JP4443135B2 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP4443135B2
JP4443135B2 JP2003090535A JP2003090535A JP4443135B2 JP 4443135 B2 JP4443135 B2 JP 4443135B2 JP 2003090535 A JP2003090535 A JP 2003090535A JP 2003090535 A JP2003090535 A JP 2003090535A JP 4443135 B2 JP4443135 B2 JP 4443135B2
Authority
JP
Japan
Prior art keywords
positive electrode
compound
electrode plate
added
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003090535A
Other languages
Japanese (ja)
Other versions
JP2004296395A (en
Inventor
誠 越智
尊之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003090535A priority Critical patent/JP4443135B2/en
Priority to US10/606,928 priority patent/US20040265689A1/en
Priority to CNB031482074A priority patent/CN100397683C/en
Publication of JP2004296395A publication Critical patent/JP2004296395A/en
Application granted granted Critical
Publication of JP4443135B2 publication Critical patent/JP4443135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明はニッケル−水素蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池に係り、特に、水酸化ニッケルを主体とする正極活物質を含有するニッケル正極を備えたアルカリ蓄電池に関するものである。
【0002】
【従来の技術】
近年、二次電池(蓄電池)の用途が拡大して、携帯電話、パーソナルコンピュータ、電動工具、電動自転車、ハイブリッド車(HEV)、電気自動車(EV)など広範囲にわたって蓄電池が用いられるようになった。このうち、特に、電動工具、電動自転車、ハイブリッド車(HEV)、電気自動車(EV)などの高出力が求められる機器の電源としては、ニッケル−水素蓄電池やニッケル−カドミウム蓄電池などのアルカリ蓄電池が用いられるようになった。これに伴い、アルカリ蓄電池は高温雰囲気下で使用される機会が増大するようになった。
【0003】
このような背景にあって、高温の雰囲気下で充放電を行っても、充放電特性、充放電効率が劣化しにくいアルカリ蓄電池が求められるようになった。そこで、特許文献1(特開平8−222213号公報)において、水酸化ニッケルを主体とする正極活物質粒子の表面に、金属コバルトやコバルト化合物からなる導電剤層を形成するとともに、この正極活物質を備えた正極中に、ジルコニウム化合物、ニオブ化合物、モリブデン化合物およびタングステン化合物から選ばれる1種を添加したアルカリ蓄電池が提案されるようになった。
【0004】
このように正極中にジルコニウム化合物、ニオブ化合物、モリブデン化合物およびタングステン化合物から選ばれる1種の化合物が添加されていると、水酸化ニッケルを主体とする正極活物質層の表面を被覆するコバルト化合物が、アルカリ電解液中に溶解して析出する速度を遅らせることができるようになる。これにより、ニッケル正極中に良好な導電ネットワークを維持できるようになる。
【0005】
【発明が解決しようとする課題】
しかしながら、充放電時には電極群の内部の方が高温になって、電極群の内部と外側とで温度差が生じることとなる。さらに、高温の雰囲気で使用されるアルカリ蓄電池にあっては、電池内部の温度は著しく上昇することとなる。このため、電極群の内部に配置された正極の温度が上昇することにより、電極群の内部に配置された正極の劣化速度と、電極群の外側に配置された正極の劣化速度が異なるという問題を生じた。このことは、上述した金属コバルトやコバルト化合物からなる導電剤層を形成した正極活物質を備えた正極中に、ジルコニウム化合物、ニオブ化合物、モリブデン化合物、タングステン化合物などの化合物が添加されていても同様である。
【0006】
ここで、電極群の内部に配置された正極が、高温に起因して劣化速度が速くなると、この正極の劣化速度が速いことが原因となって、電池全体としての高温でのサイクル寿命が短くなるという問題点が生じた。
そこで、本発明はこのような問題点を改善するためになされたものであって、電極群の内部に配置された正極の劣化を抑制して、電極群の内部と外側で温度差が生じても、電極群の内部と外側での劣化速度をバランスさせるようにして、高温でのサイクル寿命に優れたアルカリ蓄電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明のアルカリ蓄電池に用いられる正極は、コバルト化合物の被覆層を有する水酸化ニッケルを主体とする正極活物質にニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物が添加されているとともに、電極群の内部に配置された正極は電極群の外側に配置された正極よりも、これらの化合物の添加量が多く、かつ電極群の内部に配置された正極に添加されたこれらのニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量は、コバルト化合物の被覆層を有する水酸化ニッケルを主体とする正極活物質の質量に対して0.2質量%以上であることを特徴とする。
【0008】
このように、ニッケル正極中にニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物が添加されていると、水酸化ニッケルを主体とする活物質層の表面を被覆するコバルト化合物が、電解液中に溶解して析出する速度を遅らせることができる。これにより、ニッケル正極中に良好な導電ネットワークを維持できるようになる。この場合、ニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物が添加された正極の配置位置としては、電極群の内部にした方が効果的である。このことにより、電極群の内部と外側で温度差が生じても、電極群の内部と外側での劣化速度をバランスさせるようにして、高温でのサイクル寿命に優れたアルカリ蓄電池を提供することが可能となる。
【0009】
さらに、電極群の外側に配置された正極においては、ニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量が増大すると高率放電特性において悪影響を与えるため、電極群の外側に配置された正極に添加するニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量を抑制する必要があることが分かった。
【0010】
また、電極群の内部に配置された正極に添加されるニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量が少ないと、高温サイクル寿命向上効果が発揮できないことから、電極群の内部に配置された正極に添加されるニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量は0.2質量%以上とするのが望ましい。
【0011】
しかしながら、電極群の内部に配置される正極板に添加されたニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量が増大しすぎると、室温高率放電特性が低下する。このため、電極群の内部に配置される正極に添加されたニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量は、サイクル寿命を維持するのに必要な最小限の量に調整することが望ましい。
【0012】
この場合、コバルト化合物層にアルカリカチオンが含有されていると、コバルト化合物層の導電性がさらに向上するので、コバルト化合物層はアルカリカチオンが含有するコバルト化合物層とするのが望ましい。
【0013】
【発明の実施の形態】
以下に、本発明の実施の形態を図1を参照して詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。なお、図1は本発明のアルカリ蓄電池の断面を模式的に示す断面図である。
【0014】
1.ニッケル正極板の作製
質量比で金属ニッケル100に対して亜鉛3質量%、コバルト1質量%となる硫酸ニッケル、硫酸亜鉛、硫酸コバルトの混合水溶液を攪拌しながら、水酸化ナトリウム水溶液を徐々に添加し、反応溶液中のpHが13〜14になるように維持させて粒状の水酸化ニッケルを析出させた。この粒状の水酸化ニッケルが析出した溶液に対して、硫酸コバルト水溶液を添加し、この反応溶液中のpHが9〜10になるように維持させて、主成分が水酸化ニッケルである球状水酸化物粒子を結晶核として、この核の周囲に水酸化コバルトを析出させた。
【0015】
このようにして表面に水酸化コバルト被覆層を有する粒状の水酸化ニッケル(正極活物質粒子)を得た。この後、この正極活物質粒子を熱気流中でアルカリ溶液を噴霧するアルカリ熱処理を行った。なお、このアルカリ熱処理において、正極活物質粒子の温度が60℃になるように温度調節し、コバルト量に対して5倍量の35質量%のアルカリ溶液(水酸化ナトリウム水溶液)を噴霧した。この後、水酸化ニッケル粒子の温度が90℃に達するまで昇温した。ついで、これを水洗した後、60℃で乾燥させて正極活物質とした。これにより、水酸化ニッケル粒子の表面にナトリウム(アルカリカチオン)含有コバルト化合物の高導電性被膜が形成された水酸化ニッケル粉末(正極活物質)を得た。
【0016】
ついで、上述のように調製した正極活物質にニオブ化合物(例えば、Nb25)を添加して混合物とした後、この混合物500gに対して0.25質量%のHPC(ヒドロキシルプロピルセルロース)ディスパージョン液を200g混合して活物質スラリーを作製した。なお、ニオブ化合物(Nb25)を添加する際に、正極活物質の質量に対して0.1質量%となるように添加したものを活物質スラリーa1とした。同様に、0.2質量%となるように添加したものを活物質スラリーb1とし、0.5質量%となるように添加したものを活物質スラリーc1とした。また、ニオブ化合物(Nb25)が無添加のものを作製し、これを活物質スラリーd1とした。なお、ニオブ化合物としては、Nb25以外に、Nb23,NbO,NbO2,NaNbO3,LiNbO3,KNbO3,Nb25・xH2Oを用いるようにしてもよい。
【0017】
ついで、上述のようにして作製した活物質スラリーa1〜d1を、厚みが1.7mmの発泡ニッケルからなる電極基板に、所定の充填密度となるように充填した。この後、乾燥させて、厚みが0.95mmになるまで圧延し、所定の寸法に切断してニッケル正極板11(a,b,c,d)をそれぞれ作製した。なお、活物質スラリーa1を用いたものをニッケル正極板aとし、活物質スラリーb1を用いたものをニッケル正極板bとし、活物質スラリーc1を用いたものをニッケル正極板cとし、活物質スラリーd1を用いたものをニッケル正極板dとした。
【0018】
2.水素吸蔵合金負極板の作製
ミッシュメタル(Mm)、ニッケル(Ni:純度99.9%)、コバルト(Co)、マンガン(Mn)およびアルミニウム(Al)を所定のモル比になるようにそれぞれ混合し、この混合物をアルゴンガス雰囲気の高周波誘導炉で誘導加熱して合金溶湯とした。この合金溶湯を公知の方法で鋳型に流し込み、冷却して、組成式がMmNiaCobMncAldで表される水素吸蔵合金のインゴットを作製した。この水素吸蔵合金インゴットを機械的粉砕法により、平均粒子径が約60μmになるまで粉砕した。
【0019】
ついで、水素吸蔵合金粉末100質量部に対して、結着剤としての5質量%のポリエチレンオキサイド(PEO)の水溶液を20質量部混合して水素吸蔵合金ペーストを作製した。この水素吸蔵合金ペーストをパンチングメタルからなる芯体の両面に塗布し、室温で乾燥させた後、所定の厚みに圧延し、所定の寸法に切断して水素吸蔵合金負極板12を作製した。
【0020】
3.ニッケル−水素蓄電池の作製
ついで、上述のように作製したニッケル正極板11(a,b,c,d)を4枚と、水素吸蔵合金負極板12を5枚ずつ用いて、これらの間にポリプロピレン製不織布からなるセパレータ13を介在させてニッケル正極板11と水素吸蔵合金負極板12が対向するように交互に積層した。ついで、ニッケル正極板11に配設された正極導電タブ11a同士を溶接するとともに、水素吸蔵合金負極板12に配設された負極導電タブ12a同士を溶接した。そして、正極導電タブ11aの溶接部に正極集電体14を溶接して電極群を作製した。ついで、電極群を箱状の外装缶15内に挿入した後、封口体16の正極端子部材16cの下端部に正極集電体14を溶接した。この後、外装缶15内に所定の濃度のアルカリ電解液を充填し、外装缶15の開口部に封口体16により封止して公称容量が900mAhの角形のニッケル−水素蓄電池を作製した。
【0021】
