JP2008059818A - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP2008059818A
JP2008059818A JP2006232887A JP2006232887A JP2008059818A JP 2008059818 A JP2008059818 A JP 2008059818A JP 2006232887 A JP2006232887 A JP 2006232887A JP 2006232887 A JP2006232887 A JP 2006232887A JP 2008059818 A JP2008059818 A JP 2008059818A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alkaline
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006232887A
Other languages
Japanese (ja)
Inventor
Tadayoshi Tanaka
忠佳 田中
Jun Ishida
潤 石田
Yoshifumi Kiyoku
佳文 曲
Shigekazu Yasuoka
茂和 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006232887A priority Critical patent/JP2008059818A/en
Publication of JP2008059818A publication Critical patent/JP2008059818A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline storage battery in which a hydrogen storage alloy used for an anode is improved and a melting out of cobalt or the like from the hydrogen storage alloy when kept unused for a long period is prevented and a preservation property is improved. <P>SOLUTION: In the alkaline storage battery provided with a cathode, an anode made of hydrogen storage alloy, a separator and alkaline electrolyte solution, the anode is made of hydrogen storage alloy as shown in a general formula and an La content in Ln is 85 mol% or less against a total Ln: Ln<SB>1-x</SB>Mg<SB>x</SB>Ni<SB>y-a-b</SB>Co<SB>a</SB>M<SB>b</SB>(wherein, Ln is at least one kind of element selected from rare earth elements including Zr, Ti, and Y, and M is at least one element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Al, Ga, Zn, Sn, In, Cu, Si, P, and B, satisfying conditions of 0.05≤x≤0.30, 0.05≤a≤0.30, 0≤b≤0.50 and 2.8≤y≤3.9), and a separator with a sulfone group is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、正極と、水素吸蔵合金を用いた負極と、正極と負極との間に設けるセパレータと、アルカリ電解液とを備えたアルカリ蓄電池に係り、負極に使用する水素吸蔵合金を改善し、特に、スルホン基を有するセパレータを用いたアルカリ蓄電池において、保存特性を向上させるようにした点に特徴を有するものである。   The present invention relates to an alkaline storage battery comprising a positive electrode, a negative electrode using a hydrogen storage alloy, a separator provided between the positive electrode and the negative electrode, and an alkaline electrolyte, improving the hydrogen storage alloy used for the negative electrode, In particular, the alkaline storage battery using a separator having a sulfone group is characterized in that the storage characteristics are improved.

従来、アルカリ蓄電池としては、ニッケル・カドミウム蓄電池が広く使用されていたが、近年においては、ニッケル・カドミウム蓄電池に比べて高容量で、またカドミウムを使用しないため環境安全性にも優れているという点から、負極に水素吸蔵合金を用いたニッケル・水素蓄電池が注目されるようになった。   Conventionally, nickel-cadmium storage batteries have been widely used as alkaline storage batteries, but in recent years they have a higher capacity than nickel-cadmium storage batteries and are superior in environmental safety because they do not use cadmium. Therefore, nickel-hydrogen storage batteries using a hydrogen storage alloy for the negative electrode have come to attract attention.

そして、近年においては、このようなニッケル・水素蓄電池からなるアルカリ蓄電池が、ハイブリッド自動車や電動工具等の用途にも使用されるようになり、さらに高容量で、高率充放電特性などに優れたアルカリ蓄電池が強く要望されるようになった。   In recent years, alkaline storage batteries composed of such nickel-hydrogen storage batteries have come to be used for applications such as hybrid vehicles and power tools, and have higher capacity and excellent high-rate charge / discharge characteristics. There has been a strong demand for alkaline storage batteries.

ここで、このようなアルカリ蓄電池においては、その負極に使用する水素吸蔵合金として、一般にCaCu5型の結晶を主相とする希土類−ニッケル系水素吸蔵合金や、Ti,Zr,V及びNiを含むラーベス相系のAB2型の結晶を主相とする水素吸蔵合金等が一般に使用されているが、これらの水素吸蔵合金は、水素吸蔵能力が必ずしも十分であるとはいえず、さらに高容量化のアルカリ蓄電池を得ることは困難であった。 Here, in such an alkaline storage battery, the hydrogen storage alloy used for the negative electrode generally includes a rare earth-nickel hydrogen storage alloy whose main phase is a CaCu 5 type crystal, Ti, Zr, V and Ni. Hydrogen storage alloys, etc., mainly composed of Laves phase AB 2 type crystals are generally used. However, these hydrogen storage alloys do not necessarily have sufficient hydrogen storage capacity, and have higher capacities. It was difficult to obtain an alkaline storage battery.

そして、近年においては、上記の希土類−ニッケル系水素吸蔵合金における水素吸蔵能力を向上させるために、上記の希土類−ニッケル系水素吸蔵合金における希土類元素の一部をMg等で置換させた水素吸蔵合金を用いたアルカリ蓄電池ことが提案されている(例えば、特許文献1参照)。   In recent years, in order to improve the hydrogen storage capability in the rare earth-nickel hydrogen storage alloy, a hydrogen storage alloy in which a part of the rare earth element in the rare earth-nickel hydrogen storage alloy is replaced with Mg or the like. It has been proposed to use an alkaline storage battery (see, for example, Patent Document 1).

