JP2008210554A - Negative electrode for alkaline storage battery, and alkaline storage battery - Google Patents

Negative electrode for alkaline storage battery, and alkaline storage battery Download PDF

Info

Publication number
JP2008210554A
JP2008210554A JP2007043901A JP2007043901A JP2008210554A JP 2008210554 A JP2008210554 A JP 2008210554A JP 2007043901 A JP2007043901 A JP 2007043901A JP 2007043901 A JP2007043901 A JP 2007043901A JP 2008210554 A JP2008210554 A JP 2008210554A
Authority
JP
Japan
Prior art keywords
negative electrode
storage battery
alkaline storage
hydrogen storage
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007043901A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kiyoku
佳文 曲
Jun Ishida
潤 石田
Shigekazu Yasuoka
茂和 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007043901A priority Critical patent/JP2008210554A/en
Publication of JP2008210554A publication Critical patent/JP2008210554A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a negative electrode used for an alkaline storage battery and make it possible to obtain an alkaline storage battery which has high capacity and is excellent in discharge charactaristic especially at low temperatures, and excellent in cycle life. <P>SOLUTION: In negative electrode of an alkaline battery, hydrogen storage alloy which is expressed as a general formula Ln<SB>1-x</SB>Mg<SB>x</SB>Ni<SB>y-a-b</SB>Al<SB>a</SB>M<SB>b</SB>(in the formula, Ln is an element of one kind selected at least from rare-earth element including Y and Zr, M is an element of at least one kind selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, B, and Ti, x, y, a, and b satisfy conditions of 0.05≤x≤0.25, 3.1≤y≤3.6, 0.01≤a+b≤0.30) and in which Vickers hardness by JIS Z2244 is 650 Hv or less, and a rubber based binder are made to be contained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池及びこのアルカリ蓄電池の負極に使用するアルカリ蓄電池用負極に係り、特に、上記のアルカリ蓄電池用負極を改善し、高容量で、放電特性、特に低温での放電特性や、サイクル寿命に優れたアルカリ蓄電池が得られるようにした点に特徴を有するものである。   The present invention relates to an alkaline storage battery comprising a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, and an alkaline storage battery negative electrode used for the negative electrode of the alkaline storage battery. It is characterized by an improved alkaline storage battery with high capacity, discharge characteristics, particularly low temperature discharge characteristics, and excellent cycle life.

従来、アルカリ蓄電池としては、ニッケル・カドミウム蓄電池が広く使用されていたが、近年においては、ニッケル・カドミウム蓄電池に比べて高容量で、またカドミウムを使用しないため環境安全性にも優れているという点から、負極に水素吸蔵合金を用いたニッケル・水素蓄電池が注目されるようになった。   Conventionally, nickel-cadmium storage batteries have been widely used as alkaline storage batteries, but in recent years they have a higher capacity than nickel-cadmium storage batteries and are superior in environmental safety because they do not use cadmium. Therefore, nickel-hydrogen storage batteries using a hydrogen storage alloy for the negative electrode have come to attract attention.

そして、近年においては、このようなニッケル・水素蓄電池からなるアルカリ蓄電池が各種のポータブル機器に使用されるようになり、このアルカリ蓄電池をさらに高容量化させることが期待されている。   In recent years, alkaline storage batteries composed of such nickel / hydrogen storage batteries have come to be used in various portable devices, and it is expected that the capacity of these alkaline storage batteries will be further increased.

ここで、このようなアルカリ蓄電池においては、その負極に使用する水素吸蔵合金として、一般にCaCu5型格子の結晶を主相とする希土類−ニッケル系水素吸蔵合金や、ラーベス型のAB2格子の結晶を主相とする水素吸蔵合金等が一般に使用されている。 Here, in such an alkaline storage battery, as a hydrogen storage alloy used for the negative electrode, a rare earth-nickel hydrogen storage alloy having a CaCu 5 type lattice crystal as a main phase or a Laves type AB 2 lattice crystal is generally used. In general, a hydrogen storage alloy having a main phase of is used.

しかし、上記の水素吸蔵合金は、水素吸蔵能力が必ずしも十分であるとはいえず、アルカリ蓄電池をさらに高容量化させることが困難であった。   However, the hydrogen storage alloy described above does not necessarily have sufficient hydrogen storage capacity, and it has been difficult to further increase the capacity of the alkaline storage battery.

そこで、近年においては、上記の希土類−ニッケル系水素吸蔵合金における水素吸蔵能力を向上させるために、上記の希土類−ニッケル系水素吸蔵合金にMg等を含有させて、CaCu5型以外のCe2Ni7型やCeNi3型等の結晶構造を有する水素吸蔵合金を用いることが提案されている(例えば、特許文献1参照)。 Therefore, in recent years, in order to improve the hydrogen storage capacity in the rare earth-nickel hydrogen storage alloy, Mg or the like is contained in the rare earth-nickel hydrogen storage alloy, and Ce 2 Ni other than CaCu 5 type is used. It has been proposed to use a hydrogen storage alloy having a crystal structure such as 7 type or CeNi 3 type (see, for example, Patent Document 1).

しかし、上記のような水素吸蔵合金は、一般にクラックが生じやすく、耐食性が悪くなって、アルカリ蓄電池のサイクル寿命が十分ではなく、また水素吸蔵合金の割れにより、内部抵抗が増加して、放電特性、特に低温での放電特性が大きく低下するという問題があった。   However, the hydrogen storage alloys as described above are generally prone to cracking, resulting in poor corrosion resistance, and the cycle life of the alkaline storage battery is not sufficient. In particular, there is a problem that the discharge characteristics at a low temperature are greatly deteriorated.

