JP2005183339A - Nickel electrode for alkaline storage battery and alkaline storage battery - Google Patents

Nickel electrode for alkaline storage battery and alkaline storage battery Download PDF

Info

Publication number
JP2005183339A
JP2005183339A JP2003426366A JP2003426366A JP2005183339A JP 2005183339 A JP2005183339 A JP 2005183339A JP 2003426366 A JP2003426366 A JP 2003426366A JP 2003426366 A JP2003426366 A JP 2003426366A JP 2005183339 A JP2005183339 A JP 2005183339A
Authority
JP
Japan
Prior art keywords
nickel
storage battery
alkaline storage
active material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003426366A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kiyoku
佳文 曲
Kiyoshi Kumagai
潔 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003426366A priority Critical patent/JP2005183339A/en
Publication of JP2005183339A publication Critical patent/JP2005183339A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To improve output characteristics in an alkaline storage battery using a nickel electrode for the alkaline storage battery for a positive electrode in which an positive electrode mixture containing an active material particle having nickel hydroxide as a main part and a binder is filled in a conductive core, and to suppress easily the occurrence of self discharge. <P>SOLUTION: A positive electrode mixture which contains the active material particle provided with a covered layer made of a cobalt compound of trivalence or more on the surface of a particle made mainly of nickel hydroxide, an yttrium compound particle, a nickel metal particle having a particle size of 1/5 or less of the above active material particle, and a binder is filled in the conductive core, and the alkaline storage battery nickel electrode 21 is manufactured, and then, this alkaline storage battery nickel electrode 21 is used as the positive electrode of the alkaline storage battery. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等のアルカリ蓄電池及びこのようなアルカリ蓄電池の正極に使用するアルカリ蓄電池用ニッケル極に係り、特に、水酸化ニッケルを主体とする活物質粒子と結着剤とを含む正極合剤を導電性芯体に充填させたアルカリ蓄電池用ニッケル極を改善して、アルカリ蓄電池における出力特性を向上させると共に、自己放電が生じるのを簡単に抑制できるようにした点に特徴を有するものである。   The present invention relates to an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, and a nickel electrode for an alkaline storage battery used for the positive electrode of such an alkaline storage battery, and in particular, to active material particles mainly composed of nickel hydroxide. Improved the nickel electrode for alkaline storage batteries in which a positive electrode mixture containing an adhesive is filled in a conductive core to improve the output characteristics of the alkaline storage battery and to easily suppress the occurrence of self-discharge. It is characterized by a point.

従来、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池に代表されるアルカリ蓄電池においては、その正極として、一般に水酸化ニッケルを主体とする活物質を用いたアルカリ蓄電池用ニッケル極が使用されていた。   Conventionally, in an alkaline storage battery represented by a nickel-hydrogen storage battery and a nickel-cadmium storage battery, a nickel electrode for an alkaline storage battery that generally uses an active material mainly composed of nickel hydroxide has been used as the positive electrode.

ここで、このようなアルカリ蓄電池用ニッケル極においては、活物質として使用する水酸化ニッケルの導電性が低いため、一般に、芯金となる穿孔鋼鈑等にニッケル粉末を充填させて焼結させた焼結基板に、活物質である水酸化ニッケルを化学的に含浸させた焼結式のニッケル極が用いられている。   Here, in such a nickel electrode for an alkaline storage battery, since nickel hydroxide used as an active material has low conductivity, it is generally filled with nickel powder in a cored steel rod as a core metal and sintered. A sintered nickel electrode is used in which a sintered substrate is chemically impregnated with nickel hydroxide as an active material.

しかし、このような焼結式のニッケル極の場合、ニッケル粉末における粒子間の結合が弱く、基板における多孔度を高くすると、ニッケル粉末が脱落しやすくなるため、実用上、基板の多孔度を80%程度とするのが限界で、活物質の水酸化ニッケルを多く充填させることができず、容量の大きなアルカリ蓄電池を得ることが困難であった。   However, in the case of such a sintered nickel electrode, the bonding between the particles in the nickel powder is weak, and if the porosity in the substrate is increased, the nickel powder is likely to fall off. It is difficult to obtain an alkaline storage battery having a large capacity because it cannot be filled with a large amount of nickel hydroxide as an active material.

また、上記の焼結式ニッケル極の場合、穿孔鋼板等の芯金を使用するため、一般に活物質の充填密度が小さく、さらに、焼結により形成されたニッケル粉末の細孔は10μm以下と小さいため、活物質を充填させるにあたっては、煩雑な工程を数サイクルも繰り返す溶液含浸法を用いなければならず、その生産性が悪いという問題もあった。   In the case of the above sintered nickel electrode, since a cored bar such as a perforated steel plate is used, the packing density of the active material is generally small, and the pores of the nickel powder formed by sintering are as small as 10 μm or less. Therefore, when filling the active material, a solution impregnation method in which complicated steps are repeated for several cycles must be used, and there is a problem that the productivity is poor.

このため、水酸化ニッケルを主体とする活物質粒子にメチルセルロース等の結合剤の水溶液を加えて混練させた正極合剤のペーストを、発泡ニッケル等の多孔度の大きい導電性芯体に塗布し、これを乾燥させた非焼結式のアルカリ蓄電池用ニッケル極も用いられている。   For this reason, a paste of a positive electrode mixture prepared by adding an aqueous solution of a binder such as methylcellulose to an active material particle mainly composed of nickel hydroxide is applied to a conductive core having a large porosity such as foamed nickel, A non-sintered nickel electrode for an alkaline storage battery obtained by drying this is also used.

ここで、このような非焼結式のアルカリ蓄電池用ニッケル極の場合、多孔度が95%以上の導電性芯体を用いることができ、導電性芯体に多くの活物質を充填させて、容量の大きなアルカリ蓄電池を得ることができると共に、導電性芯体に対して活物質を簡単に充填させることができて生産性も向上した。   Here, in the case of such a non-sintered alkaline storage battery nickel electrode, a conductive core having a porosity of 95% or more can be used, and the conductive core is filled with many active materials, A large capacity alkaline storage battery can be obtained, and the conductive material can be easily filled with an active material, thereby improving productivity.