ここで、このように希土類−ニッケル系水素吸蔵合金における希土類元素の一部をMg等で置換させた水素吸蔵合金は、クラックが発生しやすく、クラックにより新しい反応性の高い面が現れて放電反応に寄与するため、低温での放電特性や、高率放電特性は向上するが、このようなクラックにより耐食性が低下し、このような水素吸蔵合金を用いたアルカリ蓄電池の場合、十分なサイクル寿命が得られないという問題があった。   Here, the hydrogen storage alloy in which a part of the rare earth element in the rare earth-nickel-based hydrogen storage alloy is replaced with Mg or the like is prone to cracking, and a new highly reactive surface appears due to the crack, resulting in a discharge reaction. However, the corrosion resistance decreases due to such cracks, and in the case of an alkaline storage battery using such a hydrogen storage alloy, a sufficient cycle life is obtained. There was a problem that it could not be obtained.

このため、近年においては、上記のような希土類元素の一部をMg等で置換させた水素吸蔵合金の組成を適正化させて、水素吸蔵合金の耐食性を向上させるようにしたものが提案されている(例えば、特許文献2参照)。   For this reason, in recent years, a proposal has been made to improve the corrosion resistance of hydrogen storage alloys by optimizing the composition of hydrogen storage alloys in which a part of the rare earth elements as described above is substituted with Mg or the like. (For example, refer to Patent Document 2).

しかし、上記のような水素吸蔵合金を用いたアルカリ蓄電池においても、長期間放置すると、水素吸蔵合金の表面が腐食されて、水素吸蔵合金中におけるCoや希土類元素が次第に溶出して、アルカリ蓄電池の特性が低下するという問題があった。   However, even in the alkaline storage battery using the hydrogen storage alloy as described above, when left for a long time, the surface of the hydrogen storage alloy is corroded, and Co and rare earth elements in the hydrogen storage alloy gradually elute, There was a problem that the characteristics deteriorated.

また、従来においては、アルカリ蓄電池のセパレータに、イオン交換基としてスルホン基を付与したセパレータを用い、負極や正極から溶出した遷移金属イオンをこのセパレータにおいてトラップして、自己放電が生じるのを防止するようにしたものが提案されている(例えば、特許文献3参照)。   Further, conventionally, a separator provided with a sulfone group as an ion exchange group is used as a separator of an alkaline storage battery, and transition metal ions eluted from the negative electrode or the positive electrode are trapped in the separator to prevent self-discharge. What has been proposed has been proposed (see, for example, Patent Document 3).

しかし、上記のような水素吸蔵合金を用いたアルカリ蓄電池に、このようなスルホン基を付与したセパレータを用いた場合、上記の水素吸蔵合金から溶出したCoや希土類元素がこのセパレータに析出して、十分な保存特性が得られなくなるという問題が依然として存在した。
特開平11−323469号公報 特開2001−316744号公報 特開平10−50291号公報
However, when such a sulfone-grouped separator is used for the alkaline storage battery using the hydrogen storage alloy as described above, Co and rare earth elements eluted from the hydrogen storage alloy are deposited on the separator, There still remained the problem that sufficient storage properties could not be obtained.
JP-A-11-323469 JP 2001-316744 A Japanese Patent Laid-Open No. 10-50291

本発明は、正極と、水素吸蔵合金を用いた負極と、正極と負極との間に設けるセパレータと、アルカリ電解液とを備えたアルカリ蓄電池における上記のような問題を解決することを課題とするものであり、負極に使用する水素吸蔵合金を改善し、長期間放置した場合において、この水素吸蔵合金からCoや希土類元素が溶出するのを抑制し、溶出したCoや希土類元素がスルホン基を有するセパレータに析出するのを防止して、保存特性に優れたアルカリ蓄電池が得られるようにすることを課題とするものである。   This invention makes it a subject to solve the above problems in the alkaline storage battery provided with the positive electrode, the negative electrode using a hydrogen storage alloy, the separator provided between a positive electrode and a negative electrode, and an alkaline electrolyte. When the hydrogen storage alloy used for the negative electrode is improved and left for a long period of time, it is suppressed that Co and rare earth elements are eluted from the hydrogen storage alloy, and the eluted Co and rare earth elements have a sulfone group. It is an object of the present invention to prevent the precipitation on the separator and to obtain an alkaline storage battery having excellent storage characteristics.

本発明におけるアルカリ蓄電池においては、上記のような課題を解決するため、正極と、水素吸蔵合金を用いた負極と、正極と負極との間に設けるセパレータと、アルカリ電解液とを備えたアルカリ蓄電池において、上記の負極に、一般式Ln1-xMgxNiy-a-bCoab(式中、LnはZr、Ti、Yを含む希土類元素から選択される少なくとも1種の元素、MはV、Nb、Ta、Cr、Mo、Mn、Fe、Al、Ga、Zn、Sn、ln、Cu、Si、P、Bから選択される少なくとも1種の元素であり0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で表され、上記のLn中におけるLaの含有量がLnの総量に対して85モル%以下である水素吸蔵合金を用いると共に、スルホン基を有するセパレータを用いるようにした。 In the alkaline storage battery according to the present invention, in order to solve the above-described problems, the alkaline storage battery includes a positive electrode, a negative electrode using a hydrogen storage alloy, a separator provided between the positive electrode and the negative electrode, and an alkaline electrolyte. in, the negative electrode described above, in the general formula Ln 1-x Mg x Ni yab Co a M b ( wherein, Ln at least one element is selected from rare earth elements including Zr, Ti, and Y, M of V, Nb, Ta, Cr, Mo, Mn, Fe, Al, Ga, Zn, Sn, ln, Cu, Si, P, and at least one element selected from B, 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9.), And the content of La in the above Ln is the total amount of Ln And using a hydrogen storage alloy of 85 mol% or less based on And to use a separator having a sulfone group.