そして、従来においては、ビッカース硬さが700Hv以下の水素吸蔵合金を用い、充放電時における水素吸蔵合金の割れを抑制して、アルカリ蓄電池のサイクル寿命を向上させることが提案されている(例えば、特許文献2参照)。   In the past, it has been proposed to use a hydrogen storage alloy having a Vickers hardness of 700 Hv or less to suppress cracking of the hydrogen storage alloy during charge and discharge to improve the cycle life of the alkaline storage battery (for example, Patent Document 2).

しかし、このような水素吸蔵合金を用いた場合においても、この水素吸蔵合金を含む負極材料をパンチングメタル等の導電性支持体に塗布し、ローラ圧延機等で圧延させてアルカリ蓄電池用負極を作製する場合に、上記の水素吸蔵合金に割れ発生するという問題があった。特に、アルカリ蓄電池の電池容量を高めるために、例えば、特許文献3に提案されているように、上記の負極材料を充填密度が4.8g/cm3以上になるように充填させる場合には、強い圧力で圧延させるため、水素吸蔵合金に割れが多く発生し、アルカリ蓄電池のサイクル寿命が低下すると共に、アルカリ蓄電池用負極の内部抵抗も増大して、放電特性、特に低温での放電特性が大きく低下するという問題があった。 However, even when such a hydrogen storage alloy is used, a negative electrode material containing this hydrogen storage alloy is applied to a conductive support such as a punching metal, and is rolled with a roller mill or the like to produce a negative electrode for an alkaline storage battery. When doing so, there was a problem that the above-mentioned hydrogen storage alloy cracked. In particular, in order to increase the battery capacity of the alkaline storage battery, for example, as proposed in Patent Document 3, when the negative electrode material is filled so that the filling density is 4.8 g / cm 3 or more, Since rolling is performed at a strong pressure, many cracks occur in the hydrogen storage alloy, the cycle life of the alkaline storage battery is reduced, the internal resistance of the negative electrode for the alkaline storage battery is increased, and the discharge characteristics, particularly at low temperatures, are large. There was a problem of lowering.

また、従来においては、水素吸蔵合金を含むスラリーを導電性支持体に塗着させるにあたり、結着剤として水溶性高分子とゴム系樹脂とを用い、水素吸蔵合金が導電性支持体から脱落するのを防止すると共に、水素吸蔵合金の充填密度を高めるようにしたものも提案されている(例えば、特許文献4参照)。   Further, conventionally, when a slurry containing a hydrogen storage alloy is applied to a conductive support, a water-soluble polymer and a rubber-based resin are used as a binder, and the hydrogen storage alloy falls off the conductive support. In order to prevent this, there has also been proposed one in which the filling density of the hydrogen storage alloy is increased (see, for example, Patent Document 4).

しかし、上記のものは、ゴム系樹脂により水素吸蔵合金の導電性支持体に対する塗着力を高める一方、水溶性高分子によりゴム系樹脂の量を少なくして、水素吸蔵合金の充填量を高めるというものであり、圧延時に水素吸蔵合金に割れが発生するのを抑制するために、どのような水素吸蔵合金を用いるかについては一切示唆されておらず、水素吸蔵合金の割れを十分に抑制して、アルカリ蓄電池のサイクル寿命や、放電特性、特に低温での放電特性を十分に向上させることができないものである。
特開2002−69554号公報 特開平11−323469号公報 特開2000−133254号公報 特開平7−45278号公報
However, the above-described one increases the adhesion of the hydrogen storage alloy to the conductive support with the rubber resin, while reducing the amount of the rubber resin with the water-soluble polymer to increase the filling amount of the hydrogen storage alloy. In order to suppress the occurrence of cracks in the hydrogen storage alloy during rolling, there is no suggestion of what kind of hydrogen storage alloy is used, and the cracks in the hydrogen storage alloy are sufficiently suppressed. In addition, the cycle life of the alkaline storage battery and the discharge characteristics, particularly the discharge characteristics at a low temperature cannot be sufficiently improved.
JP 2002-69554 A JP-A-11-323469 JP 2000-133254 A Japanese Patent Laid-Open No. 7-45278

本発明は、水素吸蔵合金を用いたアルカリ蓄電池用負極及びこのようなアルカリ蓄電池用負極を用いたアルカリ蓄電池における上記のような問題を解決することを課題とするものであり、上記のアルカリ蓄電池用負極を改善し、高容量で、放電特性、特に低温での放電特性や、サイクル寿命に優れたアルカリ蓄電池が得られるようにすることを課題とするものである。   This invention makes it a subject to solve the above problems in the negative electrode for alkaline storage batteries using a hydrogen storage alloy, and the alkaline storage battery using such a negative electrode for alkaline storage batteries. An object of the present invention is to improve the negative electrode so that an alkaline storage battery having a high capacity, discharge characteristics, particularly discharge characteristics at low temperatures, and excellent cycle life can be obtained.

本発明におけるアルカリ蓄電池用負極においては、上記のような課題を解決するため、一般式Ln1-xMgxNiy-a-bAlab(式中、LnはYを含む希土類元素とZrとから選択される少なくとも1種の元素、MはV,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,B及びTiから選択される少なくとも1種の元素であり、x,y,a,bは、0.05≦x≦0.25、3.1≦y≦3.6、0.01≦a+b≦0.30の条件を満たす。)で表され、JISZ2244によるビッカース硬さが650Hv以下である水素吸蔵合金と、ゴム系結着剤とを含むようにした。 In order to solve the above-described problems, the alkaline storage battery negative electrode according to the present invention is selected from the general formula Ln 1-x Mg x Ni yab Al a M b (where Ln is selected from rare earth elements including Y and Zr). At least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, B, and Ti. And x, y, a, and b satisfy the conditions of 0.05 ≦ x ≦ 0.25, 3.1 ≦ y ≦ 3.6, and 0.01 ≦ a + b ≦ 0.30). And a hydrogen storage alloy having a Vickers hardness of 650 Hv or less according to JISZ2244 and a rubber-based binder.