また、近年においては、上記のような非焼結式のアルカリ蓄電池用ニッケル極を用いたアルカリ蓄電池において、上記の活物質粒子間の抵抗を下げて活物質の利用率を高めて、出力特性を向上させるため、水酸化ニッケルからなる活物質にカドミウムや亜鉛やコバルトを含有させると共に、導電剤としてニッケル粉末や他の金属粉末を添加させるようにしたものが提案されている(例えば、特許文献1参照。)。   Further, in recent years, in alkaline storage batteries using non-sintered alkaline storage battery nickel electrodes as described above, the resistance between the active material particles is lowered to increase the utilization rate of the active material, and the output characteristics are improved. In order to improve, an active material made of nickel hydroxide has been proposed in which cadmium, zinc or cobalt is added and nickel powder or other metal powder is added as a conductive agent (for example, Patent Document 1). reference.).

ここで、このように導電剤としてニッケル粉末を添加した場合、自己放電が生じやすくなって、保存特性が低下するという問題があり、このため、上記のニッケル粉末の表面に10〜30Åの不働態酸化被膜を形成するようにしたものが提案されている(例えば、特許文献2参照。)。   Here, when nickel powder is added as a conductive agent in this way, self-discharge tends to occur, and there is a problem that storage characteristics are deteriorated. For this reason, the surface of the nickel powder has a passive state of 10 to 30%. The thing which formed the oxide film is proposed (for example, refer patent document 2).

しかし、ニッケル粉末の表面に、上記のような薄い不働態酸化被膜を適切に形成することは非常に困難であり、アルカリ蓄電池における自己放電を簡単に抑制することができないという問題があった。
特開平5−225971号公報 特開平8−241719号公報
However, it is very difficult to appropriately form the thin passive oxide film as described above on the surface of the nickel powder, and there is a problem that self-discharge in the alkaline storage battery cannot be easily suppressed.
JP-A-5-225971 JP-A-8-241719

この発明は、水酸化ニッケルを主体とする活物質粒子と結着剤とを含む正極合剤を導電性芯体に充填させたアルカリ蓄電池用ニッケル極及びこのようなアルカリ蓄電池用ニッケル極を正極に使用したアルカリ蓄電池における上記のような問題を解決することを課題するものであり、アルカリ蓄電池用ニッケル極を改善して、アルカリ蓄電池における出力特性を向上させると共に、自己放電が生じるのを簡単に抑制できるようにすることを課題とするものである。   The present invention relates to a nickel electrode for an alkaline storage battery in which a positive electrode mixture containing active material particles mainly composed of nickel hydroxide and a binder is filled in a conductive core, and such a nickel electrode for an alkaline storage battery as a positive electrode. It is an object to solve the above problems in the used alkaline storage battery, and improves the output characteristics of the alkaline storage battery by improving the nickel electrode for alkaline storage battery and easily suppresses the occurrence of self-discharge. The challenge is to make it possible.

この発明におけるアルカリ蓄電池用ニッケル極においては、上記のような課題を解決するため、水酸化ニッケルを主体とする粒子の表面にコバルトの価数が3価以上のコバルト化合物からなる被覆層が設けられた活物質粒子と、イットリウム化合物粒子と、粒径が上記の活物質粒子の粒径の1/5以下のニッケル金属粒子と、結着剤とを含む正極合剤を、導電性芯体に充填させるようにしたのである。   In the nickel electrode for alkaline storage batteries according to the present invention, in order to solve the above-described problems, a coating layer made of a cobalt compound having a cobalt valence of 3 or more is provided on the surface of particles mainly composed of nickel hydroxide. A positive electrode mixture containing active material particles, yttrium compound particles, nickel metal particles having a particle size of 1/5 or less of the above active material particles, and a binder is filled in the conductive core. I tried to make it.

ここで、上記のように正極合剤中に、粒径が活物質粒子の粒径の1/5以下のニッケル金属粒子を添加するにあたっては、このニッケル金属粒子を上記の活物質粒子に対して6〜30重量%の範囲で添加させることが好ましい。   Here, when adding nickel metal particles having a particle size of 1/5 or less of the particle size of the active material particles to the positive electrode mixture as described above, the nickel metal particles are added to the above active material particles. It is preferable to add in the range of 6 to 30% by weight.

また、この発明におけるアルカリ蓄電池においては、その正極に前記のアルカリ蓄電池用ニッケル極を用いるようにしたのである。   Moreover, in the alkaline storage battery in this invention, the nickel electrode for alkaline storage batteries is used for the positive electrode.

この発明におけるアルカリ蓄電池用ニッケル極のように、水酸化ニッケルを主体とする粒子の表面にコバルトの価数が3価以上のコバルト化合物からなる被覆層が設けられた活物質粒子を用いると、この活物質粒子を含む正極合剤をペーストにして導電性芯体に塗布する場合や、このアルカリ蓄電池用ニッケル極をアルカリ蓄電池内に収容させてアルカリ電解液を注液させた場合等において、コバルトの価数が3価未満のコバルト化合物からなる被覆層のようにコバルト化合物が溶出するということがなく、上記の被覆層により活物質粒子の表面に均一な導電マトリクスが形成されて、活物質粒子に十分な導電性が付与されるようになり、アルカリ蓄電池における出力特性が向上する。   When using active material particles in which a coating layer made of a cobalt compound having a valence of cobalt of 3 or more is provided on the surface of particles mainly composed of nickel hydroxide, like the nickel electrode for alkaline storage batteries in this invention, In the case where a positive electrode mixture containing active material particles is applied as a paste to a conductive core, or when this alkaline storage battery nickel electrode is accommodated in an alkaline storage battery and an alkaline electrolyte is injected, etc. The cobalt compound does not elute unlike a coating layer made of a cobalt compound having a valence of less than three, and the coating layer forms a uniform conductive matrix on the surface of the active material particles. Sufficient conductivity is imparted, and the output characteristics of the alkaline storage battery are improved.