ここで、本発明におけるアルカリ蓄電池においては、上記の一般式に示される水素吸蔵合金において、上記のLn中におけるLaの含有量がLnの総量に対して49モル%以下であることが好ましく、また上記のLn中にSm、Gdの少なくとも一方の元素を含有させることが好ましく、またこれらのSmやGdの合計の含有量を全希土類元素の10モル%以上にすることが好ましい。   Here, in the alkaline storage battery according to the present invention, in the hydrogen storage alloy represented by the above general formula, the content of La in the above Ln is preferably 49 mol% or less with respect to the total amount of Ln. It is preferable to contain at least one element of Sm and Gd in the above Ln, and the total content of these Sm and Gd is preferably 10 mol% or more of the total rare earth elements.

また、上記のような水素吸蔵合金を用いた負極においては、その表面にポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキシド等の親水性ポリマーを塗布し、このように塗布した親水性ポリマーにより、水素吸蔵合金から溶出したCoなどが拡散するのを防止して、セパレータに折出するのを抑制することが好ましい。   In addition, in the negative electrode using the hydrogen storage alloy as described above, a hydrophilic polymer such as polyvinyl alcohol, polyvinyl pyrrolidone, or polyethylene oxide is applied to the surface, and the hydrophilic polymer thus applied is used to remove the hydrogen storage alloy from the hydrogen storage alloy. It is preferable to prevent the eluted Co and the like from diffusing and to suppress the separator from folding out.

また、上記のスルホン基を有するセパレータを得るにあたっては、セパレータをフッ素化ガスと亜硫酸ガスとでフッ素化処理してスルホン基を付与させるようにしたり、発煙硫酸によってセパレータにスルホン基を付与させるようにすることができる。   Further, in obtaining the above-mentioned separator having a sulfone group, the separator is fluorinated with fluorinated gas and sulfurous acid gas to give a sulfone group, or the separator is given a sulfone group with fuming sulfuric acid. can do.

本発明におけるアルカリ蓄電池においては、その負極における水素吸蔵合金として、上記の一般式Ln1-xMgxNiy-a-bCoabで表され、Ln中におけるLaの含有量がLnの総量に対して85モル%以下になったものを用いたため、Ln中におけるLaの含有量が85モル%を越える水素吸蔵合金に比べて、水素吸蔵合金の耐酸化性が向上し、長期間放置した場合においても、この水素吸蔵合金からCoなどの合金成分が溶出するのが抑制され、さらにLn中におけるLaの含有量が49モル%以下の水素吸蔵合金を用いた場合には、Coなどの合金成分が溶出するのがより一層抑制されるようになる。 In the alkaline storage battery in the present invention, as the hydrogen storage alloy in its negative electrode is represented by the general formula Ln 1-x Mg x Ni yab Co a M b, the content of La in the Ln is the total amount of Ln Since the one having a content of 85 mol% or less was used, the oxidation resistance of the hydrogen storage alloy was improved as compared with the hydrogen storage alloy in which the La content in Ln exceeded 85 mol%. In addition, the elution of alloy components such as Co from this hydrogen storage alloy is suppressed, and when a hydrogen storage alloy having a La content in Ln of 49 mol% or less is used, the alloy components such as Co are eluted. This is further suppressed.

この結果、本発明におけるアルカリ蓄電池においては、水素吸蔵合金から溶出されたCoなどの合金成分が上記のスルホン基を有するセパレータに析出するのが抑制され、セパレータにより負極や正極から溶出した遷移金属イオンが適切にトラップされて自己放電が生じるのが防止され、アルカリ蓄電池における保存特性が大きく向上する。   As a result, in the alkaline storage battery according to the present invention, alloy components such as Co eluted from the hydrogen storage alloy are suppressed from being deposited on the separator having the sulfone group, and the transition metal ions eluted from the negative electrode and the positive electrode by the separator. Is appropriately trapped and self-discharge is prevented, and the storage characteristics of the alkaline storage battery are greatly improved.

また、上記の水素吸蔵合金におけるLn中にSmを含有させると、水素吸蔵合金の耐酸化性が向上されて、水素吸蔵合金の微粉化が抑制されるようになり、またLn中にGdを含有させると、水素吸蔵合金の微粉化が抑制されるようになり、これによりこの水素吸蔵合金からCoなどの合金成分が溶出するのが一層抑制されて、アルカリ蓄電池における保存特性がさらに向上する。   In addition, when Sm is contained in Ln in the above hydrogen storage alloy, the oxidation resistance of the hydrogen storage alloy is improved, and pulverization of the hydrogen storage alloy is suppressed, and Gd is contained in Ln. As a result, the pulverization of the hydrogen storage alloy is suppressed, which further suppresses the elution of alloy components such as Co from the hydrogen storage alloy, thereby further improving the storage characteristics of the alkaline storage battery.

以下、本発明の実施例に係るアルカリ蓄電池について具体的に説明すると共に、比較例を挙げ、本発明の実施例に係るアルカリ蓄電池においては保存特性が向上することを明らかにする。なお、本発明におけるアルカリ蓄電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the alkaline storage battery according to the embodiment of the present invention will be specifically described, and a comparative example will be given to clarify that the storage characteristics of the alkaline storage battery according to the embodiment of the present invention are improved. In addition, the alkaline storage battery in this invention is not limited to what was shown to the following Example, In the range which does not change the summary, it can implement suitably.

(実施例1)
実施例1においては、負極に用いる水素吸蔵合金を作製するにあたり、希土類元素のLa,Pr及びNdと、Zrと、Mgと、Niと、Alと、Coとを所定の合金組成になるように混合し、これを高周波誘導溶解炉により溶融させた後、これを冷却させて、水素吸蔵合金のインゴットを得た。
(Example 1)
In Example 1, when preparing a hydrogen storage alloy used for the negative electrode, the rare earth elements La, Pr, and Nd, Zr, Mg, Ni, Al, and Co are made to have a predetermined alloy composition. This was mixed and melted in a high frequency induction melting furnace, and then cooled to obtain a hydrogen storage alloy ingot.