そして、上記の水素吸蔵合金とゴム系結着剤とを含む負極材料を導電性支持体に塗布し、圧延させてアルカリ蓄電池用負極を作製するにあたっては、高容量のアルカリ蓄電池が得られるようにするため、上記の負極材料の充填密度を5.7g/cm3以上にすることが好ましい。 When a negative electrode material containing the hydrogen storage alloy and the rubber binder is applied to a conductive support and rolled to produce a negative electrode for an alkaline storage battery, a high-capacity alkaline storage battery is obtained. Therefore, the packing density of the negative electrode material is preferably set to 5.7 g / cm 3 or more.

また、上記のアルカリ蓄電池用負極において、上記のゴム系結着剤としては、適当なゴム弾性を有すると共に、上記の水素吸蔵合金に対して悪影響を及ぼさないものを用いるようにすることが必要であり、例えば、スチレン・ブタジエンゴムを用いることができる。   In the alkaline storage battery negative electrode, it is necessary to use a rubber-based binder that has an appropriate rubber elasticity and does not adversely affect the hydrogen storage alloy. For example, styrene-butadiene rubber can be used.

また、上記のアルカリ蓄電池用負極においては、上記の水素吸蔵合金とゴム系結着剤の他に、カーボンを含有させることが好ましい。このように、アルカリ蓄電池用負極にカーボンを含有させると、上記のように負極材料を導電性支持体に塗布して圧延させる際に、カーボンがクッション材として機能し、上記の水素吸蔵合金に割れが生じるのが抑制されるようになる。また、このように含有させたカーボンによってアルカリ蓄電池用負極中にアルカリ電解液が均一に分布されやすくなると共に、カーボンが導電剤としても機能するため、このアルカリ蓄電池用負極全体において均一な充放電反応が起こり、上記の水素吸蔵合金における割れの発生が一層抑制されるようになる。なお、アルカリ蓄電池用負極におけるカーボンの量が多くなりすぎると、充填される水素吸蔵合金の量が減少して、電池容量が低下するため、カーボンの添加量を、上記の水素吸蔵合金に対して4重量%以下にすることが好ましい。   In the alkaline storage battery negative electrode, it is preferable to contain carbon in addition to the hydrogen storage alloy and the rubber-based binder. Thus, when carbon is contained in the negative electrode for an alkaline storage battery, when the negative electrode material is applied to the conductive support and rolled as described above, the carbon functions as a cushioning material and cracks into the hydrogen storage alloy. Is suppressed from occurring. In addition, the carbon contained in this manner facilitates uniform distribution of the alkaline electrolyte in the negative electrode for alkaline storage batteries, and carbon also functions as a conductive agent. Therefore, the charge / discharge reaction is uniform throughout the negative electrode for alkaline storage batteries. And the occurrence of cracks in the hydrogen storage alloy is further suppressed. If the amount of carbon in the negative electrode for an alkaline storage battery is too large, the amount of hydrogen storage alloy to be filled decreases and the battery capacity decreases, so the amount of carbon added to the above hydrogen storage alloy It is preferable to make it 4 wt% or less.

そして、本発明におけるアルカリ蓄電池においては、その負極に上記のようなアルカリ蓄電池用負極を用いるようにした。   And in the alkaline storage battery in this invention, the above negative electrodes for alkaline storage batteries were used for the negative electrode.

本発明のアルカリ蓄電池用負極において使用する上記の一般式Ln1-xMgxNiy-a-bCoabで表わされる水素吸蔵合金は、Ce2Ni7型又はこれに類似した結晶構造になっており、高い水素吸蔵能力を有しているため、電池容量の高いアルカリ蓄電池が得られるようになる。 Hydrogen storage alloy represented by the general used in a negative electrode for alkaline storage battery formula Ln 1-x Mg x Ni yab Co a M b of the present invention is adapted to similar crystal structure Ce 2 Ni 7 type or to Since it has a high hydrogen storage capacity, an alkaline storage battery with a high battery capacity can be obtained.

また、本発明におけるアルカリ蓄電池用負極のように、JISZ2244によるビッカース硬さが650Hv以下である水素吸蔵合金を用いると、この水素吸蔵合金が柔らかくて粘りがあるため、割れが生じにくくなり、また上記のようにゴム系結着剤を用いると、このゴム系結着剤が柔軟性を有するため、上記のように水素吸蔵合金とゴム系結着剤とを含む負極材料を導電性支持体に塗布し、圧延させてアルカリ蓄電池用負極を作製する場合に、このゴム系結着剤がクッション材として機能して、上記の水素吸蔵合金に割れが生じるのが一層抑制され、このアルカリ蓄電池用負極の耐食性が向上すると共に、内部抵抗が増大するのも防止されるようになる。特に、電池容量の高いアルカリ蓄電池を得るために、負極材料の充填密度が5.7g/cm3以上になるように強い圧力で圧延させた場合においても、上記の水素吸蔵合金の割れが十分に抑制されるようになる。 Further, when a hydrogen storage alloy having a Vickers hardness of 650 Hv or less according to JISZ2244 is used as in the negative electrode for an alkaline storage battery according to the present invention, the hydrogen storage alloy is soft and sticky, so that cracking hardly occurs. When a rubber-based binder is used, the rubber-based binder has flexibility, so that a negative electrode material containing a hydrogen storage alloy and a rubber-based binder is applied to the conductive support as described above. When the negative electrode for alkaline storage battery is produced by rolling, the rubber-based binder functions as a cushioning material, and the generation of cracks in the hydrogen storage alloy is further suppressed. Corrosion resistance is improved and an increase in internal resistance is prevented. In particular, in order to obtain an alkaline storage battery having a high battery capacity, even when the negative electrode material is rolled at a strong pressure such that the packing density of the negative electrode material is 5.7 g / cm 3 or more, the above-described hydrogen storage alloy is sufficiently cracked. It will be suppressed.