また、このようにコバルトの価数が3価以上のコバルト化合物からなる被覆層が設けられた活物質粒子においては、コバルト化合物が溶出しないため、活物質粒子間における隙間がそのまま残るが、この発明のように粒径が上記の活物質粒子の粒径の1/5以下のニッケル金属粒子を添加させると、活物質粒子間の隙間にこのニッケル金属粒子が充填されて、活物質粒子間における抵抗が大きく低下し、アルカリ蓄電池における出力特性がさらに向上する。なお、このように活物質粒子の粒径の1/5以下の粒径になったニッケル金属粒子を用いるのは、これより粒径の大きなニッケル金属粒子では活物質粒子間の隙間にうまく充填されないためである。   Further, in the active material particles provided with a coating layer made of a cobalt compound having a cobalt valence of 3 or more in this way, the cobalt compound does not elute, so that the gap between the active material particles remains as it is. When a nickel metal particle having a particle size of 1/5 or less of the particle size of the active material particles is added, the gap between the active material particles is filled with the nickel metal particles, and the resistance between the active material particles is reduced. Greatly reduces the output characteristics of the alkaline storage battery. In addition, the nickel metal particles having a particle size of 1/5 or less of the particle size of the active material particles are used in this way, and nickel metal particles having a particle size larger than this do not fill well in the gaps between the active material particles. Because.

また、このようにニッケル金属粒子を添加するにあたり、その量が少ないと、活物質粒子間の隙間にニッケル金属粒子が十分に充填されなくなって、アルカリ蓄電池における出力特性を十分に向上させることができなくなる一方、その量が多くなりすぎると、アルカリ蓄電池用ニッケル極における活物質粒子の量が少なくなって、容量が低下するため、ニッケル金属粒子を上記の活物質粒子に対して6〜30重量%の範囲で添加させることが好ましい。   In addition, when adding the nickel metal particles in this way, if the amount is small, the gap between the active material particles is not sufficiently filled with the nickel metal particles, and the output characteristics in the alkaline storage battery can be sufficiently improved. On the other hand, if the amount is too large, the amount of active material particles in the nickel electrode for alkaline storage batteries is reduced and the capacity is reduced. Therefore, the nickel metal particles are contained in an amount of 6 to 30% by weight based on the above active material particles. It is preferable to add in the range.

また、このようにニッケル金属粒子を添加させると、前記のように自己放電が生じやすくなるが、この発明のようにコバルトの価数が3価以上のコバルト化合物からなる被覆層が設けられた活物質粒子を用いると共に、イットリウム化合物を添加すると、ニッケル金属粒子による自己放電が抑制されて、アルカリ蓄電池における保存特性が向上する。ここで、コバルトの価数が3価以上のコバルト化合物からなる被覆層が設けられた活物質粒子を用いるとともにイットリウム化合物を添加させることによって、ニッケル金属粒子による自己放電が抑制される理由は明確ではないが、上記のように正極合剤をペーストにして導電性芯体に塗布する場合や、このアルカリ蓄電池用ニッケル極をアルカリ蓄電池内に収容させてアルカリ電解液を注液させた場合等に、被覆層におけるコバルト化合物が溶け出すということがなく、イットリウム化合物だけが溶け出して、ニッケル金属粒子の表面がイットリウムで覆われるようになり、これによりニッケルの触媒作用が抑制され、水素と酸素とが反応するのが防止されて、自己放電の発生が抑制されるためであると考えられる。   In addition, when nickel metal particles are added in this manner, self-discharge is likely to occur as described above. However, as in the present invention, an active layer provided with a coating layer made of a cobalt compound having a valence of cobalt of 3 or more. When substance particles are used and an yttrium compound is added, self-discharge due to nickel metal particles is suppressed, and the storage characteristics of the alkaline storage battery are improved. Here, the reason why the self-discharge caused by the nickel metal particles is suppressed by using the active material particles provided with the coating layer made of a cobalt compound having a cobalt valence of 3 or more and adding the yttrium compound is not clear. However, when the positive electrode mixture is applied as a paste to the conductive core as described above, or when this alkaline storage battery nickel electrode is contained in an alkaline storage battery and an alkaline electrolyte is injected, etc. The cobalt compound in the coating layer does not melt, but only the yttrium compound melts, and the surface of the nickel metal particles is covered with yttrium, thereby suppressing the catalytic action of nickel, and hydrogen and oxygen are This is probably because the reaction is prevented and the occurrence of self-discharge is suppressed.

そして、上記のようなアルカリ蓄電池用ニッケル極を正極に用いたアルカリ蓄電池においては、十分な出力特性が得られると共に、自己放電が生じるのも簡単に抑制されて、保存特性も向上する。   And in the alkaline storage battery using the above nickel electrode for alkaline storage batteries as a positive electrode, sufficient output characteristics can be obtained, self-discharge can be easily suppressed, and the storage characteristics can be improved.

以下、この発明に係るアルカリ蓄電池用ニッケル極及びこのアルカリ蓄電池用ニッケル極を正極に用いたアルカリ蓄電池について実施例を挙げて具体的に説明すると共に、この実施例におけるアルカリ蓄電池においては、出力特性及び保存特性が向上することを、比較例を挙げて明らかにする。なお、この発明におけるアルカリ蓄電池用ニッケル極及びアルカリ蓄電池は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the alkaline storage battery according to the present invention and the alkaline storage battery using the alkaline storage battery nickel electrode as a positive electrode will be specifically described with reference to examples. In the alkaline storage battery in this example, the output characteristics and A comparative example will clarify that the storage characteristics are improved. In addition, the nickel electrode for alkaline storage batteries and alkaline storage battery in this invention are not limited to what was shown in the following Example, It can implement by changing suitably in the range which does not change the summary.