そして、この水素吸蔵合金のインゴットを不活性雰囲気中において1000℃で10時間熱処理して均質化させた後、この水素吸蔵合金のインゴットを不活性雰囲気中において機械的に粉砕し、これを分級して、組成がLa0.39Pr0.30Nd0.10Zr0.01Mg0.20Ni3.20Al0.10Co0.10なった水素吸蔵合金の粉末を得た。なお、上記の水素吸蔵合金の組成は、誘導結合プラズマ分光分析(ICP)により測定した。また、この水素吸蔵合金の粉末についてレーザ回折・散乱式粒度分布測定装置により粒度分布を測定した結果、重量積分が50%における平均粒径が65μmになっていた。 Then, the hydrogen storage alloy ingot was heat treated in an inert atmosphere at 1000 ° C. for 10 hours to homogenize, and then the hydrogen storage alloy ingot was mechanically pulverized in an inert atmosphere and classified. Thus, a powder of a hydrogen storage alloy having a composition of La 0.39 Pr 0.30 Nd 0.10 Zr 0.01 Mg 0.20 Ni 3.20 Al 0.10 Co 0.10 was obtained. The composition of the above hydrogen storage alloy was measured by inductively coupled plasma spectroscopy (ICP). As a result of measuring the particle size distribution of the hydrogen storage alloy powder using a laser diffraction / scattering particle size distribution measuring apparatus, the average particle size at a weight integral of 50% was 65 μm.

ここで、この水素吸蔵合金においては、上記の一般式Ln1-xMgxNiy-a-bCoabにおけるLn(Zr、Ti、Yを含む希土類元素から選択される少なくとも1種の元素)中におけるLaの含有量(La/Ln)が、下記の表1に示すように49モル%になっていた。 Here, in this hydrogen storage alloy, in Ln (at least one element selected from rare earth elements including Zr, Ti, Y) in the above general formula Ln 1-x Mg x Ni yab Co a M b The La content (La / Ln) was 49 mol% as shown in Table 1 below.

また、このようにして得た水素吸蔵合金の粉末について、Cu−Kα管をX線源とするX線回折装置を用いて、X線回折測定を行った結果、上記の水素吸蔵合金は、2θが31°〜34°の範囲に強いピークが存在し、CaCu5型とは異なる結晶構造になっていた。 Further, the hydrogen storage alloy powder thus obtained was subjected to X-ray diffraction measurement using an X-ray diffractometer using a Cu-Kα tube as an X-ray source. Has a strong peak in the range of 31 ° to 34 °, and had a crystal structure different from the CaCu 5 type.

そして、上記の水素吸蔵合金の粉末100質量部に対して、結着剤としてポリエチレンオキシドを0.5質量部、ポリビニルピロリドンを0.5質量部、水を20質量部の割合で加え、これらを混練させてスラリーを調製した。そして、このスラリーを負極支持体のニッケルメッキしたパンチングメタルの両面に均一に塗布し、これを乾燥し、圧延させた後、これを所定の寸法に切断して負極を作製した。   Then, with respect to 100 parts by mass of the hydrogen storage alloy powder, 0.5 parts by mass of polyethylene oxide, 0.5 parts by mass of polyvinylpyrrolidone, and 20 parts by mass of water are added as binders. A slurry was prepared by kneading. And this slurry was apply | coated uniformly on both surfaces of the nickel plating punching metal of a negative electrode support body, this was dried and rolled, Then, this was cut | disconnected to the predetermined dimension, and the negative electrode was produced.

また、正極を作製するにあたっては、亜鉛が2.5質量%,コバルトが1.0質量%含有された水酸化ニッケル粉末を硫酸コバルト水溶液中に投入し、これを攪拌しながら1モル/リットルの水酸化ナトリウム水溶液を滴下し、pHを11に調整しながら攪拌させて反応させた後、生成した沈殿物を濾別し、これを水洗し、真空乾燥させて、上記の水酸化ニッケル粒子の表面に5質量%の水酸化コバルトの被覆層を形成した。   In preparing the positive electrode, nickel hydroxide powder containing 2.5% by mass of zinc and 1.0% by mass of cobalt was charged into an aqueous cobalt sulfate solution, and the mixture was stirred at 1 mol / liter. An aqueous solution of sodium hydroxide was added dropwise, and the reaction was allowed to stir while adjusting the pH to 11. Then, the formed precipitate was filtered off, washed with water, and dried in vacuum to obtain the surface of the above nickel hydroxide particles. A coating layer of 5% by weight cobalt hydroxide was formed on the substrate.

次いで、このように水酸化コバルトの被覆層が形成された水酸化ニッケル粉末と25重量%水酸化ナトリウム水溶液とを1:10の質量比で混合し、これを攪拌しながら80℃の温度条件で8時間加熱処理した後、これを水洗し、65℃で乾燥させて、水酸化ニッケル粒子の表面にナトリウム含有コバルト化合物からなる被覆層が形成された正極活物質の粉末を得た。   Next, the nickel hydroxide powder thus formed with the cobalt hydroxide coating layer and a 25 wt% aqueous sodium hydroxide solution were mixed at a mass ratio of 1:10, and the mixture was stirred at a temperature of 80 ° C. After heat treatment for 8 hours, this was washed with water and dried at 65 ° C. to obtain a powder of a positive electrode active material in which a coating layer made of a sodium-containing cobalt compound was formed on the surface of nickel hydroxide particles.