なお、封口体16は、中央部に開孔部を備えた略長方形状で金属製の蓋体16aと、この蓋体16aの下面に配置されて中央部に開孔部を備えた略長方形状で合成樹脂製の絶縁板16bと、これらの開孔部内に挿入された略箱状の正極端子部材16cと、蓋体16aと正極端子部材16cとの間に配置されて、蓋体16aと正極端子部材16cとを絶縁するとともに、蓋体16aと正極端子部材16cとの間を液密にするガスケット16dと、正極端子部材16cの上部に配置されて正極端子部材16cの上端部に溶接された正極キャップ16eとから構成されている。
【0022】
そして、このように構成される封口体16を外装缶10の開口部に配置した後、蓋体16aの外周部と外装缶10の上部内周面とをレーザ溶接することにより、外装缶10内は液密に封口されることとなる。また、正極キャップ16e内には弾性を有する弁体16fが配置されており、電池内にガスが発生して電池内が所定の圧力より上昇すると、弁体16fが弾性変形して正極キャップ16eに設けられたガス抜孔16gを通して、電池内で発生したガスを放出するようになされている。これにより、弁体16fは安全弁の作用をして電池内の圧力上昇を防止することができるようになる。
【0023】
ここで、電極群の外側(外装缶15側)の正極板11−1にはニオブ化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にも同様な正極板dが配置された電極群を用いたものを電池A1とした。同様に、電極群の外側の正極板11−1にはニオブ化合物が0.5質量%添加された正極板cが配置され、電極群の内部の正極板11−2にはニオブ化合物が無添加の正極板dが配置された電極群を用いたものを電池A2とした。また、電極群の外側の正極板11−1にはニオブ化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはニオブ化合物が0.1質量%添加された正極板aが配置された電極群を用いたものを電池A3とした。
【0024】
また、電極群の外側の正極板11−1にはニオブ化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはニオブ化合物が0.2質量%添加された正極板bが配置された電極群を用いたものを電池A4とした。また、電極群の外側の正極板11−1にはニオブ化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはニオブ化合物が0.5質量%添加された正極板cが配置された電極群を用いたものを電池A5とした。また、電極群の外側の正極板11−1にはニオブ化合物が0.1質量%添加された正極板aが配置され、電極群の内部の正極板11−2にはニオブ化合物が0.5質量%添加された正極板cが配置された電極群を用いたものを電池A6とした。
【0025】
また、電極群の外側の正極板11−1にはニオブ化合物が0.2質量%添加された正極板bが配置され、電極群の内部の正極板11−2にはニオブ化合物が0.5質量%添加された正極板cが配置された電極群を用いたものを電池A7とした。さらに、電極群の外側の正極板11−1にはニオブ化合物が0.5質量%添加された正極板cが配置され、電極群の内部の正極板11−2にもニオブ化合物が0.5質量%添加された正極板cが配置された電極群を用いたものを電池A8とした。
【0026】
4.試験
(1)室温高率放電放電特性の測定
ついで、上述のように作製した電池A1〜A8を用いて、これらの各電池を周囲温度が室温(約25℃)の雰囲気中で、900mA(1ItmA)の充電電流で正極が完全に充電された後に生じる電池電圧の低下(−ΔV)が10mVになるまで充電した後、1時間休止し、900mA(1ItmA)の放電電流で、電池電圧が1.0Vになるまで放電させるという1It放電を行って、放電時間から各電池の放電容量X(mAh)を求めた。
【0027】
ついで、周囲温度が室温(約25℃)の雰囲気中で、900mA(1ItmA)の充電電流で正極が完全に充電された後に生じる電池電圧の低下(−ΔV)が10mVになるまで充電した後、1時間休止し、3600mA(4ItmA)の放電電流で、電池電圧が1.0Vになるまで放電させるという4It高率放電を行って、放電時間から各電池の放電容量Y(mAh)を求めた。この後、求めたXとYの比率[(Y/X)×100%]を室温高率放電特性として算出すると、下記の表1に示すような結果が得られた。
【0028】
(2)高温サイクル寿命の測定
また、上述のように作製した電池A1〜A8を用いて、これらの各電池を周囲温度が60℃の高温雰囲気下で、900mA(1ItmA)の充電電流で2時間充電した後、450mA(0.5ItmA)の放電電流で電池電圧が1.0Vになるまで放電させて、これを1サイクルとする充放電サイクル試験を行った。そして、その放電容量が60℃の高温雰囲気下で1サイクル目の放電容量の80%以下に低下するまでのサイクル数を求めて、これを高温サイクル寿命として求めると下記の表1に示すような結果が得られた。
【0029】
【表1】

Figure 0004443135
【0030】
上記表1の結果から明らかなように、電極群の外側の正極板11−1および内部の正極板11−2に、ニオブ化合物が無添加の正極板dが配置された電池A1においては、高温サイクル寿命が100サイクルと著しく低下していることが分かる。また、電極群の外側の正極板11−1にニオブ化合物が0.5質量%添加された正極板cが配置され、電極群の内部の正極板11−2にニオブ化合物が無添加の正極板dが配置された電池A2においても、高温サイクル寿命が250サイクルと低下していることが分かる。
【0031】
これに対して、電極群の内部の正極板11−2にニオブ化合物が0.5質量%添加された正極板cが配置され、電極群の外側の正極板11−1にニオブ化合物が無添加の正極板dが配置された電池A5においては、高温サイクル寿命が410サイクルと著しく向上していることが分かる。このことは、ニオブ化合物が添加された正極板cを用いることにより、高温サイクル寿命が向上するが、ニオブ化合物が添加された正極板cの配置位置としては、電極群の内部にした方が効果的であることを示している。
【0032】
これは、電極群の内部に配置された正極板11−2にニオブ化合物が添加されていないと、電極群の内部よりは温度が低い外側(外装缶15側)に配置された正極板11−1よりも劣化の速度が速くなる。このため、電極群の外側に配置された正極板11−1が寿命に至る前に、電極群の内部に配置された正極板11−2が寿命に至ることで、電池全体としては短寿命となったためと考えられる。
【0033】
一方、温度が高くなる電極群の内部に配置された正極板11−2にニオブ化合物が添加されていると、この正極板11−2が高温で劣化されることが抑制されるようになる。これにより、電極群の内部に配置された正極板11−2と、外側に配置された正極板11−1の劣化速度のバランスが保たれるようになる。この結果、ニオブ化合物が添加された正極板cを、電極群の内部の正極板11−2として配置することにより、高温サイクル寿命を向上させることが可能となったと考えられる。
【0034】
また、電極群の外側の正極板11−1にニオブ化合物が0.5質量%添加された正極板cが配置され、電極群の内部の正極板11−2にもニオブ化合物が0.5質量%添加された正極板cが配置された電池A8においては、高温サイクル寿命が450サイクルと大きい反面、室温高率放電特性が55%と著しく低下していることが分かる。これに対して、電極群の内部の正極板11−2にニオブ化合物が0.5質量%添加された正極板cが配置され、電極群の外側の正極板11−1にニオブ化合物の添加量が0.2質量%と低減された正極板bが配置された電池A7においては、高温サイクル寿命が440サイクルと大きく、かつ室温高率放電特性も75%と向上していることが分かる。
【0035】
また、電極群の内部の正極板11−2にニオブ化合物が0.5質量%添加された正極板cが配置され、電極群の外側の正極板11−1にニオブ化合物が無添加の正極板dが配置された電池A5においては、高温サイクル寿命が410サイクルと大きく、かつ室温高率放電特性は80%とさらに向上していることが分かる。
これらのことから、電極群の外側に配置される正極板11−1においては、ニオブ化合物の添加量が増大すると室温高率放電特性において悪影響を与えるため、電極群の外側に配置される正極板11−1に添加するニオブ化合物の添加量を抑制する必要があるといえる。
【0036】
さらに、電極群の内部の正極板11−2にニオブ化合物が0.1質量%添加された正極板aが配置され、電極群の外側の正極板11−1にニオブ化合物が無添加の正極板dが配置された電池A3においては、室温高率放電特性は80%と大きいのに対して、高温サイクル寿命が290サイクルと低下していることが分かる。これに対して、電極群の内部の正極板11−2にニオブ化合物が0.2質量%添加された正極板bが配置され、電極群の外側の正極板11−1にニオブ化合物が無添加の正極板dが配置された電池A4においては、室温高率放電特性は81%と大きく、かつ高温サイクル寿命も400サイクルと向上していることが分かる。
【0037】
このことは、電極群の内部に配置される正極板11−2に添加されるニオブ化合物の添加量が少ないと、高温サイクル寿命向上効果が発揮できないことを示している。このことから、電極群の内部に配置される正極板11−2に添加されるニオブ化合物の添加量は0.2質量%以上とするのが望ましい。しかしながら、電極群の内部に配置される正極板11−2に添加されるニオブ化合物の添加量が増大しすぎると、室温高率放電特性が低下するため、その添加量はサイクル寿命を維持するのに必要最小限の量に調整することが望ましい。
【0038】
これらのことを総合すると以下のようにいうことができる。即ち、ニオブ化合物が添加された正極板を用いることにより、高温サイクル寿命が向上するが、ニオブ化合物が添加された正極板の配置位置としては、電極群の内部にした方が効果的である。この場合、電極群の外側に配置された正極板11−1においては、ニオブ化合物の添加量が増大すると室温高率放電特性において悪影響を与えるため、電極群の外側に配置された正極板11−1に添加するニオブ化合物の添加量を抑制する必要がある。
【0039】
また、電極群の内部に配置された正極板11−2に添加されるニオブ化合物の添加量が少ないと、高温サイクル寿命向上効果が発揮できないことことから、電極群の内部に配置された正極板11−2に添加されるニオブ化合物の添加量は0.2質量%以上とするのが望ましい。しかしながら、電極群の内部に配置される正極板11−2に添加されたニオブ化合物の添加量が増大しすぎると、室温高率放電特性が低下する。このため、電極群の内部に配置される正極板11−2に添加されたニオブ化合物の添加量はサイクル寿命を維持するのに必要最小限の量に調整することが望ましい。
【0040】
5.添加化合物の検討
上述した例においては、ニオブ化合物を正極板中に添加する例について説明したが、チタン化合物(例えばTiO2)、タングステン化合物(例えばWO2)、モリブデン化合物(例えばMoO3)を正極板中に添加した場合についても検討した。
【0041】
(1)チタン化合物について
上述と同様にして調製した正極活物質(コバルト化合物を被覆した水酸化ニッケル)の質量に対してチタン化合物としてのTiO2の添加量が0.1質量%となるように添加した活物質スラリーを調製して、これを活物質スラリーe1とした。同様に、0.2質量%となるように添加したものを活物質スラリーf1とし、0.5質量%となるように添加したものを活物質スラリーg1とした。なお、チタン化合物としては、TiO2以外に、Ti23,TiO,Na2Ti37,Li2TiO3,K2TiO3を用いるようにしてもよい。
【0042】
ついで、これらの活物質スラリーe1〜g1を、上述と同様に発泡ニッケルからなる電極基板に充填し、乾燥させ、圧延した後、所定の寸法に切断してニッケル正極板e〜gを作製した。なお、活物質スラリーe1を用いたものを正極板eとし、活物質スラリーf1を用いたものを正極板fとし、活物質スラリーg1を用いたものを正極板gとした。ついで、このニッケル正極板e〜gと、上述のように作製した水素吸蔵合金負極板を用いて、上述と同様にして、公称容量が900mAhの角形のニッケル−水素蓄電池を作製した。
【0043】
なお、電極群の外側の正極板11−1にはチタン化合物が0.5質量%添加された正極板gが配置され、電極群の内部の正極板11−2にはチタン化合物が無添加の正極板dが配置された電極群を用いたものを電池B2とした。また、電極群の外側の正極板11−1にはチタン化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはチタン化合物が0.1質量%添加された正極板eが配置された電極群を用いたものを電池B3とした。また、電極群の外側の正極板11−1にはチタン化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはチタン化合物が0.2質量%添加された正極板fが配置された電極群を用いたものを電池B4とした。
【0044】
また、電極群の外側の正極板11−1にはチタン化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはチタン化合物が0.5質量%添加された正極板gが配置された電極群を用いたものを電池B5とした。また、電極群の外側の正極板11−1にはチタン化合物が0.1質量%添加された正極板eが配置され、電極群の内部の正極板11−2にはチタン化合物が0.5質量%添加された正極板gが配置された電極群を用いたものを電池B6とした。
【0045】
また、電極群の外側の正極板11−1にはチタン化合物が0.2質量%添加された正極板fが配置され、電極群の内部の正極板11−2にはチタン化合物が0.5質量%添加された正極板gが配置された電極群を用いたものを電池B7とした。さらに、電極群の外側の正極板11−1にはチタン化合物が0.5質量%添加された正極板gが配置され、電極群の内部の正極板11−2にもチタン化合物が0.5質量%添加された正極板gが配置された電極群を用いたものを電池B8とした。