(比較例A)
比較例Aにおいては、正極に用いるアルカリ蓄電池用ニッケル極を作製するにあたり、硫酸コバルト粉末を13.1g溶解させた1リットルの硫酸コバルト水溶液に、水酸化ニッケルの粉末を100g加え、これを攪拌しながら1mol/lの水酸化ナトリウム水溶液を加え、pHを11に調整しながら1時間攪拌を続けた後、沈殿物を濾取し、この沈殿物を水洗した後、真空乾燥させて、水酸化ニッケル粒子の表面に水酸化コバルトからなる被覆層が形成された活物質粒子を得た。なお、この活物質粒子の平均粒径は10μmであり、また酸化還元滴定により求めた被覆層におけるコバルトの価数は2価であった。
(Comparative Example A)
In Comparative Example A, in preparing a nickel electrode for an alkaline storage battery used for the positive electrode, 100 g of nickel hydroxide powder was added to 1 liter of cobalt sulfate aqueous solution in which 13.1 g of cobalt sulfate powder was dissolved, and this was stirred. Then, 1 mol / l sodium hydroxide aqueous solution was added, and stirring was continued for 1 hour while adjusting the pH to 11. Then, the precipitate was collected by filtration, washed with water, dried in vacuo, and nickel hydroxide. Active material particles in which a coating layer made of cobalt hydroxide was formed on the surface of the particles were obtained. The average particle diameter of the active material particles was 10 μm, and the valence of cobalt in the coating layer determined by oxidation-reduction titration was divalent.

また、この活物質粒子について、水酸化ニッケルに対する被覆層中のコバルトの量を原子吸光法によって測定した結果、水酸化ニッケルに対する被覆層中のコバルトの量は5重量%であった。   Moreover, as a result of measuring the amount of cobalt in the coating layer with respect to nickel hydroxide by the atomic absorption method for the active material particles, the amount of cobalt in the coating layer with respect to nickel hydroxide was 5% by weight.

そして、上記の活物質粒子100重量部に対して、結着剤として1重量%のメチルセルロース水溶液を20重量部加え、これを混練して正極合剤のペーストを調製し、このペーストを導電性芯体である発泡ニッケルに充填し、これを乾燥させ、加圧成型して、アルカリ蓄電池用ニッケル極を作製した。   Then, 20 parts by weight of a 1% by weight methylcellulose aqueous solution as a binder is added to 100 parts by weight of the above active material particles, and this is kneaded to prepare a positive electrode mixture paste. The body was filled with foamed nickel, dried, and pressure-molded to produce a nickel electrode for an alkaline storage battery.

一方、負極を作製するにあたっては、組成式MmNi3.2Co1.0Al0.7Mn0.1(但し、MmはLa、Ce、Pr、Ndが25:50:6:19の重量比になったミッシュメタルである。)で表される平均粒径が50μmの水素吸蔵合金粒子100重量部に、結着剤のポリエチレンオキシド1.0重量部と少量の水とを加え、これらを均一に混合してペーストを調製し、このペーストをニッケルめっきしたパンチングメタルからなる集電体の両面に均一に塗布し、これを乾燥し圧延させて、水素吸蔵合金電極からなる負極を作製した。 On the other hand, in preparing the negative electrode, the composition formula MmNi 3.2 Co 1.0 Al 0.7 Mn 0.1 (where Mm is La, Ce, Pr, Nd is a misch metal having a weight ratio of 25: 50: 6: 19). ) Is added to 100 parts by weight of hydrogen storage alloy particles having an average particle diameter of 50 μm, and 1.0 part by weight of polyethylene oxide as a binder and a small amount of water are added, and these are uniformly mixed to prepare a paste. The paste was uniformly applied to both surfaces of a nickel-plated punching metal current collector, dried and rolled to produce a negative electrode comprising a hydrogen storage alloy electrode.

また、セパレータとしては、ポリオレフィン樹脂製の不織布を使用し、アルカリ電解液としては、水酸化カリウムと水酸化ナトリウムと水酸化リチウムとを含むアルカリ電解液を使用し、設計容量が約1000mAhになった図1に示すような円筒型のニッケル・水素蓄電池を作製した。   In addition, a nonwoven fabric made of polyolefin resin was used as the separator, and an alkaline electrolyte containing potassium hydroxide, sodium hydroxide, and lithium hydroxide was used as the alkaline electrolyte, and the design capacity was about 1000 mAh. A cylindrical nickel-hydrogen storage battery as shown in FIG. 1 was produced.

ここで、上記のニッケル・水素蓄電池を作製するにあたっては、図1に示すように、上記の正極1と負極2との間にセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させると共に、この電池缶4内に上記のアルカリ電解液を注液した後、電池缶4と正極蓋6との間に絶縁パッキン8を介して封口し、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6と正極外部端子9との間にコイルスプリング10を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて電池内部のガスが大気中に放出されるようにした。   Here, in producing the nickel-hydrogen storage battery, as shown in FIG. 1, a separator 3 is interposed between the positive electrode 1 and the negative electrode 2, and these are wound in a spiral shape in the battery can 4 And the alkaline electrolyte is poured into the battery can 4, and then sealed between the battery can 4 and the positive electrode lid 6 via an insulating packing 8, and the positive electrode 1 is connected via the positive electrode lead 5. Then, the negative electrode 2 was connected to the battery can 4 via the negative electrode lead 7, and the battery can 4 and the positive electrode cover 6 were electrically separated by the insulating packing 8. In addition, when a coil spring 10 is provided between the positive electrode lid 6 and the positive electrode external terminal 9 and the internal pressure of the battery rises abnormally, the coil spring 10 is compressed and the gas inside the battery is brought into the atmosphere. To be released.