そして、この正極活物質の粉末を95質量部、酸化亜鉛を3質量部、水酸化コバルトを2質量部の割合で混合させたものに、0.2質量%のヒドロキシプロピルセルロース水溶液を50質量部加え、これらを混合させてスラリーを調製し、このスラリーを目付けが約600g/m2,多孔度が95%,厚みが約2mmのニッケル発泡体に充填し、これを乾燥させてプレスした後、所定の寸法に切断して非焼結式ニッケル極からなる正極を作製した。 In addition, 95 parts by mass of the positive electrode active material powder, 3 parts by mass of zinc oxide, and 2 parts by mass of cobalt hydroxide were mixed with 50 parts by mass of a 0.2% by mass hydroxypropylcellulose aqueous solution. In addition, these were mixed to prepare a slurry, and this slurry was filled in a nickel foam having a basis weight of about 600 g / m 2 , a porosity of 95% and a thickness of about 2 mm, dried and pressed, A positive electrode made of a non-sintered nickel electrode was produced by cutting to a predetermined dimension.

また、セパレータとしては、ポリプロピレン製の不織布をフッ素化ガスと亜硫酸ガスとでフッ素化処理してスルホン基を付与させものを使用し、アルカリ電解液としては、KOHとNaOHとLiOHとが15:2:1の質量比で含まれて比重が1.30になったアルカリ電解液を使用し、図1に示すような円筒型になったアルカリ蓄電池を作製した。   Further, as the separator, a polypropylene non-woven fabric which is fluorinated with fluorinated gas and sulfurous acid gas to give a sulfone group is used. As the alkaline electrolyte, KOH, NaOH and LiOH are 15: 2. An alkaline storage battery having a cylindrical shape as shown in FIG. 1 was prepared using an alkaline electrolyte containing a mass ratio of 1 and a specific gravity of 1.30.

ここで、上記のアルカリ蓄電池を作製するにあたっては、図1に示すように、上記の正極1と負極2との間にセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させ、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、この電池缶4内にアルカリ電解液を注液させた後、電池缶4と正極蓋6との間に絶縁パッキン8を介して封口し、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6に設けられたガス放出口6aを閉塞させるようにして、この正極蓋6と正極外部端子9との間にコイルスプリング10によって付勢された閉塞板11を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて、電池内部のガスが大気中に放出されるようにした。   Here, in producing the alkaline storage battery, as shown in FIG. 1, a separator 3 is interposed between the positive electrode 1 and the negative electrode 2, and these are spirally wound and accommodated in a battery can 4. The positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5, and the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and an alkaline electrolyte is injected into the battery can 4. The battery can 4 and the positive electrode lid 6 were sealed via an insulating packing 8, and the battery can 4 and the positive electrode lid 6 were electrically separated by the insulating packing 8. Further, a closing plate 11 urged by a coil spring 10 is provided between the positive electrode cover 6 and the positive electrode external terminal 9 so as to close the gas discharge port 6a provided in the positive electrode cover 6, and the battery When the internal pressure of the battery rises abnormally, the coil spring 10 is compressed so that the gas inside the battery is released into the atmosphere.

(実施例2)
実施例2においては、負極に用いる水素吸蔵合金を作製するにあたり、希土類元素のLa,Pr及びNdと、Zrと、Mgと、Niと、Alと、Coとを所定の合金組成になるように混合し、上記の実施例1の場合と同様にして、上記の平均粒径が65μmで、組成がLa0.49Pr0.15Nd0.15Zr0.01Mg0.20Ni3.20Al0.10Co0.10になった水素吸蔵合金の粉末を得た。なお、この水素吸蔵合金においては、上記のLn中におけるLaの含有量(La/Ln)が、下記の表1に示すように61モル%になっており、またX線回折測定結果は、上記の実施例1の水素吸蔵合金と同様に、CaCu5型とは異なる結晶構造になっていた。
(Example 2)
In Example 2, in preparing a hydrogen storage alloy used for the negative electrode, the rare earth elements La, Pr, and Nd, Zr, Mg, Ni, Al, and Co are made to have a predetermined alloy composition. In the same manner as in Example 1 above, the hydrogen storage alloy powder having the average particle size of 65 μm and the composition of La 0.49 Pr 0.15 Nd 0.15 Zr 0.01 Mg 0.20 Ni 3.20 Al 0.10 Co 0.10 Got. In this hydrogen storage alloy, the La content (La / Ln) in the above Ln is 61 mol% as shown in Table 1 below, and the X-ray diffraction measurement results are as follows. Like the hydrogen storage alloy of Example 1, the crystal structure was different from that of the CaCu 5 type.

そして、このようにして得た水素吸蔵合金の粉末を用いる以外は、上記の実施例1の場合と同様にして、実施例2のアルカリ蓄電池を作製した。   And the alkaline storage battery of Example 2 was produced like the case of said Example 1 except using the powder of the hydrogen storage alloy obtained in this way.

(実施例3)
実施例3においては、負極に用いる水素吸蔵合金を作製するにあたり、希土類元素のLa及びPrと、Zrと、Mgと、Niと、Alと、Coとを所定の合金組成になるように混合し、上記の実施例1の場合と同様にして、上記の平均粒径が65μmで、組成がLa0.54Pr0.20Zr0.01Mg0.25Ni3.15Al0.15Co0.10になった水素吸蔵合金の粉末を得た。なお、この水素吸蔵合金においては、上記のLn中におけるLaの含有量(La/Ln)が、下記の表1に示すように72モル%になっており、またX線回折測定結果は、上記の実施例1の水素吸蔵合金と同様に、CaCu5型とは異なる結晶構造になっていた。
(Example 3)
In Example 3, in preparing a hydrogen storage alloy used for the negative electrode, the rare earth elements La and Pr, Zr, Mg, Ni, Al, and Co were mixed so as to have a predetermined alloy composition. In the same manner as in Example 1, a hydrogen storage alloy powder having an average particle size of 65 μm and a composition of La 0.54 Pr 0.20 Zr 0.01 Mg 0.25 Ni 3.15 Al 0.15 Co 0.10 was obtained. In this hydrogen storage alloy, the La content (La / Ln) in the above Ln is 72 mol% as shown in Table 1 below, and the X-ray diffraction measurement results are as follows. Like the hydrogen storage alloy of Example 1, the crystal structure was different from that of the CaCu 5 type.