【0046】
ついで、上述のように作製した電池B2〜B8を用いて、上述と同様に、室温高率放電特性および高温サイクル特性(容量維持率)を求めると、下記の表2に示すような結果が得られた。なお、表2には上述した電池A1の結果も併せて示している。
【0047】
【表2】
Figure 0004443135
【0048】
上記表2の結果から明らかなように、上述した表1の結果とほぼ同様な傾向であることが分かる。このことから、チタン化合物が添加された正極板を用いることにより、高温サイクル寿命が向上するが、チタン化合物が添加された正極板の配置位置としては、電極群の内部にした方が効果的である。この場合、電極群の外側に配置された正極板11−1においては、チタン化合物の添加量が増大すると室温高率放電特性において悪影響を与えるため、電極群の外側に配置された正極板11−1に添加するチタン化合物の添加量を抑制する必要があるといえる。
【0049】
また、電極群の内部に配置された正極板11−2に添加されるチタン化合物の添加量が少ないと、高温サイクル寿命向上効果が発揮できないことことから、電極群の内部に配置された正極板11−2に添加されるチタン化合物の添加量は0.2質量%以上とするのが望ましい。しかしながら、電極群の内部に配置される正極板11−2に添加されたチタン化合物の添加量が増大しすぎると、室温高率放電特性が低下する。このため、電極群の内部に配置される正極板11−2に添加されたチタン化合物の添加量はサイクル寿命を維持するのに必要最小限の量に調整することが望ましい。
【0050】
(2)タングステン化合物について
上述と同様にして調製した正極活物質(コバルト化合物を被覆した水酸化ニッケル)の質量に対してタングステン化合物としてのWO2の添加量が0.1質量%となるように添加した活物質スラリーを調製して、これを活物質スラリーh1とした。同様に、0.2質量%となるように添加したものを活物質スラリーi1とし、0.5質量%となるように添加したものを活物質スラリーj1とした。なお、タングステン化合物としては、WO2以外に、WO3,Na2WO4,Li2WO2,K2WO4を用いるようにしてもよい。
【0051】
ついで、これらの活物質スラリーh1〜j1を、上述と同様に発泡ニッケルからなる電極基板に充填し、乾燥させ、圧延した後、所定の寸法に切断してニッケル正極板h〜jを作製した。なお、活物質スラリーh1を用いたものを正極板hとし、活物質スラリーi1を用いたものを正極板iとし、活物質スラリーj1を用いたものを正極板jとした。ついで、このニッケル正極板h〜jと、上述のように作製した水素吸蔵合金負極板を用いて、上述と同様にして、公称容量が900mAhの角形のニッケル−水素蓄電池C2〜C8を作製した。
【0052】
なお、電極群の外側の正極板11−1にはタングステン化合物が0.5質量%添加された正極板jが配置され、電極群の内部の正極板11−2にはタングステン化合物が無添加の正極板dが配置された電極群を用いたものを電池C2とした。また、電極群の外側の正極板11−1にはタングステン化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはタングステン化合物が0.1質量%添加された正極板hが配置された電極群を用いたものを電池C3とした。また、電極群の外側の正極板11−1にはタングステン化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはタングステン化合物が0.2質量%添加された正極板iが配置された電極群を用いたものを電池C4とした。
【0053】
また、電極群の外側の正極板11−1にはタングステン化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはタングステン化合物が0.5質量%添加された正極板jが配置された電極群を用いたものを電池C5とした。また、電極群の外側の正極板11−1にはタングステン化合物が0.1質量%添加された正極板hが配置され、電極群の内部の正極板11−1にはタングステン化合物が0.5質量%添加された正極板jが配置された電極群を用いたものを電池C6とした。
【0054】
また、電極群の外側の正極板11−1にはタングステン化合物が0.2質量%添加された正極板iが配置され、電極群の内部の正極板11−2にはタングステン化合物が0.5質量%添加された正極板jが配置された電極群を用いたものを電池C7とした。さらに、電極群の外側の正極板11−1にはタングステン化合物が0.5質量%添加された正極板jが配置され、電極群の内部の正極板11−2にもタングステン化合物が0.5質量%添加された正極板jが配置された電極群を用いたものを電池C8とした。
【0055】
ついで、上述のように作製した電池C2〜C8を用いて、上述と同様に、室温高率放電特性および高温サイクル特性(容量維持率)を求めると、下記の表3に示すような結果が得られた。なお、表3には上述した電池A1の結果も併せて示している。
【0056】
【表3】
Figure 0004443135
【0057】
上記表3の結果から明らかなように、上述した表1および表2の結果とほぼ同様な傾向であることが分かる。このことから、タングステン化合物が添加された正極板を用いることにより、高温サイクル寿命が向上するが、タングステン化合物が添加された正極板の配置位置としては、電極群の内部にした方が効果的である。この場合、電極群の外側に配置された正極板11−1においては、タングステン化合物の添加量が増大すると室温高率放電特性において悪影響を与えるため、電極群の外側に配置された正極板11−1に添加するタングステン化合物の添加量を抑制する必要があるといえる。
【0058】
また、電極群の内部に配置された正極板11−2に添加されるタングステン化合物の添加量が少ないと、高温サイクル寿命向上効果が発揮できないことことから、電極群の内部に配置された正極板11−2に添加されるタングステン化合物の添加量は0.2質量%以上とするのが望ましい。しかしながら、電極群の内部に配置される正極板11−2に添加されたタングステン化合物の添加量が増大しすぎると、室温高率放電特性が低下する。このため、電極群の内部に配置される正極板11−2に添加されたタングステン化合物の添加量はサイクル寿命を維持するのに必要最小限の量に調整することが望ましい。
【0059】
(3)モリブデン化合物について
上述と同様にして調製した正極活物質(コバルト化合物を被覆した水酸化ニッケル)の質量に対してモリブデン化合物としてのMoO3の添加量が0.1質量%となるように添加した活物質スラリーを調製して、これを活物質スラリーk1とした。同様に、0.2質量%となるように添加したものを活物質スラリーl1とし、0.5質量%となるように添加したものを活物質スラリーm1とした。なお、モリブデン化合物としては、MoO3以外に、MoO3・H2O,MoO3・2H2O,Na2MoO4・2H2O,Li6Mo724・12H2O,K2MoO4を用いるようにしてもよい。
【0060】
ついで、これらの活物質スラリーk1〜m1を、上述と同様に発泡ニッケルからなる電極基板に充填し、乾燥させ、圧延した後、所定の寸法に切断してニッケル正極板k〜mを作製した。なお、活物質スラリーk1を用いたものを正極板kとし、活物質スラリーl1を用いたものを正極板lとし、活物質スラリーm1を用いたものを正極板mとした。ついで、このニッケル正極板k〜mと、上述のように作製した水素吸蔵合金負極板を用いて、上述と同様にして、公称容量が900mAhの角形のニッケル−水素蓄電池D2〜D8を作製した。
【0061】
なお、電極群の外側の正極板11−1にはモリブデン化合物が0.5質量%添加された正極板mが配置され、電極群の内部の正極板11−2にはモリブデン化合物が無添加の正極板dが配置された電極群を用いたものを電池D2とした。また、電極群の外側の正極板11−1にはモリブデン化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはモリブデン化合物が0.1質量%添加された正極板kが配置された電極群を用いたものを電池D3とした。また、電極群の外側の正極板11−1にはモリブデン化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはモリブデン化合物が0.2質量%添加された正極板lが配置された電極群を用いたものを電池D4とした。
【0062】
また、電極群の外側の正極板11−1にはモリブデン化合物が無添加の正極板dが配置され、電極群の内部の正極板11−2にはモリブデン化合物が0.5質量%添加された正極板mが配置された電極群を用いたものを電池D5とした。また、電極群の外側の正極板11−1にはモリブデン化合物が0.1質量%添加された正極板kが配置され、電極群の内部の正極板11−2にはモリブデン化合物が0.5質量%添加された正極板mが配置された電極群を用いたものを電池D6とした。
【0063】
また、電極群の外側の正極板11−1にはモリブデン化合物が0.2質量%添加された正極板lが配置され、電極群の内部の正極板11−2にはモリブデン化合物が0.5質量%添加された正極板mが配置された電極群を用いたものを電池D7とした。さらに、電極群の外側の正極板11−1にはモリブデン化合物が0.5質量%添加された正極板mが配置され、電極群の内部の正極板11−2にもモリブデン化合物が0.5質量%添加された正極板mが配置された電極群を用いたものを電池D8とした。
【0064】
ついで、上述のように作製した電池D2〜D8を用いて、上述と同様に、室温高率放電特性および高温サイクル特性(容量維持率)を求めると、下記の表4に示すような結果が得られた。なお、表4には上述した電池A1の結果も併せて示している。
【0065】
【表4】
Figure 0004443135
【0066】
上記表4の結果から明らかなように、上述した表1、表2および表3の結果とほぼ同様な傾向であることが分かる。このことから、モリブデン化合物が添加された正極板を用いることにより、高温サイクル寿命が向上するが、モリブデン化合物が添加された正極板の配置位置としては、電極群の内部にした方が効果的である。この場合、電極群の外側に配置された正極板11−1においては、モリブデン化合物の添加量が増大すると室温高率放電特性において悪影響を与えるため、電極群の外側に配置された正極板11−1に添加するモリブデン化合物の添加量を抑制する必要があるといえる。
【0067】
また、電極群の内部に配置された正極板11−2に添加されるモリブデン化合物の添加量が少ないと、高温サイクル寿命向上効果が発揮できないことことから、電極群の内部に配置された正極板11−2に添加されるモリブデン化合物の添加量は0.2質量%以上とするのが望ましい。しかしながら、電極群の内部に配置される正極板11−2に添加されたモリブデン化合物の添加量が増大しすぎると、室温高率放電特性が低下する。このため、電極群の内部に配置される正極板11−2に添加されたモリブデン化合物の添加量はサイクル寿命を維持するのに必要最小限の量に調整することが望ましい。
【0068】
【発明の効果】
上述したように、本発明においては、表面にコバルト化合物の被覆層を有する水酸化ニッケルを主体とする正極活物質を備えたニッケル正極中にニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物が添加されている。このため、水酸化ニッケルを主体とする活物質層の表面を被覆するコバルト化合物が、アルカリ電解液中に溶解して析出する速度を遅らせることができる。
【0069】
これにより、ニッケル正極中に良好な導電ネットワークを維持できるようになる。この場合、ニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量は、電極群の内部に配置された方が多くなるように添加されているので、電池温度が上昇しやすい電極群の内部に配置された正極のサイクル寿命が向上する。この結果、電池全体としてのサイクル寿命も向上することとなる。
【0070】
なお、上述した実施の形態においては、ニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量を、電極群の外側に配置された正極板11−1は少なくし、電極群の内部に配置される正極板11−2には多くした例について説明した。しかしながら、正極板の配置枚数を多くした電極群を用いる場合は、電極群の外側から内部に向けて、順次これらの化合物の添加量が増大するような構成となるように配置するようにしてもよい。
【0071】
また、上述した実施の形態においては、板状の正極板11と、板状の負極板12をセパレータ13を介して対向させ、これらを積層した電極群を用いてアルカリ蓄電池を構成した例について説明した。しかしながら、本発明はこの例に限られず、帯状の正極板と帯状の負極板をセパレータを介して対向させ、これらを渦巻状に巻回した渦巻状電極群を円筒形外装缶内に挿入して形成する円筒形電池にも適用することが可能である。
【0072】
この場合、ニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量が異なる正極板を作製して、これらの化合物の添加量が異なる正極板同士を接合して、1枚の帯状正極板とし、これと帯状に形成された水素吸蔵合金負極板をセパレータを間にして渦巻状に巻回して作製した電極群を円筒形外装缶内に挿入して作製すればよい。
【図面の簡単な説明】
【図1】 本発明のアルカリ蓄電池の断面を模式的に示す断面図である。
【符号の説明】