この結果、アルカリ蓄電池に上記のようなアルカリ蓄電池用負極を用いると、高容量で、放電特性、特に低温での放電特性や、サイクル寿命に優れたアルカリ蓄電池が得られるようになる。   As a result, when the above-described negative electrode for an alkaline storage battery is used for the alkaline storage battery, an alkaline storage battery having a high capacity, excellent discharge characteristics, particularly low temperature discharge characteristics, and excellent cycle life can be obtained.

以下、本発明の実施例に係るアルカリ蓄電池用負極及びこのアルカリ蓄電池用負極を用いたアルカリ蓄電池について具体的に説明すると共に、比較例を挙げ、本発明の実施例に係るアルカリ蓄電池用負極を用いたアルカリ蓄電池においては、水素吸蔵合金の割れが抑制されて、放電特性、特に低温での放電特性や、サイクル寿命に優れたアルカリ蓄電池が得られることを明らかにする。なお、本発明におけるアルカリ蓄電池用負極及びアルカリ蓄電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the negative electrode for an alkaline storage battery according to an embodiment of the present invention and the alkaline storage battery using the negative electrode for an alkaline storage battery will be specifically described, a comparative example will be given, and the negative electrode for an alkaline storage battery according to an embodiment of the present invention will be used. In the conventional alkaline storage battery, it is clarified that cracking of the hydrogen storage alloy is suppressed, and an alkaline storage battery having excellent discharge characteristics, particularly low temperature discharge characteristics and cycle life can be obtained. In addition, the negative electrode for alkaline storage batteries and alkaline storage battery in this invention are not limited to what was shown to the following Example, In the range which does not change the summary, it can implement suitably.

(実施例1)
実施例1においては、アルカリ蓄電池を作製するにあたり、下記のようにして作製した負極と正極とを用いるようにした。
(Example 1)
In Example 1, when producing an alkaline storage battery, a negative electrode and a positive electrode produced as described below were used.

[負極の作製]
負極を作製するにあたっては、希土類元素のLa,Pr及びNdと、Mgと、Niと、Alとを所定の合金組成になるように混合し、これを誘導溶解炉により1500℃で溶融させた後、これを冷却させて、水素吸蔵合金のインゴットを得た。そして、この水素吸蔵合金のインゴットをアルゴン雰囲気中において液化開始温度よりも60℃低い温度で10時間熱処理して均質化させた。なお、この水素吸蔵合金の組成を、高周波プラズマ分光分析法(ICP)によって分析した結果、この水素吸蔵合金の組成はLa0.17Pr0.33Nd0.33Mg0.17Ni3.10Al0.20になっていた。また、上記のように熱処理した後の水素吸蔵合金のインゴットについて、JISZ2244に従ってビッカース硬さを測定した結果、この水素吸蔵合金のビッカース硬さは610Hvであった。
[Production of negative electrode]
In producing the negative electrode, after mixing rare earth elements La, Pr, and Nd, Mg, Ni, and Al so as to have a predetermined alloy composition, this was melted at 1500 ° C. in an induction melting furnace. This was cooled to obtain a hydrogen storage alloy ingot. The hydrogen storage alloy ingot was heat treated in an argon atmosphere at a temperature 60 ° C. lower than the liquefaction start temperature for 10 hours to be homogenized. As a result of analyzing the composition of the hydrogen storage alloy by high frequency plasma spectroscopy (ICP), the composition of the hydrogen storage alloy was La 0.17 Pr 0.33 Nd 0.33 Mg 0.17 Ni 3.10 Al 0.20 . Further, as a result of measuring the Vickers hardness of the hydrogen storage alloy ingot after the heat treatment as described above according to JISZ2244, the hydrogen storage alloy had a Vickers hardness of 610 Hv.

次いで、上記のように熱処理して均質化させた水素吸蔵合金のインゴットを不活性雰囲気中において機械的に粉砕し、これを分級して、上記の組成になった水素吸蔵合金の粉末を得た。なお、この水素吸蔵合金の粉末について、レーザ回折・散乱式粒度分布測定装置により粒度分布を測定した結果、重量積分が50%における平均粒径が65μmになっていた。   Next, the hydrogen storage alloy ingot homogenized by heat treatment as described above was mechanically pulverized in an inert atmosphere and classified to obtain a hydrogen storage alloy powder having the above composition. . As a result of measuring the particle size distribution of the hydrogen storage alloy powder using a laser diffraction / scattering particle size distribution measuring device, the average particle size at a weight integral of 50% was 65 μm.