そして、このようにして得た水素吸蔵合金の粉末を用いる以外は、上記の実施例1の場合と同様にして、実施例3のアルカリ蓄電池を作製した。   And the alkaline storage battery of Example 3 was produced like the case of said Example 1 except using the powder of the hydrogen storage alloy obtained in this way.

(実施例4)
実施例4においては、負極に用いる水素吸蔵合金を作製するにあたり、希土類元素のLa及びSmと、Zrと、Mgと、Niと、Alと、Coとを所定の合金組成になるように混合し、上記の実施例1の場合と同様にして、上記の平均粒径が65μmで、組成がLa0.64Sm0.10Zr0.01Mg0.25Ni3.20Al0.10Co0.10になった水素吸蔵合金の粉末を得た。なお、この水素吸蔵合金においては、上記のLn中におけるLaの含有量(La/Ln)が、下記の表1に示すように85モル%になっており、またX線回折測定結果は、上記の実施例1の水素吸蔵合金と同様に、CaCu5型とは異なる結晶構造になっていた。
Example 4
In Example 4, in preparing a hydrogen storage alloy used for the negative electrode, the rare earth elements La and Sm, Zr, Mg, Ni, Al, and Co were mixed so as to have a predetermined alloy composition. In the same manner as in Example 1, a hydrogen storage alloy powder having an average particle size of 65 μm and a composition of La 0.64 Sm 0.10 Zr 0.01 Mg 0.25 Ni 3.20 Al 0.10 Co 0.10 was obtained. In this hydrogen storage alloy, the La content (La / Ln) in the above Ln is 85 mol% as shown in Table 1 below, and the X-ray diffraction measurement results are as follows. Like the hydrogen storage alloy of Example 1, the crystal structure was different from that of the CaCu 5 type.

そして、このようにして得た水素吸蔵合金の粉末を用いる以外は、上記の実施例1の場合と同様にして、実施例4のアルカリ蓄電池を作製した。   And the alkaline storage battery of Example 4 was produced like the case of said Example 1 except using the powder of the hydrogen storage alloy obtained in this way.

(実施例5)
実施例5においては、負極に用いる水素吸蔵合金を作製するにあたり、希土類元素のLa及びGdと、Zrと、Mgと、Niと、Alと、Coとを所定の合金組成になるように混合し、上記の実施例1の場合と同様にして、上記の平均粒径が65μmで、組成がLa0.64Gd0.10Zr0.01Mg0.25Ni3.20Al0.10Co0.10になった水素吸蔵合金の粉末を得た。なお、この水素吸蔵合金においては、上記のLn中におけるLaの含有量(La/Ln)が、下記の表1に示すように85モル%になっており、またX線回折測定結果は、上記の実施例1の水素吸蔵合金と同様に、CaCu5型とは異なる結晶構造になっていた。
(Example 5)
In Example 5, in preparing a hydrogen storage alloy used for the negative electrode, the rare earth elements La and Gd, Zr, Mg, Ni, Al, and Co were mixed so as to have a predetermined alloy composition. In the same manner as in Example 1, a hydrogen storage alloy powder having an average particle size of 65 μm and a composition of La 0.64 Gd 0.10 Zr 0.01 Mg 0.25 Ni 3.20 Al 0.10 Co 0.10 was obtained. In this hydrogen storage alloy, the La content (La / Ln) in the above Ln is 85 mol% as shown in Table 1 below, and the X-ray diffraction measurement results are as follows. Like the hydrogen storage alloy of Example 1, the crystal structure was different from that of the CaCu 5 type.

そして、このようにして得た水素吸蔵合金の粉末を用いる以外は、上記の実施例1の場合と同様にして、実施例5のアルカリ蓄電池を作製した。   And the alkaline storage battery of Example 5 was produced like the case of said Example 1 except using the powder of the hydrogen storage alloy obtained in this way.

(比較例1)
比較例1においては、負極に用いる水素吸蔵合金を作製するにあたり、希土類元素のLaと、Zrと、Mgと、Niと、Alと、Coとを所定の合金組成になるように混合し、上記の実施例1の場合と同様にして、上記の平均粒径が65μmで、組成がLa0.79Zr0.01Mg0.20Ni3.20Al0.10Co0.10になった水素吸蔵合金の粉末を得た。なお、この水素吸蔵合金においては、上記のLn中におけるLaの含有量(La/Ln)が、下記の表1に示すように99モル%になっており、またX線回折測定結果は、上記の実施例1の水素吸蔵合金と同様に、CaCu5型とは異なる結晶構造になっていた。
(Comparative Example 1)
In Comparative Example 1, in preparing the hydrogen storage alloy used for the negative electrode, the rare earth elements La, Zr, Mg, Ni, Al, and Co were mixed so as to have a predetermined alloy composition. In the same manner as in Example 1, a hydrogen storage alloy powder having an average particle size of 65 μm and a composition of La 0.79 Zr 0.01 Mg 0.20 Ni 3.20 Al 0.10 Co 0.10 was obtained. In this hydrogen storage alloy, the La content (La / Ln) in the above Ln is 99 mol% as shown in Table 1 below, and the X-ray diffraction measurement results are as follows. Like the hydrogen storage alloy of Example 1, the crystal structure was different from that of the CaCu 5 type.