10…ニッケル−水素蓄電池、11…ニッケル正極板、11−1…電極群の外側に配置されたニッケル正極板、11−2…電極群の内部に配置されたニッケル正極板、12…水素吸蔵合金負極板、13…セパレータ、14…正極集電体、15…外装缶、16…封口体、16a…蓋体、16b…絶縁板、16c…正極端子部材、16d…ガスケット、16e…正極キャップ、16f…弁体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, and more particularly to an alkaline storage battery including a nickel positive electrode containing a positive electrode active material mainly composed of nickel hydroxide.
[0002]
[Prior art]
In recent years, the use of secondary batteries (storage batteries) has expanded, and storage batteries have come to be used over a wide range such as mobile phones, personal computers, electric tools, electric bicycles, hybrid vehicles (HEV), and electric vehicles (EV). Among these, alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries are used as power sources for devices requiring high output such as electric tools, electric bicycles, hybrid vehicles (HEV), and electric vehicles (EV). It came to be able to. Along with this, the opportunities for alkaline storage batteries to be used in a high temperature atmosphere have increased.
[0003]
Against this background, there has been a demand for an alkaline storage battery in which charge / discharge characteristics and charge / discharge efficiency are unlikely to deteriorate even when charge / discharge is performed in a high-temperature atmosphere. Therefore, in Patent Document 1 (Japanese Patent Laid-Open No. 8-222213), a conductive agent layer made of metallic cobalt or a cobalt compound is formed on the surface of positive electrode active material particles mainly composed of nickel hydroxide, and this positive electrode active material. An alkaline storage battery in which one kind selected from a zirconium compound, a niobium compound, a molybdenum compound, and a tungsten compound is added to a positive electrode equipped with a battery has been proposed.
[0004]
As described above, when one compound selected from a zirconium compound, a niobium compound, a molybdenum compound and a tungsten compound is added to the positive electrode, a cobalt compound covering the surface of the positive electrode active material layer mainly composed of nickel hydroxide is obtained. The rate of dissolution and precipitation in the alkaline electrolyte can be delayed. Thereby, a favorable conductive network can be maintained in the nickel positive electrode.
[0005]
[Problems to be solved by the invention]
However, during charging / discharging, the temperature inside the electrode group becomes higher, and a temperature difference occurs between the inside and the outside of the electrode group. Furthermore, in an alkaline storage battery used in a high temperature atmosphere, the temperature inside the battery will rise significantly. For this reason, when the temperature of the positive electrode arranged inside the electrode group rises, the deterioration rate of the positive electrode arranged inside the electrode group is different from the deterioration rate of the positive electrode arranged outside the electrode group. Produced. This is the same even when a compound such as a zirconium compound, a niobium compound, a molybdenum compound, or a tungsten compound is added to the positive electrode including the positive electrode active material in which the conductive agent layer made of the above-described metallic cobalt or cobalt compound is formed. It is.
[0006]
Here, when the deterioration rate of the positive electrode arranged inside the electrode group increases due to high temperature, the cycle life at high temperature as a whole battery is shortened due to the high deterioration rate of the positive electrode. The problem of becoming.
Therefore, the present invention has been made to remedy such problems, and suppresses the deterioration of the positive electrode disposed inside the electrode group, resulting in a temperature difference between the inside and outside of the electrode group. Another object of the present invention is to provide an alkaline storage battery having excellent cycle life at a high temperature by balancing the deterioration rates inside and outside the electrode group.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the positive electrode used in the alkaline storage battery of the present invention is selected from a niobium compound, a titanium compound, a tungsten compound, and a molybdenum compound as a positive electrode active material mainly composed of nickel hydroxide having a coating layer of a cobalt compound. At least one kind of compound is added, and the positive electrode disposed inside the electrode group has an added amount of these compounds higher than that of the positive electrode disposed outside the electrode group. The addition amount of at least one compound selected from the niobium compounds, titanium compounds, tungsten compounds, and molybdenum compounds added to the positive electrode disposed inside the electrode group in a large amount has a coating layer of a cobalt compound. It is 0.2% by mass or more based on the mass of the positive electrode active material mainly composed of nickel hydroxide. It is characterized by that.
[0008]
As described above, when at least one compound selected from a niobium compound, a titanium compound, a tungsten compound, and a molybdenum compound is added to the nickel positive electrode, the surface of the active material layer mainly composed of nickel hydroxide is covered. The rate at which the cobalt compound dissolves and deposits in the electrolyte can be delayed. Thereby, a favorable conductive network can be maintained in the nickel positive electrode. In this case, the arrangement position of the positive electrode to which at least one compound selected from a niobium compound, a titanium compound, a tungsten compound, and a molybdenum compound is added is more effective within the electrode group. Thus, even if a temperature difference occurs between the inside and outside of the electrode group, it is possible to provide an alkaline storage battery excellent in cycle life at a high temperature by balancing the deterioration rate between the inside and outside of the electrode group. It becomes possible.