そして、上記の水素吸蔵合金の粉末100重量部に対して、ゴム系結着剤のスチレン・ブタジエンゴム(SBR)を1重量部、ポリアクリル酸ナトリウムを0.2重量部、カルボキシメチルセルロースを0.2重量部、導電性粉末のニッケル金属フレークを1重量部、カーボンブラックを1重量部、水を50重量部添加し、これらを混練させて、負極材料のペーストを調製した。そして、このペーストをパンチングメタルからなる導電性支持体の両面に均一に塗布し、これを乾燥させてプレスした後、所定の寸法に切断して負極を作製した。なお、この負極においては、負極材料の充填密度が5.7g/cm3になっていた。 And, 100 parts by weight of the above hydrogen storage alloy powder, 1 part by weight of styrene-butadiene rubber (SBR) as a rubber-based binder, 0.2 part by weight of sodium polyacrylate, and 0.1 part of carboxymethylcellulose. 2 parts by weight, 1 part by weight of nickel powder flakes of conductive powder, 1 part by weight of carbon black and 50 parts by weight of water were added and kneaded to prepare a paste of negative electrode material. And this paste was apply | coated uniformly on both surfaces of the electroconductive support body which consists of punching metal, this was dried and pressed, Then, it cut | disconnected to the predetermined dimension and produced the negative electrode. In this negative electrode, the packing density of the negative electrode material was 5.7 g / cm 3 .

[正極の作製]
正極を作製するにあたっては、亜鉛を2.5重量%,コバルトを1.0重量%含有する水酸化ニッケル粉末を硫酸コバルト水溶液中に投入し、これを攪拌しながら、1モルの水酸化ナトリウム水溶液を徐々に滴下し、pHを11にして反応させた後、沈殿物を濾過し、これを水洗し、真空乾燥させて、表面に水酸化コバルトが5重量%被覆された水酸化ニッケルを得た。
[Production of positive electrode]
In preparing the positive electrode, nickel hydroxide powder containing 2.5% by weight of zinc and 1.0% by weight of cobalt was charged into a cobalt sulfate aqueous solution, and 1 mol of sodium hydroxide aqueous solution was stirred while stirring the powder. Was gradually added dropwise to cause the reaction to pH 11, and the precipitate was filtered, washed with water and dried in vacuo to obtain nickel hydroxide having a surface coated with 5% by weight of cobalt hydroxide. .

そして、このように水酸化コバルトが被覆された水酸化ニッケルに、25重量%の水酸化ナトリウム水溶液を1:10の重量比になるように加えて含浸させ、これを8時間攪拌しながら85℃で加熱処理した後、これを水洗し、65℃で乾燥させて、上記の水酸化ニッケルの表面がナトリウム含有コバルト酸化物で被覆された正極活物質を得た。なお、上記のコバルト酸化物におけるコバルトの価数は3.05であった。   The nickel hydroxide thus coated with cobalt hydroxide was impregnated with a 25% by weight aqueous sodium hydroxide solution in a weight ratio of 1:10, and this was stirred for 8 hours at 85 ° C. Then, this was washed with water and dried at 65 ° C. to obtain a positive electrode active material in which the nickel hydroxide surface was coated with sodium-containing cobalt oxide. In addition, the valence of cobalt in said cobalt oxide was 3.05.

次いで、この正極活物質を95重量部、酸化亜鉛を3重量部、水酸化コバルトを2重量部の割合で混合させたものに、0.2重量%のヒドロキシプロピルセルロース水溶液を50重量部加え、これらを混合させて正極材料のスラリーを調製した。そして、このスラリーを目付けが約600g/m2になったニッケル発泡体に充填し、これを乾燥させてプレスした後、所定の寸法に切断して、非焼結式ニッケル極からなる正極を作製した。 Next, 95 parts by weight of the positive electrode active material, 3 parts by weight of zinc oxide, and 2 parts by weight of cobalt hydroxide were mixed with 50 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution. These were mixed to prepare a slurry of the positive electrode material. Then, this slurry is filled in a nickel foam having a basis weight of about 600 g / m 2 , dried and pressed, and then cut to a predetermined size to produce a positive electrode made of a non-sintered nickel electrode. did.

そして、上記のように作製した正極と負極とを使用すると共に、セパレータとして、ポリプロピレン製の不織布を使用し、またアルカリ電解液として、KOHとNaOHとLiOH・H2Oとが8:0.5:1の重量比で含まれ、これらの総和が30重量%になったアルカリ水溶液を使用し、図1に示すような円筒型で設計容量が1500mAhになったアルカリ蓄電池を組み立てた。 Then, with using the positive electrode and the negative electrode fabricated as described above, as a separator, using a nonwoven fabric made of polypropylene, and as the alkaline electrolyte, and the KOH and NaOH and LiOH · H 2 O 8: 0.5 An alkaline aqueous battery with a design capacity of 1500 mAh as shown in FIG. 1 was assembled using an alkaline aqueous solution that was included at a weight ratio of 1: 1 and the sum of these was 30% by weight.

ここで、上記のアルカリ蓄電池を組み立てるにあたっては、図1に示すように、上記の正極1と負極2との間にセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させ、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、この電池缶4内にアルカリ電解液を注液させた後、電池缶4と正極蓋6との間に絶縁パッキン8を介して封口し、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6に設けられたガス放出口6aを閉塞させるようにして、この正極蓋6と正極外部端子9との間にコイルスプリング10によって付勢された閉塞板11を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて、電池内部のガスが大気中に放出されるようにした。   Here, in assembling the alkaline storage battery, as shown in FIG. 1, a separator 3 is interposed between the positive electrode 1 and the negative electrode 2, and these are spirally wound and accommodated in the battery can 4. The positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5, the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and an alkaline electrolyte is injected into the battery can 4. Sealing was performed between the battery can 4 and the positive electrode lid 6 via an insulating packing 8, and the battery can 4 and the positive electrode lid 6 were electrically separated by the insulating packing 8. Further, a closing plate 11 urged by a coil spring 10 is provided between the positive electrode cover 6 and the positive electrode external terminal 9 so as to close the gas discharge port 6a provided in the positive electrode cover 6, and the battery When the internal pressure of the battery rises abnormally, the coil spring 10 is compressed so that the gas inside the battery is released into the atmosphere.