そして、このようにして得た水素吸蔵合金の粉末を用いる以外は、上記の実施例1の場合と同様にして、比較例1のアルカリ蓄電池を作製した。   And the alkaline storage battery of the comparative example 1 was produced like the case of said Example 1 except using the powder of the hydrogen storage alloy obtained in this way.

次に、上記のようにして作製した実施例1〜5及び比較例1の各アルカリ蓄電池をそれぞれ25℃の温度条件において、150mAの電流で16時間充電させた後、1500mAの電流で電池電圧が1.0Vなるまで放電させ、これを1サイクルとして3サイクルの充放電を行い、各アルカリ蓄電池を活性化させた。   Next, each of the alkaline storage batteries of Examples 1 to 5 and Comparative Example 1 manufactured as described above was charged at a current of 150 mA for 16 hours under a temperature condition of 25 ° C., and then the battery voltage was adjusted to a current of 1500 mA. It discharged until it became 1.0V, this was made into 1 cycle, charging / discharging of 3 cycles was performed, and each alkaline storage battery was activated.

そして、上記のように活性化させた実施例1〜5及び比較例1の各アルカリ蓄電池をそれぞれ25℃の温度条件において、1500mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させ、その後、1500mAの電流で電池電圧が1.0Vになるまで放電させて、放置前の放電容量Qoを測定した。   Then, each of the alkaline storage batteries of Examples 1 to 5 and Comparative Example 1 activated as described above was subjected to a temperature of 25 ° C., and the battery voltage reached a maximum value at a current of 1500 mA until the battery voltage decreased by 10 mV. Then, the battery was discharged at a current of 1500 mA until the battery voltage reached 1.0 V, and the discharge capacity Qo before being left standing was measured.

次いで、上記の各アルカリ蓄電池を上記のようにそれぞれ25℃の温度条件において、1500mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させ、このように充電させた各アルカリ蓄電池を60℃環境下において2週間放置させた後、各アルカリ蓄電池を上記のようにそれぞれ25℃の温度条件において、1500mAhの電流で電池電圧が1.0Vになるまで放電させて、放置後の放電容量Qaを測定し、下記の式により各アルカリ蓄電池における放置後の容量残存率を求め、その結果を下記の表1に示した。
容量残存率(%)=(Qa/Qo)×100
Next, each alkaline storage battery is charged in such a manner that the battery voltage reaches a maximum value at a current of 1500 mA at a temperature condition of 25 ° C. as described above until the voltage decreases by 10 mV. After being allowed to stand at 60 ° C. for 2 weeks, each alkaline storage battery is discharged at a current of 1500 mAh until the battery voltage reaches 1.0 V at a temperature of 25 ° C. The capacity Qa was measured, the capacity remaining rate after being left in each alkaline storage battery was determined by the following formula, and the results are shown in Table 1 below.
Capacity remaining rate (%) = (Qa / Qo) × 100

Figure 2008059818
Figure 2008059818

この結果、Ln中のLaの含有量が85モル%を越えた比較例1のアルカリ蓄電池においては放置後の容量残存率が0%になっていたのに対して、Ln中のLaの含有量が85モル%以下になった実施例1〜5の各アルカリ蓄電池は、放置後の容量残存率が大きく向上していた。   As a result, in the alkaline storage battery of Comparative Example 1 in which the content of La in Ln exceeded 85 mol%, the residual capacity rate after standing was 0%, whereas the content of La in Ln In each of the alkaline storage batteries of Examples 1 to 5 in which the amount was 85 mol% or less, the capacity remaining rate after being left was greatly improved.

特に、Ln中のLaの含有量が49モル%以下になった実施例1のアルカリ蓄電池においては、放置後の容量残存率がさらに大きく向上しており、また上記のLn中に希土類元素のSmやGdを含有させた実施例4,5の各アルカリ蓄電池においては、Ln中のLaの含有量が85モル%と高い値になっているにも拘らず、放置後の容量残存率が大きく向上していた。   In particular, in the alkaline storage battery of Example 1 in which the content of La in Ln is 49 mol% or less, the capacity remaining rate after being allowed to stand is further greatly improved. In each of the alkaline storage batteries of Examples 4 and 5 containing Gd and Gd, although the La content in Ln is as high as 85 mol%, the capacity remaining rate after being left is greatly improved. Was.

この発明の実施例及び比較例において作製したアルカリ蓄電池の概略断面図である。It is a schematic sectional drawing of the alkaline storage battery produced in the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池缶
5 正極リード
6 正極蓋
6a ガス放出口
7 負極リード
8 絶縁パッキン
9 正極外部端子
10 コイルスプリング
11 閉塞板
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Positive electrode lead 6 Positive electrode cover 6a Gas discharge port 7 Negative electrode lead 8 Insulation packing 9 Positive electrode external terminal 10 Coil spring 11 Closure board

Claims (4)