[0009]
Furthermore, in the positive electrode arranged outside the electrode group, when the addition amount of at least one compound selected from a niobium compound, a titanium compound, a tungsten compound, and a molybdenum compound is increased, the high rate discharge characteristics are adversely affected. It has been found that it is necessary to suppress the addition amount of at least one compound selected from niobium compounds, titanium compounds, tungsten compounds, and molybdenum compounds added to the positive electrode disposed outside the electrode group.
[0010]
Moreover, if the addition amount of at least one compound selected from niobium compounds, titanium compounds, tungsten compounds, and molybdenum compounds added to the positive electrode disposed inside the electrode group is small, the effect of improving the high-temperature cycle life cannot be exhibited. Therefore, the addition amount of at least one compound selected from a niobium compound, a titanium compound, a tungsten compound, and a molybdenum compound added to the positive electrode disposed inside the electrode group is 0.2% by mass or more. desirable.
[0011]
However, if the amount of at least one compound selected from the niobium compound, titanium compound, tungsten compound, and molybdenum compound added to the positive electrode plate disposed inside the electrode group is excessively increased, the room temperature high rate discharge characteristics Decreases. For this reason, the addition amount of at least one compound selected from niobium compounds, titanium compounds, tungsten compounds, and molybdenum compounds added to the positive electrode disposed inside the electrode group is necessary to maintain the cycle life. It is desirable to adjust to the minimum amount.
[0012]
In this case, when the alkali cation is contained in the cobalt compound layer, the conductivity of the cobalt compound layer is further improved. Therefore, the cobalt compound layer is preferably a cobalt compound layer containing the alkali cation.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the following, an embodiment of the present invention will be described in detail with reference to FIG. 1. However, the present invention is not limited to this, and can be implemented with appropriate modifications without departing from the scope of the present invention. It is. In addition, FIG. 1 is sectional drawing which shows the cross section of the alkaline storage battery of this invention typically.
[0014]
1. Production of nickel positive electrode plate
While stirring a mixed aqueous solution of nickel sulfate, zinc sulfate, and cobalt sulfate that is 3% by mass of zinc and 1% by mass of cobalt with respect to metal nickel 100 by mass ratio, an aqueous sodium hydroxide solution is gradually added, Granular nickel hydroxide was precipitated by maintaining the pH at 13-14. An aqueous cobalt sulfate solution is added to the solution in which the particulate nickel hydroxide is precipitated, and the pH in the reaction solution is maintained at 9 to 10, so that the spherical hydroxide whose main component is nickel hydroxide is added. Cobalt hydroxide was precipitated around the core using the product particles as crystal nuclei.
[0015]
Thus, granular nickel hydroxide (positive electrode active material particles) having a cobalt hydroxide coating layer on the surface was obtained. Thereafter, an alkaline heat treatment was performed on the positive electrode active material particles by spraying an alkaline solution in a hot air stream. In this alkaline heat treatment, the temperature of the positive electrode active material particles was adjusted so as to be 60 ° C., and an alkaline solution (sodium hydroxide aqueous solution) of 35 mass%, which is five times the amount of cobalt, was sprayed. Thereafter, the temperature was raised until the temperature of the nickel hydroxide particles reached 90 ° C. Next, this was washed with water and dried at 60 ° C. to obtain a positive electrode active material. As a result, a nickel hydroxide powder (positive electrode active material) in which a highly conductive coating of a sodium (alkali cation) -containing cobalt compound was formed on the surface of the nickel hydroxide particles was obtained.
[0016]
Next, a niobium compound (for example, Nb) is added to the positive electrode active material prepared as described above. 2 O Five ) Was added to prepare a mixture, and 200 g of a 0.25 mass% HPC (hydroxylpropylcellulose) dispersion was mixed with 500 g of the mixture to prepare an active material slurry. Niobium compounds (Nb 2 O Five ) Was added so as to be 0.1% by mass with respect to the mass of the positive electrode active material, which was defined as an active material slurry a1. Similarly, what was added so that it might become 0.2 mass% was made into the active material slurry b1, and what was added so that it might become 0.5 mass% was made into the active material slurry c1. Niobium compounds (Nb 2 O Five ) Was added, and this was used as the active material slurry d1. Niobium compounds include Nb 2 O Five In addition to Nb 2 O Three , NbO, NbO 2 , NaNbO Three , LiNbO Three , KNbO Three , Nb 2 O Five XH 2 O may be used.
[0017]
Subsequently, the active material slurries a1 to d1 produced as described above were filled into an electrode substrate made of foamed nickel having a thickness of 1.7 mm so as to have a predetermined filling density. Thereafter, it was dried, rolled to a thickness of 0.95 mm, and cut into predetermined dimensions to produce nickel positive plates 11 (a, b, c, d), respectively. In addition, what used the active material slurry a1 was made into the nickel positive electrode plate a, what used the active material slurry b1 was made into the nickel positive electrode plate b, and what used the active material slurry c1 was made into the nickel positive electrode plate c, and active material slurry What used d1 was used as the nickel positive electrode plate d.
[0018]
2. Preparation of hydrogen storage alloy negative electrode plate
Misch metal (Mm), nickel (Ni: purity 99.9%), cobalt (Co), manganese (Mn), and aluminum (Al) were mixed in a predetermined molar ratio, and the mixture was mixed with an argon gas atmosphere. Inductive heating was performed in a high frequency induction furnace to obtain a molten alloy. The molten alloy is poured into a mold by a known method, cooled, and the composition formula is MmNi. a Co b Mn c Al d An ingot of a hydrogen storage alloy represented by This hydrogen storage alloy ingot was pulverized by a mechanical pulverization method until the average particle size became about 60 μm.
[0019]
Next, 20 parts by mass of an aqueous solution of 5% by mass polyethylene oxide (PEO) as a binder was mixed with 100 parts by mass of the hydrogen storage alloy powder to prepare a hydrogen storage alloy paste. This hydrogen storage alloy paste was applied to both sides of a core made of punching metal, dried at room temperature, rolled to a predetermined thickness, and cut to a predetermined size to produce a hydrogen storage alloy negative electrode plate 12.
[0020]
3. Preparation of nickel-hydrogen storage battery
Next, four nickel positive plates 11 (a, b, c, d) and five hydrogen storage alloy negative plates 12 produced as described above are used, and a separator 13 made of a polypropylene nonwoven fabric is interposed between them. The nickel positive electrode plates 11 and the hydrogen storage alloy negative electrode plates 12 were alternately stacked so as to interpose each other. Next, the positive electrode conductive tabs 11 a disposed on the nickel positive electrode plate 11 were welded together, and the negative electrode conductive tabs 12 a disposed on the hydrogen storage alloy negative electrode plate 12 were welded together. And the positive electrode electrical power collector 14 was welded to the welding part of the positive electrode conductive tab 11a, and the electrode group was produced. Next, after the electrode group was inserted into the box-shaped outer can 15, the positive electrode current collector 14 was welded to the lower end portion of the positive electrode terminal member 16 c of the sealing body 16. Thereafter, the outer can 15 was filled with an alkaline electrolyte having a predetermined concentration, and the opening of the outer can 15 was sealed with the sealing body 16 to produce a prismatic nickel-hydrogen storage battery having a nominal capacity of 900 mAh.
[0021]
The sealing body 16 has a substantially rectangular shape with an opening at the center and a metal lid 16a, and a substantially rectangular shape with an opening at the center disposed on the lower surface of the lid 16a. The insulating resin plate 16b made of synthetic resin, the substantially box-shaped positive electrode terminal member 16c inserted into the opening, and the lid body 16a and the positive electrode terminal member 16c are disposed between the lid body 16a and the positive electrode terminal member 16c. A gasket 16d that insulates the terminal member 16c and liquid-tightens between the lid 16a and the positive electrode terminal member 16c, and is disposed on the positive electrode terminal member 16c and welded to the upper end of the positive electrode terminal member 16c. It is comprised from the positive electrode cap 16e.
[0022]
And after arrange | positioning the sealing body 16 comprised in this way to the opening part of the armored can 10, the outer peripheral part of the cover body 16a and the upper inner peripheral surface of the armored can 10 are laser-welded, and thereby the interior of the exterior can 10 Will be sealed liquid-tight. In addition, an elastic valve body 16f is disposed in the positive electrode cap 16e. When gas is generated in the battery and the inside of the battery rises above a predetermined pressure, the valve body 16f is elastically deformed to form the positive electrode cap 16e. The gas generated in the battery is discharged through the provided gas vent hole 16g. As a result, the valve body 16f can act as a safety valve to prevent an increase in pressure in the battery.
[0023]
Here, a positive electrode plate d to which no niobium compound is added is arranged on the positive electrode plate 11-1 outside the electrode group (on the outer can 15 side), and the same positive electrode plate is also applied to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which d was arranged was designated as battery A1. Similarly, a positive electrode plate c to which 0.5% by mass of a niobium compound is added is arranged on the positive electrode plate 11-1 outside the electrode group, and no niobium compound is added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate d was disposed was designated as battery A2. Further, a positive electrode plate d to which no niobium compound is added is arranged on the positive electrode plate 11-1 outside the electrode group, and 0.1% by mass of the niobium compound is added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate a was disposed was designated as a battery A3.
[0024]
Further, a positive electrode plate d to which no niobium compound was added was disposed on the positive electrode plate 11-1 outside the electrode group, and 0.2% by mass of the niobium compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate b was disposed was designated as a battery A4. Further, a positive electrode plate d to which no niobium compound is added is arranged on the positive electrode plate 11-1 outside the electrode group, and 0.5% by mass of the niobium compound is added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate c was disposed was designated as a battery A5. A positive electrode plate a to which 0.1% by mass of a niobium compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and 0.5% of the niobium compound is present on the positive electrode plate 11-2 inside the electrode group. A battery A6 was prepared using an electrode group in which the positive electrode plate c added with mass% was disposed.