(比較例B)
比較例Bにおいては、上記の比較例Aにおけるアルカリ蓄電池用ニッケル極の作製において、上記の平均粒径が10μmになった活物質粒子100重量部に対して、結着剤として1重量%のメチルセルロース水溶液を20重量部加えると共に、平均粒径が0.6μmのニッケル金属粒子を10重量部の割合で加えるようにし、それ以外は、上記の比較例Aの場合と同様にして、ニッケル・水素蓄電池を作製した。
(Comparative Example B)
In Comparative Example B, in the preparation of the nickel electrode for alkaline storage battery in Comparative Example A above, 1% by weight of methylcellulose as a binder with respect to 100 parts by weight of the active material particles having an average particle diameter of 10 μm. While adding 20 parts by weight of the aqueous solution, nickel metal particles having an average particle diameter of 0.6 μm are added at a rate of 10 parts by weight. Otherwise, the nickel-hydrogen storage battery is the same as in Comparative Example A above. Was made.

そして、上記のように作製した比較例A,Bの各ニッケル・水素蓄電池を、それぞれ25℃の温度条件の下で、100mAで16時間充電させた後、1000mAで1.0Vまで放電させ、これを1サイクルとして、5サイクルの充放電を繰り返して、各ニッケル・水素蓄電池を活性化させた。   The nickel-hydrogen storage batteries of Comparative Examples A and B produced as described above were charged at 100 mA for 16 hours under a temperature condition of 25 ° C., respectively, and then discharged to 1.0 V at 1000 mA. Each cycle was charged and discharged 5 times to activate each nickel / hydrogen storage battery.

次いで、このように活性化された比較例A,Bの各ニッケル・水素蓄電池を、それぞれ25℃の温度条件の下で、100mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させ、その後、55℃で12分間放置させて、各ニッケル・水素蓄電池における放置後の電圧低下を調べた。そして、比較例Aのニッケル・水素蓄電池における放置後の電圧低下を1とした指数で、その結果を下記の表1に示した。   Next, each of the nickel / hydrogen storage batteries of Comparative Examples A and B activated in this manner is subjected to a temperature of 25 ° C. and a battery voltage reaches a maximum value at a current of 100 mA until the voltage decreases by 10 mV. The battery was charged and then allowed to stand at 55 ° C. for 12 minutes, and the voltage drop after being left in each nickel / hydrogen storage battery was examined. The results are shown in Table 1 below in terms of an index with the voltage drop after standing in the nickel-hydrogen storage battery of Comparative Example A taken as 1.

また、下記の表1においては、上記の正極における活物質粒子の平均粒径D1(μm)、ニッケル金属粒子の平均粒径D2(μm)、D2/D1の値、活物質粒子に対するニッケル金属粒子の重量比率W(重量%)及び被覆層におけるCoの価数を合わせて示した。   In Table 1 below, the average particle diameter D1 (μm) of the active material particles in the positive electrode, the average particle diameter D2 (μm) of the nickel metal particles, the value of D2 / D1, the nickel metal particles relative to the active material particles The weight ratio W (% by weight) of Co and the valence of Co in the coating layer are shown together.

Figure 2005183339
Figure 2005183339

この結果、アルカリ蓄電池用ニッケル極の作製において、ニッケル金属粒子を添加させなかった比較例Aのニッケル・水素蓄電池に比べて、ニッケル金属粒子を添加させた比較例Bのニッケル・水素蓄電池の方が、放置後における電圧低下が大きくなって、保存特性が悪くなっていた。   As a result, compared with the nickel-hydrogen storage battery of Comparative Example A in which nickel metal particles were not added in the production of a nickel electrode for alkaline storage batteries, the nickel-hydrogen storage battery of Comparative Example B to which nickel metal particles were added was more The voltage drop after standing increased, and the storage characteristics deteriorated.

(実施例1)
実施例1においては、正極に用いるアルカリ蓄電池用ニッケル極を作製するにあたり、上記の比較例Aの場合と同様に、硫酸コバルト粉末を13.1g溶解させた1リットルの硫酸コバルト水溶液に、水酸化ニッケルの粉末を100g加え、これを攪拌しながら1モル/リットルの水酸化ナトリウム水溶液を加え、pHを11に調整しながら1時間攪拌を続けた後、沈殿物を濾取し、この沈殿物を水洗した後、真空乾燥させて、水酸化ニッケル粒子の表面に水酸化コバルトからなる被覆層を形成した。
(Example 1)
In Example 1, in preparing the nickel electrode for an alkaline storage battery used for the positive electrode, in the same manner as in Comparative Example A above, a 1 liter aqueous solution of cobalt sulfate in which 13.1 g of cobalt sulfate powder was dissolved was hydroxylated. 100 g of nickel powder was added, and a 1 mol / liter aqueous sodium hydroxide solution was added while stirring. The stirring was continued for 1 hour while adjusting the pH to 11, and then the precipitate was collected by filtration. After washing with water, vacuum drying was performed to form a coating layer made of cobalt hydroxide on the surface of the nickel hydroxide particles.

次いで、この実施例1においては、上記のように水酸化コバルトからなる被覆層が形成された水酸化ニッケル粒子と5重量%の水酸化ナトリウム水溶液とを、1:10の重量比で混合し、これを空気中において75℃の温度で8時間加熱処理した後、これを水洗し、65℃の温度で乾燥させて、水酸化ニッケル粒子の表面に、コバルトの価数が3価以上になったコバルト化合物からなる被覆層が形成された活物質粒子を得た。なお、この活物質粒子の平均粒径は10μmであり、また酸化還元滴定により求めた被覆層におけるコバルトの価数は3.05であり、さら原子吸光法によって測定した水酸化ニッケルに対する被覆層中のコバルトの量は5重量%であった。   Next, in Example 1, the nickel hydroxide particles on which the coating layer made of cobalt hydroxide was formed as described above were mixed with a 5 wt% aqueous sodium hydroxide solution in a weight ratio of 1:10, This was heat-treated in air at a temperature of 75 ° C. for 8 hours, then washed with water and dried at a temperature of 65 ° C., and the cobalt valence became 3 or more on the surface of the nickel hydroxide particles. Active material particles having a coating layer made of a cobalt compound were obtained. The average particle diameter of the active material particles is 10 μm, and the valence of cobalt in the coating layer obtained by oxidation-reduction titration is 3.05. Further, in the coating layer with respect to nickel hydroxide measured by the atomic absorption method The amount of cobalt was 5% by weight.