(実施例2)
実施例2においては、実施例1における負極の作製において、希土類元素のNdと、Mgと、Niと、Alとを所定の合金組成になるように混合し、上記の実施例1の場合と同様にして、Nd0.90Mg0.10Ni3.30Al0.20の組成になった水素吸蔵合金のインゴットを得た後、このインゴットを熱処理し、その後、このインゴットを不活性雰囲気中において機械的に粉砕し、分級して、上記の組成になった水素吸蔵合金の粉末を得た。なお、上記の熱処理した後の水素吸蔵合金のインゴットについて、JISZ2244に従ってビッカース硬さを測定した結果、この水素吸蔵合金のビッカース硬さは570Hvであった。また、上記の水素吸蔵合金の粉末について、レーザ回折・散乱式粒度分布測定装置により粒度分布を測定した結果、重量積分が50%における平均粒径が65μmになっていた。
(Example 2)
In Example 2, in the production of the negative electrode in Example 1, rare earth elements Nd, Mg, Ni, and Al were mixed so as to have a predetermined alloy composition, and the same as in Example 1 above. Then, after obtaining an ingot of a hydrogen storage alloy having a composition of Nd 0.90 Mg 0.10 Ni 3.30 Al 0.20 , the ingot was heat-treated, and then the ingot was mechanically pulverized and classified in an inert atmosphere. Thus, a hydrogen storage alloy powder having the above composition was obtained. In addition, as a result of measuring the Vickers hardness of the ingot of the hydrogen storage alloy after the heat treatment according to JISZ2244, the Vickers hardness of the hydrogen storage alloy was 570 Hv. Further, as a result of measuring the particle size distribution of the above-mentioned hydrogen storage alloy powder using a laser diffraction / scattering particle size distribution measuring apparatus, the average particle size when the weight integral was 50% was 65 μm.

そして、上記のNd0.90Mg0.10Ni3.30Al0.20の組成になった水素吸蔵合金の粉末を用いる以外は、上記の実施例1の場合と同様にして、実施例2のアルカリ蓄電池を得た。 Then, except for using a powder of the above Nd 0.90 Mg 0.10 Ni 3.30 hydrogen storage alloy became the composition of Al 0.20, as in the case of Example 1 above to obtain an alkali storage battery of Example 2.

(比較例1)
比較例1においては、実施例1における負極の作製において、希土類元素のLa,Pr及びNdと、Mgと、Niと、Alとを所定の合金組成になるように混合し、上記の実施例1の場合と同様にして、La0.50Pr0.15Nd0.15Mg0.20Ni3.30Al0.10の組成になった水素吸蔵合金のインゴットを得た後、このインゴットを熱処理し、その後、このインゴットを不活性雰囲気中において機械的に粉砕し、分級して、上記の組成になった水素吸蔵合金の粉末を得た。なお、上記の熱処理した後の水素吸蔵合金のインゴットについて、JISZ2244に従ってビッカース硬さを測定した結果、この水素吸蔵合金のビッカース硬さは670Hvであった。また、上記の水素吸蔵合金の粉末について、レーザ回折・散乱式粒度分布測定装置により粒度分布を測定した結果、重量積分が50%における平均粒径が65μmになっていた。
(Comparative Example 1)
In Comparative Example 1, in preparation of the negative electrode in Example 1, rare earth elements La, Pr, and Nd, Mg, Ni, and Al were mixed so as to have a predetermined alloy composition. In the same manner as above, after obtaining an ingot of a hydrogen storage alloy having a composition of La 0.50 Pr 0.15 Nd 0.15 Mg 0.20 Ni 3.30 Al 0.10 , the ingot was heat-treated, and then the ingot was heated in an inert atmosphere. Mechanically pulverized and classified to obtain a hydrogen storage alloy powder having the above composition. In addition, as a result of measuring the Vickers hardness of the hydrogen storage alloy ingot after the heat treatment according to JISZ2244, the hydrogen storage alloy had a Vickers hardness of 670 Hv. Further, as a result of measuring the particle size distribution of the above-mentioned hydrogen storage alloy powder using a laser diffraction / scattering type particle size distribution measuring apparatus, the average particle size when the weight integral was 50% was 65 μm.

そして、上記のLa0.50Pr0.15Nd0.15Mg0.20Ni3.30Al0.10の組成になった水素吸蔵合金の粉末を用いる以外は、上記の実施例1の場合と同様にして、比較例1のアルカリ蓄電池を得た。 The alkaline storage battery of Comparative Example 1 was obtained in the same manner as in Example 1 except that the hydrogen storage alloy powder having the composition of La 0.50 Pr 0.15 Nd 0.15 Mg 0.20 Ni 3.30 Al 0.10 was used. Obtained.

次に、上記のようにして得た実施例1,2及び比較例1の各アルカリ蓄電池をそれぞれ45℃の温度雰囲気中に10時間放置し、その後、上記の各アルカリ蓄電池を150mAの電流で16時間充電させた後、1500mAの電流で電池電圧が1.0Vになるまで放電させ、これを1サイクルとして、3サイクルの充放電を行って、各アルカリ蓄電池を活性化させた。   Next, the alkaline storage batteries of Examples 1 and 2 and Comparative Example 1 obtained as described above were each left in a temperature atmosphere of 45 ° C. for 10 hours, and then each of the alkaline storage batteries described above was subjected to 16 mA at a current of 150 mA. After charging for a period of time, discharging was performed at a current of 1500 mA until the battery voltage reached 1.0 V, and this was regarded as one cycle, and charging / discharging for 3 cycles was performed to activate each alkaline storage battery.