[0025]
A positive electrode plate b to which 0.2% by mass of a niobium compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and a niobium compound is 0.5% on the positive electrode plate 11-2 inside the electrode group. A battery A7 was prepared using an electrode group in which the positive electrode plate c added with mass% was disposed. Further, a positive electrode plate c to which 0.5% by mass of a niobium compound is added is arranged on the positive electrode plate 11-1 outside the electrode group, and the niobium compound is also added to the positive electrode plate 11-2 inside the electrode group. A battery A8 was prepared using an electrode group in which the positive electrode plate c added with mass% was disposed.
[0026]
4). test
(1) Measurement of room temperature high rate discharge characteristics
Next, using the batteries A1 to A8 produced as described above, the positive electrodes were completely charged with a charging current of 900 mA (1 ItmA) in an atmosphere where the ambient temperature was room temperature (about 25 ° C.). After charging until the battery voltage drop (−ΔV) that occurs later becomes 10 mV, the battery is rested for 1 hour and discharged at a discharge current of 900 mA (1 ItmA) until the battery voltage reaches 1.0 V. The discharge capacity X (mAh) of each battery was determined from the discharge time.
[0027]
Next, after charging in a atmosphere of ambient temperature of room temperature (about 25 ° C.) with a charging current of 900 mA (1 ItmA) until the battery voltage drop (−ΔV) that occurs after the positive electrode is fully charged reaches 10 mV, The battery was discharged for 1 hour and discharged at a rate of 3600 mA (4 ItmA) until the battery voltage reached 1.0 V, and the discharge capacity Y (mAh) of each battery was determined from the discharge time. Thereafter, when the obtained ratio of X and Y [(Y / X) × 100%] was calculated as the room temperature high rate discharge characteristics, the results shown in Table 1 below were obtained.
[0028]
(2) Measurement of high-temperature cycle life
In addition, using the batteries A1 to A8 manufactured as described above, each of these batteries was charged with a charging current of 900 mA (1 ItmA) for 2 hours in a high-temperature atmosphere having an ambient temperature of 60 ° C., and then 450 mA (0. The battery was discharged at a discharge current of 5 ItmA) until the battery voltage reached 1.0 V, and a charge / discharge cycle test was performed in which the battery voltage was 1 cycle. Then, when the number of cycles until the discharge capacity is reduced to 80% or less of the discharge capacity at the first cycle in a high temperature atmosphere of 60 ° C. is obtained as the high temperature cycle life, it is as shown in Table 1 below. Results were obtained.
[0029]
[Table 1]
Figure 0004443135
[0030]
As is clear from the results in Table 1 above, in the battery A1 in which the positive electrode plate 11-1 to which no niobium compound is added is arranged on the outer positive electrode plate 11-1 and the inner positive electrode plate 11-2, the high temperature is high. It can be seen that the cycle life is significantly reduced to 100 cycles. A positive electrode plate c to which 0.5% by mass of a niobium compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and a positive electrode plate to which no niobium compound is added to the positive electrode plate 11-2 inside the electrode group. It can be seen that also in the battery A2 in which d is arranged, the high-temperature cycle life is reduced to 250 cycles.
[0031]
On the other hand, the positive electrode plate c added with 0.5 mass% of the niobium compound is disposed on the positive electrode plate 11-2 inside the electrode group, and the niobium compound is not added to the positive electrode plate 11-1 outside the electrode group. It can be seen that in the battery A5 in which the positive electrode plate d is disposed, the high-temperature cycle life is remarkably improved to 410 cycles. This is because the high-temperature cycle life is improved by using the positive electrode plate c to which the niobium compound is added, but the arrangement position of the positive electrode plate c to which the niobium compound is added is more effective when it is in the electrode group. It shows that
[0032]
This is because, when the niobium compound is not added to the positive electrode plate 11-2 arranged inside the electrode group, the positive electrode plate 11- arranged on the outer side (the outer can 15 side) whose temperature is lower than that inside the electrode group. The rate of degradation is faster than 1. For this reason, before the positive electrode plate 11-1 arrange | positioned on the outer side of an electrode group reaches lifetime, the positive electrode plate 11-2 arrange | positioned inside an electrode group reaches lifetime. It is thought that it became.
[0033]
On the other hand, when the niobium compound is added to the positive electrode plate 11-2 arranged inside the electrode group whose temperature increases, the positive electrode plate 11-2 is prevented from being deteriorated at a high temperature. Thereby, the balance of the deterioration rate of the positive electrode plate 11-2 arrange | positioned inside an electrode group and the positive electrode plate 11-1 arrange | positioned outside comes to be maintained. As a result, it is considered that the high-temperature cycle life can be improved by arranging the positive electrode plate c to which the niobium compound is added as the positive electrode plate 11-2 inside the electrode group.
[0034]
A positive electrode plate c to which 0.5% by mass of a niobium compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and 0.5 mass of niobium compound is also present on the positive electrode plate 11-2 inside the electrode group. In the battery A8 in which the positive electrode plate c to which% is added is arranged, the high temperature cycle life is as large as 450 cycles, but the room temperature high rate discharge characteristic is remarkably lowered to 55%. On the other hand, the positive electrode plate c to which 0.5% by mass of the niobium compound is added is arranged on the positive electrode plate 11-2 inside the electrode group, and the amount of the niobium compound added to the positive electrode plate 11-1 outside the electrode group. It can be seen that, in the battery A7 in which the positive electrode plate b in which is reduced to 0.2% by mass is arranged, the high-temperature cycle life is as long as 440 cycles and the room temperature high-rate discharge characteristics are also improved to 75%.
[0035]
Further, a positive electrode plate c to which 0.5% by mass of a niobium compound is added is arranged on the positive electrode plate 11-2 inside the electrode group, and a positive electrode plate to which no niobium compound is added to the positive electrode plate 11-1 outside the electrode group. In battery A5 in which d is arranged, the high-temperature cycle life is as long as 410 cycles, and the room temperature high-rate discharge characteristics are further improved to 80%.
For these reasons, in the positive electrode plate 11-1 arranged outside the electrode group, an increase in the amount of niobium compound adversely affects room temperature high rate discharge characteristics. Therefore, the positive electrode plate arranged outside the electrode group It can be said that it is necessary to suppress the addition amount of the niobium compound added to 11-1.
[0036]
Further, a positive electrode plate a to which 0.1% by mass of a niobium compound is added is arranged on the positive electrode plate 11-2 inside the electrode group, and a positive electrode plate to which no niobium compound is added to the positive electrode plate 11-1 outside the electrode group. In the battery A3 in which d is arranged, the room temperature high rate discharge characteristic is as high as 80%, whereas the high temperature cycle life is reduced to 290 cycles. On the other hand, the positive electrode plate b to which 0.2% by mass of the niobium compound is added is arranged on the positive electrode plate 11-2 inside the electrode group, and the niobium compound is not added to the positive electrode plate 11-1 outside the electrode group. In the battery A4 in which the positive electrode plate d is disposed, the room temperature high rate discharge characteristic is as large as 81%, and the high-temperature cycle life is improved to 400 cycles.
[0037]
This indicates that if the amount of the niobium compound added to the positive electrode plate 11-2 disposed inside the electrode group is small, the effect of improving the high-temperature cycle life cannot be exhibited. Therefore, it is desirable that the amount of niobium compound added to the positive electrode plate 11-2 disposed inside the electrode group is 0.2% by mass or more. However, if the addition amount of the niobium compound added to the positive electrode plate 11-2 disposed inside the electrode group is excessively increased, the room temperature high rate discharge characteristic is deteriorated, so that the addition amount maintains the cycle life. It is desirable to adjust to the minimum amount necessary.
[0038]
When these things are put together, it can be said as follows. That is, by using a positive electrode plate to which a niobium compound is added, the high-temperature cycle life is improved, but it is more effective to place the positive electrode plate to which the niobium compound is added within the electrode group. In this case, in the positive electrode plate 11-1 arranged outside the electrode group, an increase in the amount of niobium compound adversely affects room temperature high rate discharge characteristics. Therefore, the positive electrode plate 11-arranged outside the electrode group. It is necessary to suppress the amount of niobium compound added to 1.
[0039]
Further, if the amount of the niobium compound added to the positive electrode plate 11-2 arranged inside the electrode group is small, the effect of improving the high-temperature cycle life cannot be exerted. Therefore, the positive electrode plate arranged inside the electrode group The addition amount of the niobium compound added to 11-2 is desirably 0.2% by mass or more. However, if the addition amount of the niobium compound added to the positive electrode plate 11-2 disposed inside the electrode group is excessively increased, the room temperature high rate discharge characteristic is deteriorated. For this reason, it is desirable to adjust the addition amount of the niobium compound added to the positive electrode plate 11-2 arranged inside the electrode group to a minimum amount necessary for maintaining the cycle life.
[0040]
5). Study of additive compounds
In the above-described example, the example in which the niobium compound is added to the positive electrode plate has been described. 2 ), Tungsten compounds (e.g. WO 2 ), Molybdenum compounds (eg MoO) Three ) Was also added to the positive electrode plate.
[0041]
(1) About titanium compounds
TiO as a titanium compound with respect to the mass of the positive electrode active material (nickel hydroxide coated with a cobalt compound) prepared as described above 2 An active material slurry was prepared so that the amount added was 0.1% by mass, and this was used as an active material slurry e1. Similarly, what was added so that it might become 0.2 mass% was made into the active material slurry f1, and what was added so that it might become 0.5 mass% was made into the active material slurry g1. In addition, as a titanium compound, TiO 2 In addition to Ti 2 O Three , TiO, Na 2 Ti Three O 7 , Li 2 TiO Three , K 2 TiO Three May be used.
[0042]
Then, these active material slurries e1 to g1 were filled in an electrode substrate made of foamed nickel in the same manner as described above, dried, rolled, and then cut into predetermined dimensions to produce nickel positive electrode plates e to g. In addition, the thing using the active material slurry e1 was made into the positive electrode plate e, the thing using the active material slurry f1 was made into the positive electrode plate f, and the thing using the active material slurry g1 was made into the positive electrode plate g. Subsequently, using the nickel positive electrode plates e to g and the hydrogen storage alloy negative electrode plate manufactured as described above, a rectangular nickel-hydrogen storage battery having a nominal capacity of 900 mAh was manufactured in the same manner as described above.