そして、上記の活物質粒子100重量部に対して、酸化イットリウムY23粒子を0.5重量部、平均粒径が0.6μmのニッケル金属粒子を18重量部、結着剤として1重量%のメチルセルロース水溶液を20重量部の割合で加え、これを混練して正極合剤のペーストを調製し、このペーストを導電性芯体である発泡ニッケルに充填し、これを乾燥させ、加圧成型して、アルカリ蓄電池用ニッケル極を作製した。 Then, with respect to 100 parts by weight of the active material particles, 0.5 parts by weight of yttrium oxide Y 2 O 3 particles, 18 parts by weight of nickel metal particles having an average particle size of 0.6 μm, and 1 part by weight as a binder. % Aqueous solution of methylcellulose is added at a ratio of 20 parts by weight, and this is kneaded to prepare a paste of a positive electrode mixture. This paste is filled in foamed nickel which is a conductive core, dried, and press-molded. And the nickel electrode for alkaline storage batteries was produced.

一方、負極を作製するにあたっては、上記の比較例Aの場合と同様にして、水素吸蔵合金電極からなる負極を作製した。   On the other hand, in producing the negative electrode, a negative electrode comprising a hydrogen storage alloy electrode was produced in the same manner as in Comparative Example A above.

そして、図2に示すように、上記のアルカリ蓄電池用ニッケル極からなる正極21の両側に、ポリオレフィン樹脂製の不織布からなるセパレータ23を介して上記の水素吸蔵合金電極からなる負極22を設け、このようにセパレータ23を介して2枚の負極22により正極21が挟み込まれた電極体を、アクリル製のセル容器20内に収容された30重量%の水酸化カリウム水溶液からなるアルカリ電解液24中に浸漬させて、設計容量が100mAhになった実施例1の試験用セルを作製した。なお、上記の負極22の電気化学的容量は正極21の2倍以上にした。   And as shown in FIG. 2, the negative electrode 22 which consists of said hydrogen storage alloy electrode is provided on both sides of the positive electrode 21 which consists of said nickel electrode for alkaline storage batteries through the separator 23 which consists of a nonwoven fabric made from polyolefin resin, Thus, an electrode body in which the positive electrode 21 is sandwiched between two negative electrodes 22 through a separator 23 is placed in an alkaline electrolyte 24 made of a 30 wt% aqueous potassium hydroxide solution contained in an acrylic cell container 20. The test cell of Example 1 having a design capacity of 100 mAh was produced by immersion. The electrochemical capacity of the negative electrode 22 was set to be twice or more that of the positive electrode 21.

(実施例2)
実施例2においては、上記の実施例1におけるアルカリ蓄電池用ニッケル極の作製において、上記の平均粒径が0.6μmのニッケル金属粒子に代えて、平均粒径が2μmのニッケル金属粒子を用いるようにし、それ以外は、上記の実施例1の場合と同様にして、実施例2の試験用セルを作製した。
(Example 2)
In Example 2, in the production of the nickel electrode for an alkaline storage battery in Example 1 above, nickel metal particles having an average particle diameter of 2 μm are used instead of nickel metal particles having an average particle diameter of 0.6 μm. Otherwise, the test cell of Example 2 was fabricated in the same manner as in Example 1 above.

(比較例1)
比較例1においては、上記の実施例1におけるアルカリ蓄電池用ニッケル極の作製において、上記の平均粒径が0.6μmのニッケル金属粒子に代えて、平均粒径が30μmのニッケル金属粒子を用いるようにし、それ以外は、上記の実施例1の場合と同様にして、比較例1の試験用セルを作製した。
(Comparative Example 1)
In Comparative Example 1, in the production of the nickel electrode for alkaline storage battery in Example 1 above, nickel metal particles having an average particle diameter of 30 μm are used instead of nickel metal particles having an average particle diameter of 0.6 μm. Otherwise, a test cell of Comparative Example 1 was produced in the same manner as in Example 1 above.

(比較例2)
比較例2においては、上記の実施例1におけるアルカリ蓄電池用ニッケル極の作製において、上記の平均粒径が0.6μmのニッケル金属粒子を加えないようにし、それ以外は、上記の実施例1の場合と同様にして、比較例2の試験用セルを作製した。
(Comparative Example 2)
In Comparative Example 2, in the production of the nickel electrode for an alkaline storage battery in Example 1 above, the nickel metal particles having an average particle diameter of 0.6 μm were not added, and other than that in Example 1 above. A test cell of Comparative Example 2 was produced in the same manner as in the case.

そして、上記のように作製した実施例1,2及び比較例1,2の各試験用セルを、それぞれ25℃の温度条件の下で、50mAで150%充電させた後、50mAで0.8Vまで放電させ、これを1サイクルとして、10サイクルの充放電を繰り返して、各試験用セルを活性化させた。   Each of the test cells of Examples 1 and 2 and Comparative Examples 1 and 2 produced as described above was charged at 150 mA at 50 mA under a temperature condition of 25 ° C. and then 0.8 V at 50 mA. Each of the test cells was activated by repeating 10 cycles of charge and discharge.

次いで、このように活性化された実施例1,2及び比較例1,2の各試験用セルを、それぞれ25℃の温度条件の下で、50mAの電流で充電深度が50%になるまで充電させた後、800mAの電流で10秒間放電させて、各試験セルにおける出力時の電圧低下を調べた。そして、実施例1の試験用セルにおける出力時の電圧低下を1とした指数で、その結果を下記の表2に示した。   Next, each of the test cells of Examples 1 and 2 and Comparative Examples 1 and 2 thus activated was charged under a temperature condition of 25 ° C. with a current of 50 mA until the charge depth reached 50%. Then, discharging was performed at a current of 800 mA for 10 seconds, and voltage drop at the time of output in each test cell was examined. The results are shown in Table 2 below, with an index in which the voltage drop during output in the test cell of Example 1 is 1.