そして、上記のように活性化させた実施例1,2及び比較例1の各アルカリ蓄電池を解体して、それぞれの負極から水素吸蔵合金粒子を取り出し、これを水洗し、減圧乾燥させた後、上記の各水素吸蔵合金粒子について、前記のようにレーザ回折・散乱式粒度分布測定装置により粒度分布を測定して、重量積分が50%における平均粒径を求めた。そして、実施例1における水素吸蔵合金粒子の平均粒径を100として、各水素吸蔵合金粒子の合金粒度を算出し、その結果を下記の表1に示した。   And after dismantling each alkaline storage battery of Examples 1 and 2 and Comparative Example 1 activated as described above, the hydrogen storage alloy particles were taken out from the respective negative electrodes, washed with water, and dried under reduced pressure. About each said hydrogen storage alloy particle, the particle size distribution was measured with the laser diffraction and scattering type particle size distribution measuring apparatus as mentioned above, and the average particle diameter in 50% of weight integral was calculated | required. Then, assuming that the average particle size of the hydrogen storage alloy particles in Example 1 was 100, the alloy particle size of each hydrogen storage alloy particle was calculated.

また、上記のように活性化させた実施例1,2及び比較例1の各アルカリ蓄電池を、25℃の温度環境下において、それぞれ1500mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させて20分間休止した後、1500mAの電流で電池電圧が1.0Vになるまで放電させて10分間休止し、これを1サイクルとして充放電を繰り返して行い、各アルカリ蓄電池の放電容量が初期の放電容量の70%になるまでのサイクル数を求めた。そして、実施例1のアルカリ蓄電池におけるサイクル数を100として、各アルカリ蓄電池のサイクル寿命を算出し、その結果を下記の表1に示した。   In addition, the alkaline storage batteries of Examples 1 and 2 and Comparative Example 1 activated as described above were reduced by 10 mV after the battery voltage reached the maximum value at a current of 1500 mA in a temperature environment of 25 ° C. The battery is charged for 20 minutes and then discharged for 20 minutes, and then discharged at a current of 1500 mA until the battery voltage reaches 1.0 V, paused for 10 minutes, and this is repeated as charge and discharge. , The number of cycles until 70% of the initial discharge capacity was obtained. And the cycle life of each alkaline storage battery was calculated by setting the number of cycles in the alkaline storage battery of Example 1 to 100, and the results are shown in Table 1 below.

また、上記のように活性化させた実施例1,2及び比較例1の各アルカリ蓄電池を、25℃の温度環境下において、それぞれ1500mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させた後、−10℃の温度環境下において2時間休止させた後、−10℃の温度環境下において1500mAの電流で電池電圧が1.0Vになるまで放電させて、各アルカリ蓄電池の低温での放電容量を求めた。そして、実施例1のアルカリ蓄電池における放電容量を100として、各アルカリ蓄電池の低温放電特性を算出し、その結果を下記の表1に示した。   In addition, the alkaline storage batteries of Examples 1 and 2 and Comparative Example 1 activated as described above were reduced by 10 mV after the battery voltage reached the maximum value at a current of 1500 mA in a temperature environment of 25 ° C. Each of the alkaline storage batteries is discharged until the battery voltage reaches 1.0 V at a current of 1500 mA in a temperature environment of −10 ° C. The discharge capacity at low temperature was determined. And the discharge capacity in the alkaline storage battery of Example 1 was set to 100, the low temperature discharge characteristic of each alkaline storage battery was calculated, and the result is shown in Table 1 below.

Figure 2008210554
Figure 2008210554

この結果、負極に、ゴム系結着剤を用いると共にビッカース硬さが650Hv以下の水素吸蔵合金を用いた実施例1,2のアルカリ蓄電池は、ビッカース硬さが650Hvを越えた水素吸蔵合金を用いた比較例1のアルカリ蓄電池に比べて、アルカリ蓄電池を活性化させた後における水素吸蔵合金粒子の合金粒度が大きくなっており、水素吸蔵合金粒子の割れが少なくなっていた。   As a result, the alkaline storage battery of Examples 1 and 2 using a rubber binder and a hydrogen storage alloy having a Vickers hardness of 650 Hv or less for the negative electrode uses a hydrogen storage alloy having a Vickers hardness of over 650 Hv. Compared with the alkaline storage battery of Comparative Example 1, the alloy particle size of the hydrogen storage alloy particles after activation of the alkaline storage battery was increased, and the cracks of the hydrogen storage alloy particles were reduced.

また、上記の実施例1,2のアルカリ蓄電池においては、比較例1のアルカリ蓄電池に比べて、充放電のサイクル寿命及び低温放電特性も向上していた。   Moreover, in the alkaline storage batteries of Examples 1 and 2, the charge / discharge cycle life and low-temperature discharge characteristics were also improved as compared with the alkaline storage battery of Comparative Example 1.