[0043]
A positive electrode plate g added with 0.5% by mass of a titanium compound is disposed on the positive electrode plate 11-1 outside the electrode group, and a titanium compound is not added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate d was disposed was designated as a battery B2. Further, a positive electrode plate d to which no titanium compound was added was disposed on the positive electrode plate 11-1 outside the electrode group, and 0.1% by mass of the titanium compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group on which the positive electrode plate e was disposed was designated as a battery B3. Further, a positive electrode plate d without addition of a titanium compound was disposed on the positive electrode plate 11-1 outside the electrode group, and 0.2% by mass of the titanium compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate f was disposed was designated as a battery B4.
[0044]
Further, a positive electrode plate d to which no titanium compound was added was arranged on the positive electrode plate 11-1 outside the electrode group, and 0.5% by mass of the titanium compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate g was disposed was designated as a battery B5. A positive electrode plate e to which 0.1% by mass of a titanium compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and a titanium compound is 0.5% on the positive electrode plate 11-2 inside the electrode group. A battery B6 was prepared using the electrode group in which the positive electrode plate g added with mass% was disposed.
[0045]
A positive electrode plate f to which 0.2% by mass of a titanium compound is added is arranged on the positive electrode plate 11-1 outside the electrode group, and a titanium compound is 0.5% on the positive electrode plate 11-2 inside the electrode group. A battery B7 was prepared using the electrode group in which the positive electrode plate g added with mass% was disposed. Further, a positive electrode plate g to which 0.5% by mass of a titanium compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and the titanium compound is also 0.5% on the positive electrode plate 11-2 inside the electrode group. A battery B8 was prepared using the electrode group in which the positive electrode plate g added with mass% was disposed.
[0046]
Next, using the batteries B2 to B8 produced as described above, the room temperature high rate discharge characteristics and the high temperature cycle characteristics (capacity retention ratio) were obtained in the same manner as described above, and the results shown in Table 2 below were obtained. It was. Table 2 also shows the results of the battery A1 described above.
[0047]
[Table 2]
Figure 0004443135
[0048]
As is apparent from the results in Table 2, it can be seen that the tendency is almost the same as the results in Table 1 described above. For this reason, the use of a positive electrode plate to which a titanium compound is added improves the high-temperature cycle life. However, the position of the positive electrode plate to which the titanium compound is added is more effective in the electrode group. is there. In this case, in the positive electrode plate 11-1 arranged outside the electrode group, an increase in the addition amount of the titanium compound has an adverse effect on the room temperature high rate discharge characteristics. Therefore, the positive electrode plate 11-arranged outside the electrode group. It can be said that it is necessary to suppress the addition amount of the titanium compound added to 1.
[0049]
In addition, if the amount of the titanium compound added to the positive electrode plate 11-2 arranged inside the electrode group is small, the effect of improving the high-temperature cycle life cannot be exerted. Therefore, the positive electrode plate arranged inside the electrode group The addition amount of the titanium compound added to 11-2 is desirably 0.2% by mass or more. However, when the addition amount of the titanium compound added to the positive electrode plate 11-2 disposed inside the electrode group is excessively increased, the room temperature high rate discharge characteristics are deteriorated. For this reason, it is desirable to adjust the addition amount of the titanium compound added to the positive electrode plate 11-2 disposed inside the electrode group to a minimum amount necessary for maintaining the cycle life.
[0050]
(2) About tungsten compounds
WO as a tungsten compound with respect to the mass of the positive electrode active material (nickel hydroxide coated with a cobalt compound) prepared in the same manner as described above 2 An active material slurry was prepared so that the amount added was 0.1% by mass, and this was used as an active material slurry h1. Similarly, what was added so that it might become 0.2 mass% was made into active material slurry i1, and what was added so that it might become 0.5 mass% was made into active material slurry j1. In addition, as a tungsten compound, WO 2 In addition to WO Three , Na 2 WO Four , Li 2 WO 2 , K 2 WO Four May be used.
[0051]
Then, these active material slurries h1 to j1 were filled in an electrode substrate made of foamed nickel in the same manner as described above, dried and rolled, and then cut into predetermined dimensions to produce nickel positive plates h to j. In addition, the thing using the active material slurry h1 was made into the positive electrode plate h, the thing using the active material slurry i1 was made into the positive electrode plate i, and the thing using the active material slurry j1 was made into the positive electrode plate j. Next, using the nickel positive electrode plates h to j and the hydrogen storage alloy negative electrode plate produced as described above, square nickel-hydrogen storage batteries C2 to C8 having a nominal capacity of 900 mAh were produced in the same manner as described above.
[0052]
A positive electrode plate j to which 0.5% by mass of a tungsten compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and a tungsten compound is not added to the positive electrode plate 11-2 in the electrode group. A battery using the electrode group in which the positive electrode plate d was disposed was designated as a battery C2. Further, a positive electrode plate d to which no tungsten compound was added was disposed on the positive electrode plate 11-1 outside the electrode group, and 0.1% by mass of a tungsten compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate h was arranged was designated as a battery C3. Further, a positive electrode plate d to which no tungsten compound was added was disposed on the positive electrode plate 11-1 outside the electrode group, and 0.2% by mass of a tungsten compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate i was arranged was designated as a battery C4.
[0053]
Further, a positive electrode plate d to which no tungsten compound was added was disposed on the positive electrode plate 11-1 outside the electrode group, and 0.5% by mass of a tungsten compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate j was disposed was designated as a battery C5. A positive electrode plate h to which 0.1% by mass of a tungsten compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and a tungsten compound is 0.5% on the positive electrode plate 11-1 inside the electrode group. A battery C6 was prepared using an electrode group in which the positive electrode plate j added with mass% was disposed.
[0054]
Further, a positive electrode plate i to which 0.2% by mass of a tungsten compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and a tungsten compound is 0.5% on the positive electrode plate 11-2 inside the electrode group. A battery C7 was prepared using an electrode group in which the positive electrode plate j added with mass% was disposed. Further, a positive electrode plate j to which 0.5% by mass of a tungsten compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and the tungsten compound is also 0.5% on the positive electrode plate 11-2 inside the electrode group. A battery C8 was prepared using an electrode group in which the positive electrode plate j added with mass% was disposed.
[0055]
Then, using the batteries C2 to C8 produced as described above, the room temperature high rate discharge characteristics and the high temperature cycle characteristics (capacity retention ratio) were obtained in the same manner as described above, and the results shown in Table 3 below were obtained. It was. Table 3 also shows the results of the battery A1 described above.
[0056]
[Table 3]
Figure 0004443135
[0057]
As is apparent from the results in Table 3, it can be seen that the tendency is almost the same as the results in Table 1 and Table 2 described above. From this, the high temperature cycle life is improved by using the positive electrode plate to which the tungsten compound is added. However, it is more effective to place the positive electrode plate to which the tungsten compound is added in the electrode group. is there. In this case, in the positive electrode plate 11-1 arranged outside the electrode group, an increase in the addition amount of the tungsten compound adversely affects room temperature high rate discharge characteristics. It can be said that it is necessary to suppress the addition amount of the tungsten compound added to 1.
[0058]
In addition, if the addition amount of the tungsten compound added to the positive electrode plate 11-2 arranged inside the electrode group is small, the effect of improving the high-temperature cycle life cannot be exerted. Therefore, the positive electrode plate arranged inside the electrode group The addition amount of the tungsten compound added to 11-2 is desirably 0.2% by mass or more. However, if the added amount of the tungsten compound added to the positive electrode plate 11-2 arranged inside the electrode group is excessively increased, the room temperature high rate discharge characteristic is deteriorated. For this reason, it is desirable to adjust the addition amount of the tungsten compound added to the positive electrode plate 11-2 disposed inside the electrode group to a minimum amount necessary for maintaining the cycle life.
[0059]
(3) About molybdenum compounds
MoO as a molybdenum compound with respect to the mass of the positive electrode active material (nickel hydroxide coated with a cobalt compound) prepared as described above Three An active material slurry was prepared so that the amount added was 0.1% by mass, and this was used as an active material slurry k1. Similarly, what was added so that it might become 0.2 mass% was made into the active material slurry l1, and what was added so that it might become 0.5 mass% was made into the active material slurry m1. As the molybdenum compound, MoO Three Besides, MoO Three ・ H 2 O, MoO Three ・ 2H 2 O, Na 2 MoO Four ・ 2H 2 O, Li 6 Mo 7 O twenty four ・ 12H 2 O, K 2 MoO Four May be used.
[0060]
Then, these active material slurries k1 to m1 were filled in an electrode substrate made of foamed nickel in the same manner as described above, dried, rolled, and then cut into predetermined dimensions to produce nickel positive plates k to m. In addition, the thing using the active material slurry k1 was made into the positive electrode plate k, the thing using the active material slurry 11 was made into the positive electrode plate 1, and the thing using the active material slurry m1 was made into the positive electrode plate m. Next, using the nickel positive electrode plates k to m and the hydrogen storage alloy negative electrode plate manufactured as described above, prismatic nickel-hydrogen storage batteries D2 to D8 having a nominal capacity of 900 mAh were manufactured in the same manner as described above.
[0061]
The positive electrode plate 11-1 added with 0.5% by mass of a molybdenum compound is disposed on the positive electrode plate 11-1 outside the electrode group, and the molybdenum compound is not added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate d was disposed was designated as a battery D2. Further, a positive electrode plate d to which no molybdenum compound was added was arranged on the positive electrode plate 11-1 outside the electrode group, and 0.1% by mass of the molybdenum compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate k was disposed was designated as a battery D3. Further, a positive electrode plate d without addition of a molybdenum compound was disposed on the positive electrode plate 11-1 outside the electrode group, and 0.2% by mass of a molybdenum compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate l was disposed was designated as a battery D4.
[0062]
Further, a positive electrode plate d without addition of a molybdenum compound was disposed on the positive electrode plate 11-1 outside the electrode group, and 0.5% by mass of a molybdenum compound was added to the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate m was disposed was designated as a battery D5. Further, a positive electrode plate k added with 0.1% by mass of a molybdenum compound is disposed on the positive electrode plate 11-1 outside the electrode group, and a molybdenum compound is 0.5% on the positive electrode plate 11-2 inside the electrode group. A battery D6 was prepared using an electrode group in which the positive electrode plate m added with mass% was disposed.
