

ID=41252156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080431A Active JP5317507B2 (en) 2008-03-26 2008-03-26 Cylindrical alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5317507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7384550B2 (en) 2017-10-13 2023-11-21 株式会社三共 gaming machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892048B2 (en) 2012-11-20 2016-03-23 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314611B2 (en) * 1996-03-29 2002-08-12 株式会社ユアサコーポレーション Nickel electrode for alkaline storage battery
JP3515286B2 (en) * 1996-06-27 2004-04-05 三洋電機株式会社 Electrodes for secondary batteries
JP3954822B2 (en) * 2000-09-12 2007-08-08 三洋電機株式会社 Nickel electrode for alkaline storage battery, method for producing nickel electrode for alkaline storage battery, and alkaline storage battery
JP4443135B2 (en) * 2003-03-28 2010-03-31 三洋電機株式会社 Alkaline storage battery
JP3603892B2 (en) * 2003-01-14 2004-12-22 松下電器産業株式会社 Sealed metal oxide / hydrogen storage battery
JP2008117725A (en) * 2006-11-08 2008-05-22 Matsushita Electric Ind Co Ltd Cylindrical nickel-hydrogen storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7384550B2 (en) 2017-10-13 2023-11-21 株式会社三共 gaming machine

Also Published As

Publication number Publication date
JP2009238447A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
KR20100139016A (en) Cylindrical nickel-zinc cell with negative can
WO2006059733A1 (en) Sealed cell, manufacturing method thereof, and battery formed by a plurality of sealed cells
JP2012069510A (en) Cylindrical nickel-hydrogen storage battery
JP6094902B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP5629187B2 (en) Positive electrode for alkaline storage battery and method for producing the same
JP5317507B2 (en) Cylindrical alkaline storage battery
JP2002117842A (en) Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JP2006059807A (en) Nickel electrode and alkali storage battery using the same
JP2015130249A (en) Positive electrode for alkali storage batteries and alkali storage battery using the same
JP3653410B2 (en) Sealed alkaline zinc storage battery
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP2013122862A (en) Cylindrical alkaline storage battery
JP5147190B2 (en) Alkaline storage battery and method for producing positive electrode used therefor
JP5116249B2 (en) Positive electrode for alkaline storage battery
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP4118991B2 (en) Manufacturing method of nickel metal hydride storage battery
WO2017110033A1 (en) Nickel-metal hydride storage battery
JP2005251512A (en) Nickel-hydrogen storage battery
JP2003317712A (en) Nickel - hydrogen storage battery
JPH10154525A (en) Manufacture of alkaline storage battery
JP2005129382A (en) Nickel-hydrogen storage battery and hybrid electric vehicle
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2005116381A (en) Alkaline storage battery
JP2012178296A (en) Alkaline storage battery
JP2005135730A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R151 Written notification of patent or utility model registration

Ref document number: 5317507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151