本発明の実施例1,2及び比較例1において作製したアルカリ蓄電池の概略断面図である。It is a schematic sectional drawing of the alkaline storage battery produced in Examples 1, 2 and Comparative Example 1 of the present invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池缶
5 正極リード
6 正極蓋
6a ガス放出口
7 負極リード
8 絶縁パッキン
9 正極外部端子
10 コイルスプリング
11 閉塞板
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Positive electrode lead 6 Positive electrode cover 6a Gas discharge port 7 Negative electrode lead 8 Insulation packing 9 Positive electrode external terminal 10 Coil spring 11 Closure board

Claims (4)

一般式Ln1-xMgxNiy-a-bAlab(式中、LnはYを含む希土類元素とZrとから選択される少なくとも1種の元素、MはV,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,B及びTiから選択される少なくとも1種の元素であり、x,y,a,bは、0.05≦x≦0.25、3.1≦y≦3.6、0.01≦a+b≦0.30の条件を満たす。)で表され、JISZ2244によるビッカース硬さが650Hv以下である水素吸蔵合金と、ゴム系結着剤とを含むことを特徴とするアルカリ蓄電池用負極。 Formula Ln 1-x Mg x Ni yab Al a M b ( wherein, at least one element Ln is selected from the rare earth element and Zr containing Y, M is V, Nb, Ta, Cr, Mo, It is at least one element selected from Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, B, and Ti, and x, y, a, and b are 0.05 ≦ x ≦ 0.25, 3.1 ≦ y ≦ 3.6, 0.01 ≦ a + b ≦ 0.30), a hydrogen storage alloy having a Vickers hardness of 650 Hv or less according to JISZ2244, and a rubber system A negative electrode for an alkaline storage battery, comprising a binder. 請求項1に記載のアルカリ蓄電池用負極において、上記の水素吸蔵合金とゴム系結着剤とを含む負極材料が導電性支持体に塗布されて圧延され、この負極材料の充填密度が5.7g/cm3以上になっていることを特徴とするアルカリ蓄電池用負極。 2. The negative electrode for an alkaline storage battery according to claim 1, wherein the negative electrode material containing the hydrogen storage alloy and the rubber-based binder is applied to a conductive support and rolled, and the packing density of the negative electrode material is 5.7 g. A negative electrode for an alkaline storage battery, wherein the negative electrode is / cm 3 or more. 請求項1又は請求項2に記載のアルカリ蓄電池用負極において、上記のゴム系結着剤がスチレン・ブタジエンゴムであることを特徴とするアルカリ蓄電池用負極。   3. The negative electrode for an alkaline storage battery according to claim 1 or 2, wherein the rubber-based binder is styrene-butadiene rubber. 正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、その負極に上記の請求項1〜請求項3の何れか1項に記載のアルカリ蓄電池用負極を用いたことを特徴とするアルカリ蓄電池。   In the alkaline storage battery provided with the positive electrode, the negative electrode using a hydrogen storage alloy, and alkaline electrolyte, the negative electrode for alkaline storage batteries of any one of said Claims 1-3 was used for the negative electrode. An alkaline storage battery characterized by that.
JP2007043901A 2007-02-23 2007-02-23 Negative electrode for alkaline storage battery, and alkaline storage battery Pending JP2008210554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043901A JP2008210554A (en) 2007-02-23 2007-02-23 Negative electrode for alkaline storage battery, and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043901A JP2008210554A (en) 2007-02-23 2007-02-23 Negative electrode for alkaline storage battery, and alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2008210554A true JP2008210554A (en) 2008-09-11

Family

ID=39786701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043901A Pending JP2008210554A (en) 2007-02-23 2007-02-23 Negative electrode for alkaline storage battery, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2008210554A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212117A (en) * 2009-03-11 2010-09-24 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, and alkaline storage battery
JP2011096619A (en) * 2009-02-12 2011-05-12 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery
JP2011127185A (en) * 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JP7461655B2 (en) 2020-09-23 2024-04-04 日本重化学工業株式会社 Hydrogen storage alloy for alkaline batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP2007311095A (en) * 2006-05-17 2007-11-29 Sanyo Electric Co Ltd Alkaline storage battery
JP2007323892A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Alkaline storage battery
JP2008210556A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Alkaline storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP2007311095A (en) * 2006-05-17 2007-11-29 Sanyo Electric Co Ltd Alkaline storage battery
JP2007323892A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Alkaline storage battery
JP2008210556A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Alkaline storage battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096619A (en) * 2009-02-12 2011-05-12 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery
JP2010212117A (en) * 2009-03-11 2010-09-24 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, and alkaline storage battery
JP2011127185A (en) * 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
CN104220613A (en) * 2012-02-09 2014-12-17 株式会社三德 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JPWO2013118806A1 (en) * 2012-02-09 2015-05-11 株式会社三徳 Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
EP2813588A4 (en) * 2012-02-09 2016-03-09 Santoku Corp Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
US9859556B2 (en) 2012-02-09 2018-01-02 Santoku Corporation Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JP7461655B2 (en) 2020-09-23 2024-04-04 日本重化学工業株式会社 Hydrogen storage alloy for alkaline batteries

Similar Documents

Publication Publication Date Title
US7700237B2 (en) Hydrogen storage alloy and alkaline secondary battery using the same
JP5334426B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP4566025B2 (en) Alkaline storage battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
JP2011096619A (en) Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery
US8317950B2 (en) Method of making hydrogen-absorbing alloy for alkaline storage battery, and alkaline storage battery
JP5482029B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP2008210554A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP2009076430A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP4342186B2 (en) Alkaline storage battery
JP5219338B2 (en) Method for producing alkaline storage battery
JP2007250439A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2006228536A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
US20090061317A1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP5283435B2 (en) Alkaline storage battery
JP2005226084A (en) Hydrogen storage alloy for alkaline storage battery, alkali storage battery, and method for manufacturing alkali storage battery
JP4290023B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP2010212117A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP2010055920A (en) Anode for alkaline storage battery and alkaline storage battery
JP5137417B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP2008059818A (en) Alkaline storage battery
JP2007254782A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2006236692A (en) Nickel hydrogen storage battery
JP2007063611A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
JP2007063597A (en) Hydrogen storage alloy for alkaline storage battery, manufacturing method of the hydrogen storage alloy for alkaline storage battery, and alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113