[0063]
Further, a positive electrode plate l to which 0.2% by mass of a molybdenum compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and a molybdenum compound is 0.5% on the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate m added with mass% was disposed was designated as a battery D7. Further, a positive electrode plate m to which 0.5% by mass of a molybdenum compound is added is disposed on the positive electrode plate 11-1 outside the electrode group, and the molybdenum compound is also 0.5% on the positive electrode plate 11-2 inside the electrode group. A battery using the electrode group in which the positive electrode plate m added with mass% was disposed was designated as a battery D8.
[0064]
Then, using the batteries D2 to D8 produced as described above, the room temperature high rate discharge characteristics and the high temperature cycle characteristics (capacity retention ratio) were obtained in the same manner as described above, and the results shown in Table 4 below were obtained. It was. Table 4 also shows the results of the battery A1 described above.
[0065]
[Table 4]
Figure 0004443135
[0066]
As is clear from the results in Table 4, it can be seen that the tendency is almost the same as the results in Table 1, Table 2, and Table 3 described above. From this, the high-temperature cycle life is improved by using the positive electrode plate to which the molybdenum compound is added, but it is more effective to place the positive electrode plate to which the molybdenum compound is added inside the electrode group. is there. In this case, in the positive electrode plate 11-1 arranged outside the electrode group, an increase in the amount of molybdenum compound adversely affects the room temperature high rate discharge characteristics. Therefore, the positive electrode plate 11-arranged outside the electrode group. It can be said that it is necessary to suppress the amount of molybdenum compound added to 1.
[0067]
In addition, if the addition amount of the molybdenum compound added to the positive electrode plate 11-2 arranged inside the electrode group is small, the effect of improving the high-temperature cycle life cannot be exerted. Therefore, the positive electrode plate arranged inside the electrode group The addition amount of the molybdenum compound added to 11-2 is desirably 0.2% by mass or more. However, when the addition amount of the molybdenum compound added to the positive electrode plate 11-2 disposed inside the electrode group is excessively increased, the room temperature high rate discharge characteristic is deteriorated. For this reason, it is desirable to adjust the addition amount of the molybdenum compound added to the positive electrode plate 11-2 disposed inside the electrode group to a minimum amount necessary for maintaining the cycle life.
[0068]
【The invention's effect】
As described above, in the present invention, a nickel positive electrode including a positive electrode active material mainly composed of nickel hydroxide having a coating layer of a cobalt compound on the surface is selected from a niobium compound, a titanium compound, a tungsten compound, and a molybdenum compound. At least one compound is added. For this reason, the speed | rate which the cobalt compound which coat | covers the surface of the active material layer which has nickel hydroxide as a main component melt | dissolves in an alkaline electrolyte and precipitates can be delayed.
[0069]
Thereby, a favorable conductive network can be maintained in the nickel positive electrode. In this case, since the addition amount of at least one compound selected from a niobium compound, a titanium compound, a tungsten compound, and a molybdenum compound is added so as to be larger in the electrode group, the battery temperature As a result, the cycle life of the positive electrode disposed inside the electrode group that tends to increase is improved. As a result, the cycle life of the entire battery is also improved.
[0070]
In the above-described embodiment, the positive electrode plate 11-1 disposed outside the electrode group has a small amount of addition of at least one compound selected from a niobium compound, a titanium compound, a tungsten compound, and a molybdenum compound. And the example which increased the positive electrode plate 11-2 arrange | positioned inside an electrode group was demonstrated. However, when using an electrode group in which the number of positive electrode plates is increased, the electrodes may be arranged so that the amount of addition of these compounds increases sequentially from the outside to the inside of the electrode group. Good.
[0071]
Moreover, in embodiment mentioned above, the plate-shaped positive electrode plate 11 and the plate-shaped negative electrode plate 12 were made to oppose through the separator 13, and the example which comprised the alkaline storage battery using the electrode group which laminated | stacked these is demonstrated. did. However, the present invention is not limited to this example, and a strip-shaped positive electrode plate and a strip-shaped negative electrode plate are opposed to each other via a separator, and a spiral electrode group obtained by winding them in a spiral shape is inserted into a cylindrical outer can. The present invention can also be applied to the formed cylindrical battery.
[0072]
In this case, positive plates with different addition amounts of at least one compound selected from niobium compounds, titanium compounds, tungsten compounds, and molybdenum compounds are produced, and positive electrode plates with different addition amounts of these compounds are joined together. A single strip-shaped positive electrode plate, and a group of electrodes formed by winding the strip and the hydrogen-absorbing alloy negative electrode plate formed in a spiral shape with a separator in between are inserted into a cylindrical outer can. Good.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a cross section of an alkaline storage battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Nickel-hydrogen storage battery, 11 ... Nickel positive electrode plate, 11-1 ... Nickel positive electrode plate arrange | positioned outside the electrode group, 11-2 ... Nickel positive electrode plate arrange | positioned inside the electrode group, 12 ... Hydrogen storage alloy Negative electrode plate, 13 ... separator, 14 ... positive electrode current collector, 15 ... outer can, 16 ... sealing body, 16a ... lid, 16b ... insulating plate, 16c ... positive electrode terminal member, 16d ... gasket, 16e ... positive electrode cap, 16f ... Valve

Claims (2)

水酸化ニッケルを主体とする正極活物質を含有する正極と、負極とがセパレータを介して対向するように形成した電極群を備えたアルカリ蓄電池であって、
前記正極はコバルト化合物の被覆層を有する水酸化ニッケルを主体とする正極活物質にニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物が添加されているとともに、
前記電極群の内部に配置された正極は前記電極群の外側に配置された正極よりも前記ニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量が多く、かつ前記電極群の内部に配置された正極に添加された前記ニオブ化合物、チタン化合物、タングステン化合物、モリブデン化合物から選択される少なくとも1種の化合物の添加量は、前記コバルト化合物の被覆層を有する水酸化ニッケルを主体とする正極活物質の質量に対して0.2質量%以上であることを特徴とするアルカリ蓄電池。
An alkaline storage battery comprising an electrode group formed such that a positive electrode containing a positive electrode active material mainly composed of nickel hydroxide and a negative electrode face each other with a separator interposed therebetween,
The positive electrode has at least one compound selected from a niobium compound, a titanium compound, a tungsten compound, and a molybdenum compound added to a positive electrode active material mainly composed of nickel hydroxide having a coating layer of a cobalt compound,
The positive electrode arranged inside the electrode group has a larger amount of addition of at least one compound selected from the niobium compound, titanium compound, tungsten compound, and molybdenum compound than the positive electrode arranged outside the electrode group , The addition amount of at least one compound selected from the niobium compound, titanium compound, tungsten compound, and molybdenum compound added to the positive electrode disposed inside the electrode group is water having a coating layer of the cobalt compound. An alkaline storage battery comprising 0.2% by mass or more based on the mass of the positive electrode active material mainly composed of nickel oxide .
前記水酸化ニッケルを被覆する前記コバルト化合物はアルカリカチオンを含有するコバルト化合物であることを特徴とする請求項1に記載のアルカリ蓄電池。2. The alkaline storage battery according to claim 1, wherein the cobalt compound covering the nickel hydroxide is a cobalt compound containing an alkali cation.
JP2003090535A 2002-06-28 2003-03-28 Alkaline storage battery Expired - Lifetime JP4443135B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003090535A JP4443135B2 (en) 2003-03-28 2003-03-28 Alkaline storage battery
US10/606,928 US20040265689A1 (en) 2002-06-28 2003-06-27 Alkaline storage battery
CNB031482074A CN100397683C (en) 2002-06-28 2003-06-27 Alkali cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090535A JP4443135B2 (en) 2003-03-28 2003-03-28 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2004296395A JP2004296395A (en) 2004-10-21
JP4443135B2 true JP4443135B2 (en) 2010-03-31

Family

ID=33404135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090535A Expired - Lifetime JP4443135B2 (en) 2002-06-28 2003-03-28 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4443135B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117725A (en) * 2006-11-08 2008-05-22 Matsushita Electric Ind Co Ltd Cylindrical nickel-hydrogen storage battery
JP5317507B2 (en) * 2008-03-26 2013-10-16 三洋電機株式会社 Cylindrical alkaline storage battery
KR101775548B1 (en) 2012-08-01 2017-09-06 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JP2004296395A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP2141759B1 (en) Secondary battery
JP2012069510A (en) Cylindrical nickel-hydrogen storage battery
CN103579591B (en) Nickel-metal hydride secondary cell and negative electrode therefor
US20100248024A1 (en) Alkaline storage battery system
JP4033660B2 (en) Nickel-hydrogen storage battery
JP4121321B2 (en) Alkaline storage battery
JP4443135B2 (en) Alkaline storage battery
JP3744716B2 (en) Sealed alkaline storage battery
US20040265689A1 (en) Alkaline storage battery
JP4573510B2 (en) Alkaline storage battery and battery pack
US20220052317A1 (en) Positive electrode for alkali secondary battery, and alkali secondary battery including said positive electrode
JP3568408B2 (en) Positive electrode active material for alkaline secondary batteries and alkaline secondary batteries
JP4497828B2 (en) Nickel-hydrogen storage battery and battery pack
JP2004235088A (en) Nickel-hydrogen storage battery
JP2004119271A (en) Nickel-hydrogen storage battery
JP3815511B2 (en) Nickel / metal hydride sealed alkaline storage battery
JP7236413B2 (en) Nickel-metal hydride storage battery and method for manufacturing nickel-metal hydride storage battery
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JP3851179B2 (en) Alkaline storage battery with nickel electrode and method for manufacturing the same
JP5213314B2 (en) Alkaline storage battery
US20220052318A1 (en) Positive electrode for alkali secondary battery and alkali secondary battery including said positive electrode
JP2008059818A (en) Alkaline storage battery
JP2006236692A (en) Nickel hydrogen storage battery
JP2004327146A (en) Alkaline storage battery
JP5137417B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R151 Written notification of patent or utility model registration

Ref document number: 4443135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

EXPY Cancellation because of completion of term