正極と、水素吸蔵合金を用いた負極と、正極と負極との間に設けるセパレータと、アルカリ電解液とを備えたアルカリ蓄電池において、上記の負極に、一般式Ln1-xMgxNiy-a-bCoab(式中、LnはZr、Ti、Yを含む希土類元素から選択される少なくとも1種の元素、MはV、Nb、Ta、Cr、Mo、Mn、Fe、Al、Ga、Zn、Sn、ln、Cu、Si、P、Bから選択される少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で表され、上記のLn中におけるLaの含有量がLnの総量に対して85モル%以下である水素吸蔵合金を用いると共に、スルホン基を有するセパレータを用いたことを特徴とするアルカリ蓄電池。 In an alkaline storage battery including a positive electrode, a negative electrode using a hydrogen storage alloy, a separator provided between the positive electrode and the negative electrode, and an alkaline electrolyte, the negative electrode includes the general formula Ln 1-x Mg x Ni yab Co a M b (wherein Ln is at least one element selected from rare earth elements including Zr, Ti, Y, M is V, Nb, Ta, Cr, Mo, Mn, Fe, Al, Ga, Zn, At least one element selected from Sn, ln, Cu, Si, P, and B, 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50 2.8 ≦ y ≦ 3.9), and a hydrogen storage alloy having a La content in Ln of 85 mol% or less with respect to the total amount of Ln is used. An alkaline storage battery using a separator having a group. 請求項1に記載のアルカリ蓄電池において、上記のLn中におけるLaの含有量がLnの総量に対して49モル%以下であることを特徴とするアルカリ蓄電池。   The alkaline storage battery according to claim 1, wherein the content of La in the Ln is 49 mol% or less with respect to the total amount of Ln. 請求項1又は請求項2に記載のアルカリ蓄電池において、上記のLn中にSm、Gdの少なくとも一方の元素が含まれていることを特徴とするアルカリ蓄電池。   The alkaline storage battery according to claim 1 or 2, wherein at least one element of Sm and Gd is contained in the Ln. 請求項3に記載のアルカリ蓄電池において、上記のLn中におけるSmとGdとの合計の含有量が、全希土類元素の10モル%以上であることを特徴とするアルカリ蓄電池。   The alkaline storage battery according to claim 3, wherein the total content of Sm and Gd in the Ln is 10 mol% or more of the total rare earth elements.
JP2006232887A 2006-08-30 2006-08-30 Alkaline storage battery Pending JP2008059818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232887A JP2008059818A (en) 2006-08-30 2006-08-30 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232887A JP2008059818A (en) 2006-08-30 2006-08-30 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2008059818A true JP2008059818A (en) 2008-03-13

Family

ID=39242319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232887A Pending JP2008059818A (en) 2006-08-30 2006-08-30 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2008059818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090246071A1 (en) * 2008-03-25 2009-10-01 Sanyo Electric Co., Ltd. Hydrogen storage alloy
JP2010080291A (en) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd Hydrogen storage alloy powder, manufacturing method therefor, and alkaline accumulator of alkaline storage battery
US20230414486A1 (en) * 2014-12-03 2023-12-28 Mary Kay Inc. Cosmetic compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436431A (en) * 1990-05-31 1992-02-06 Sanyo Electric Co Ltd Hydrogen storage alloy
JPH0562674A (en) * 1991-08-30 1993-03-12 Sanyo Electric Co Ltd Alkaline storage battery
JPH1050291A (en) * 1996-08-05 1998-02-20 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH11162505A (en) * 1997-11-28 1999-06-18 Toshiba Corp Nickel-hydrogen battery
JP2000265229A (en) * 1999-03-16 2000-09-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2001316744A (en) * 2000-05-10 2001-11-16 Toshiba Battery Co Ltd Hydrogen storage alloy and alkali secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436431A (en) * 1990-05-31 1992-02-06 Sanyo Electric Co Ltd Hydrogen storage alloy
JPH0562674A (en) * 1991-08-30 1993-03-12 Sanyo Electric Co Ltd Alkaline storage battery
JPH1050291A (en) * 1996-08-05 1998-02-20 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH11162505A (en) * 1997-11-28 1999-06-18 Toshiba Corp Nickel-hydrogen battery
JP2000265229A (en) * 1999-03-16 2000-09-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2001316744A (en) * 2000-05-10 2001-11-16 Toshiba Battery Co Ltd Hydrogen storage alloy and alkali secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090246071A1 (en) * 2008-03-25 2009-10-01 Sanyo Electric Co., Ltd. Hydrogen storage alloy
JP2009228096A (en) * 2008-03-25 2009-10-08 Sanyo Electric Co Ltd Hydrogen storage alloy
JP2010080291A (en) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd Hydrogen storage alloy powder, manufacturing method therefor, and alkaline accumulator of alkaline storage battery
US20230414486A1 (en) * 2014-12-03 2023-12-28 Mary Kay Inc. Cosmetic compositions

Similar Documents

Publication Publication Date Title
JP5334426B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP5196953B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP2007169724A (en) Hydrogen occlusion alloy and alkaline secondary battery using the hydrogen occlusion alloy
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
JP2009203490A (en) Hydrogen storage alloy, and hydrogen storage alloy electrode and nickel-hydrogen secondary battery using the alloy
JP5482029B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP5178013B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4958411B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP2009076430A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP5219338B2 (en) Method for producing alkaline storage battery
JP2008210554A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP2007250439A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2008059818A (en) Alkaline storage battery
JP2006228536A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2005226084A (en) Hydrogen storage alloy for alkaline storage battery, alkali storage battery, and method for manufacturing alkali storage battery
JP5283435B2 (en) Alkaline storage battery
JP2009081040A (en) Hydrogen storing alloy, hydrogen storing alloy electrode using hydrogen storing alloy, and nickel hydrogen secondary battery
JP2009228096A (en) Hydrogen storage alloy
JP4663275B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2010080291A (en) Hydrogen storage alloy powder, manufacturing method therefor, and alkaline accumulator of alkaline storage battery
JP2007063597A (en) Hydrogen storage alloy for alkaline storage battery, manufacturing method of the hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2005206908A (en) Hydrogen storage alloy for alkaline storage battery, its production method, and alkaline storage battery
JP2007092115A (en) Hydrogen storage alloy, and nickel-hydrogen storage battery using this alloy
JP2007254782A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2006236692A (en) Nickel hydrogen storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218