また、上記のように活性化された実施例1,2及び比較例1,2の各試験用セルを、それぞれ25℃の温度条件の下で、50mAの電流で充電深度が50%になるまで充電させた後、60分間放置させて、各試験用セルにおける放置後の電圧低下を調べた。そして、実施例1の試験用セルにおける放置後の電圧低下を1とした指数で、その結果を下記の表2に示した。   Further, each of the test cells of Examples 1 and 2 and Comparative Examples 1 and 2 activated as described above was charged at a current of 50 mA and a charging depth of 50% under a temperature condition of 25 ° C. After charging, the battery was allowed to stand for 60 minutes, and the voltage drop after being left in each test cell was examined. The results are shown in Table 2 below, using an index with voltage drop after standing in the test cell of Example 1 as 1.

ここで、下記の表2においては、上記の正極における活物質粒子の平均粒径D1(μm)、ニッケル金属粒子の平均粒径D2(μm)、D2/D1の値、活物質粒子に対するニッケル金属粒子の重量比率W(重量%)及び被覆層におけるCoの価数を合わせて示した。   Here, in Table 2 below, the average particle diameter D1 (μm) of the active material particles in the positive electrode, the average particle diameter D2 (μm) of the nickel metal particles, the value of D2 / D1, the nickel metal relative to the active material particles The particle weight ratio W (% by weight) and the Co valence in the coating layer are shown together.

Figure 2005183339
Figure 2005183339

この結果、ニッケル金属粒子の平均粒径D2が活物質粒子の平均粒径D1の1/5以下になったニッケル金属粒子を添加させた実施例1,2の試験用セルは、ニッケル金属粒子の平均粒径D2が活物質粒子の平均粒径D1の1/5を越えるニッケル金属粒子を添加させた比較例1の試験用セルや、ニッケル金属粒子を添加させなかった比較例2の試験用セルに比べて、出力時の電圧低下が少なくなっており、出力特性が向上していた。   As a result, the test cells of Examples 1 and 2, to which nickel metal particles having an average particle diameter D2 of nickel metal particles of 1/5 or less of the average particle diameter D1 of active material particles were added, Test cell of Comparative Example 1 in which nickel metal particles having an average particle diameter D2 exceeding 1/5 of the average particle diameter D1 of active material particles were added, or Test cell of Comparative Example 2 in which no nickel metal particles were added Compared with, the voltage drop at the time of output was reduced, and the output characteristics were improved.

また、上記の実施例1,2及び比較例1の各試験用セルのように、正極合剤にコバルトの価数が3価以上になったコバルト化合物からなる被覆層が形成された活物質粒子を用いると共に、酸化イットリウムY23粒子を添加させると、ニッケル金属粒子を添加させた場合においても、前記のニッケル金属粒子を添加させた比較例Bのニッケル・水素蓄電池のように、放置後における電圧低下が大きくなって、保存特性が低下するということがなかった。 Further, as in each of the test cells of Examples 1 and 2 and Comparative Example 1 described above, active material particles in which a coating layer made of a cobalt compound having a cobalt valence of 3 or more was formed on the positive electrode mixture And when yttrium oxide Y 2 O 3 particles are added, even when nickel metal particles are added, as in the nickel-hydrogen storage battery of Comparative Example B to which nickel metal particles are added, There was no increase in voltage drop at the time point and storage characteristics were not lowered.

(実施例3,4)
実施例3,4においては、上記の実施例1におけるアルカリ蓄電池用ニッケル極の作製において、上記の活物質粒子100重量部に対して、平均粒径が0.6μmのニッケル金属粒子を添加させる重量割合だけを変更し、実施例3においては平均粒径が0.6μmのニッケル金属粒子を6重量部、実施例4においては平均粒径が0.6μmのニッケル金属粒子を12重量部添加させるようにし、それ以外は、上記の実施例1の場合と同様にして、実施例3,4の各試験用セルを作製した。
(Examples 3 and 4)
In Examples 3 and 4, the weight of nickel metal particles having an average particle diameter of 0.6 μm added to 100 parts by weight of the active material particles in the production of the nickel electrode for an alkaline storage battery in Example 1 above. In Example 3, 6 parts by weight of nickel metal particles having an average particle diameter of 0.6 μm were added in Example 3, and 12 parts by weight of nickel metal particles having an average particle diameter of 0.6 μm were added in Example 4. Otherwise, the test cells of Examples 3 and 4 were produced in the same manner as in Example 1 above.

そして、この実施例3,4の各試験用セルについても、それぞれ25℃の温度条件の下で、50mAで150%充電させた後、50mAで0.8Vまで放電させ、これを1サイクルとして、10サイクルの充放電を繰り返して、各試験用セルを活性化させた。   And also about each test cell of Examples 3 and 4, after being charged 150% at 50 mA under a temperature condition of 25 ° C., it was discharged to 0.8 V at 50 mA, and this was taken as one cycle. Each test cell was activated by repeating 10 cycles of charge and discharge.

そして、このように活性化された実施例3,4の各試験用セルを、それぞれ25℃の温度条件の下で、50mAの電流で充電深度が50%になるまで充電させた後、800mAの電流で10秒間放電させて、各試験セルにおける出力時の電圧低下を調べ、実施例1の試験用セルにおける出力時の電圧低下を1とした指数で、その結果を、実施例1及び比較例2の試験用セルと合わせて下記の表3に示した。   And after charging each test cell of Examples 3 and 4 thus activated under a temperature condition of 25 ° C. with a current of 50 mA until the charge depth becomes 50%, 800 mA of The voltage drop at the time of output in each test cell was examined by discharging with a current for 10 seconds, and the result was obtained as an index with the voltage drop at the time of output in the test cell of Example 1 as 1. The results are shown in Table 3 below together with 2 test cells.

なお、下記の表3においては、正極における活物質粒子の平均粒径D1(μm)、ニッケル金属粒子の平均粒径D2(μm)、D2/D1の値、活物質粒子に対するニッケル金属粒子の重量比率W(重量%)及び被覆層におけるCoの価数を合わせて示した。   In Table 3 below, the average particle diameter D1 (μm) of the active material particles in the positive electrode, the average particle diameter D2 (μm) of the nickel metal particles, the value of D2 / D1, the weight of the nickel metal particles relative to the active material particles The ratio W (% by weight) and the Co valence in the coating layer are shown together.

Figure 2005183339
Figure 2005183339

この結果、上記の活物質粒子に対して、平均粒径が0.6μmのニッケル金属粒子を6重量%以上添加させた実施例1,3,4の各試験用セルは、ニッケル金属粒子を添加させなかった比較例2の試験用セルに比べて、出力時の電圧低下が少なくなっており、出力特性が向上していた。特に、平均粒径が0.6μmのニッケル金属粒子を12重量%以上添加させた実施例1,4の試験用セルにおいては、さらに出力時の電圧低下が少なくなって、出力特性がさらに向上した。   As a result, the nickel metal particles were added to each of the test cells of Examples 1, 3, and 4 in which 6% by weight or more of nickel metal particles having an average particle diameter of 0.6 μm was added to the above active material particles. Compared with the test cell of Comparative Example 2 which was not made, the voltage drop at the time of output was reduced, and the output characteristics were improved. In particular, in the test cells of Examples 1 and 4 in which nickel metal particles having an average particle diameter of 0.6 μm were added in an amount of 12 wt% or more, the voltage drop during output was further reduced, and the output characteristics were further improved. .

この発明の比較例A,Bにおいて作製したアルカリ蓄電池の概略断面図である。It is a schematic sectional drawing of the alkaline storage battery produced in the comparative examples A and B of this invention. この発明の実施例1〜4及び比較例1,2において作製した試験用セルの概略断面図である。It is a schematic sectional drawing of the test cell produced in Examples 1-4 and Comparative Examples 1 and 2 of this invention.

符号の説明Explanation of symbols

1,21 正極(アルカリ蓄電池用ニッケル極)
2,22 負極
24 アルカリ電解液
1,21 Positive electrode (Nickel electrode for alkaline storage battery)
2,22 Negative electrode 24 Alkaline electrolyte

Claims (3)

水酸化ニッケルを主体とする粒子の表面に、コバルトの価数が3価以上のコバルト化合物からなる被覆層が設けられた活物質粒子と、イットリウム化合物粒子と、粒径が上記の活物質粒子の粒径の1/5以下のニッケル金属粒子と、結着剤とを含む正極合剤が導電性芯体に充填されてなることを特徴とするアルカリ蓄電池用ニッケル極。   Active material particles in which a coating layer made of a cobalt compound having a cobalt valence of 3 or more is provided on the surface of particles mainly composed of nickel hydroxide, yttrium compound particles, A nickel electrode for an alkaline storage battery, wherein a positive electrode mixture containing nickel metal particles having a particle size of 1/5 or less and a binder is filled in a conductive core. 請求項1に記載したアルカリ蓄電池用ニッケル極において、上記の正極合剤中に、上記のニッケル金属粒子が上記の活物質粒子に対して6〜30重量%の範囲で添加されていることを特徴とするアルカリ蓄電池用ニッケル極。   The nickel electrode for an alkaline storage battery according to claim 1, wherein the nickel metal particles are added to the positive electrode mixture in a range of 6 to 30% by weight with respect to the active material particles. Nickel electrode for alkaline storage battery. 正極と負極とアルカリ電解液とを備えたアルカリ蓄電池において、その正極に前記の請求項1又は2に記載したアルカリ蓄電池用ニッケル極を用いたことを特徴とするアルカリ蓄電池。   An alkaline storage battery comprising a positive electrode, a negative electrode, and an alkaline electrolyte, wherein the alkaline storage battery uses the nickel electrode for an alkaline storage battery according to claim 1 or 2 for the positive electrode.
JP2003426366A 2003-12-24 2003-12-24 Nickel electrode for alkaline storage battery and alkaline storage battery Pending JP2005183339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426366A JP2005183339A (en) 2003-12-24 2003-12-24 Nickel electrode for alkaline storage battery and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426366A JP2005183339A (en) 2003-12-24 2003-12-24 Nickel electrode for alkaline storage battery and alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2005183339A true JP2005183339A (en) 2005-07-07

Family

ID=34785926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426366A Pending JP2005183339A (en) 2003-12-24 2003-12-24 Nickel electrode for alkaline storage battery and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2005183339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510243A (en) * 2012-02-07 2015-04-02 オヴォニック バッテリー カンパニー インコーポレイテッド Rechargeable battery cell with improved high temperature performance
WO2018216374A1 (en) * 2017-05-23 2018-11-29 株式会社豊田自動織機 Positive electrode for nickel metal hydride batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510243A (en) * 2012-02-07 2015-04-02 オヴォニック バッテリー カンパニー インコーポレイテッド Rechargeable battery cell with improved high temperature performance
WO2018216374A1 (en) * 2017-05-23 2018-11-29 株式会社豊田自動織機 Positive electrode for nickel metal hydride batteries

Similar Documents

Publication Publication Date Title
JP5119577B2 (en) Nickel metal hydride battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
US20010008729A1 (en) Positive electrode active material for alkaline storage batteries, positive electrode for alkaline storage batteries, and alkaline storage battery
JP4458725B2 (en) Alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP4458713B2 (en) Alkaline storage battery
KR100404658B1 (en) Nickel-Metal Hydride Batteries and Manufacturing Method
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2926732B2 (en) Alkaline secondary battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP2001313069A (en) Nickel hydrogen storage battery
JP2001283902A (en) Alkaline battery
JP4458749B2 (en) Alkaline storage battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP3547980B2 (en) Nickel-hydrogen storage battery
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2005056679A (en) Cylindrical alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216