JP5334426B2 - Negative electrode for alkaline storage battery and alkaline storage battery - Google Patents

Negative electrode for alkaline storage battery and alkaline storage battery Download PDF

Info

Publication number
JP5334426B2
JP5334426B2 JP2008049042A JP2008049042A JP5334426B2 JP 5334426 B2 JP5334426 B2 JP 5334426B2 JP 2008049042 A JP2008049042 A JP 2008049042A JP 2008049042 A JP2008049042 A JP 2008049042A JP 5334426 B2 JP5334426 B2 JP 5334426B2
Authority
JP
Japan
Prior art keywords
negative electrode
storage battery
alkaline storage
alkaline
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008049042A
Other languages
Japanese (ja)
Other versions
JP2009206004A (en
Inventor
忠佳 田中
佳文 曲
茂和 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008049042A priority Critical patent/JP5334426B2/en
Publication of JP2009206004A publication Critical patent/JP2009206004A/en
Application granted granted Critical
Publication of JP5334426B2 publication Critical patent/JP5334426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池及びこのアルカリ蓄電池の負極に使用するアルカリ蓄電池用負極に係り、特に、上記のアルカリ蓄電池用負極を改善し、アルカリ蓄電池を繰り返して充放電させた場合に、アルカリ蓄電池用負極に用いた水素吸蔵合金がアルカリ電解液によって酸化されるのを適切に防止し、サイクル寿命に優れたアルカリ蓄電池が得られるようにした点に特徴を有するものである。   The present invention relates to an alkaline storage battery comprising a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, and an alkaline storage battery negative electrode used for the negative electrode of the alkaline storage battery. When the alkaline storage battery is repeatedly charged and discharged, the hydrogen storage alloy used in the negative electrode for the alkaline storage battery is appropriately prevented from being oxidized by the alkaline electrolyte, and an alkaline storage battery with excellent cycle life is obtained. It has the feature in the point made like this.

従来、アルカリ蓄電池としては、ニッケル・カドミウム蓄電池が広く使用されていたが、近年においては、ニッケル・カドミウム蓄電池に比べて高容量で、またカドミウムを使用しないため環境安全性にも優れているという点から、負極に水素吸蔵合金を用いたニッケル・水素蓄電池が注目されるようになった。   Conventionally, nickel-cadmium storage batteries have been widely used as alkaline storage batteries, but in recent years they have a higher capacity than nickel-cadmium storage batteries and are superior in environmental safety because they do not use cadmium. Therefore, nickel-hydrogen storage batteries using a hydrogen storage alloy for the negative electrode have come to attract attention.

そして、近年においては、このようなニッケル・水素蓄電池からなるアルカリ蓄電池が各種のポータブル機器やハイブリッド電気自動車などに使用されるようになり、このアルカリ蓄電池をさらに高性能化させることが期待されている。   In recent years, alkaline storage batteries made of such nickel / hydrogen storage batteries have come to be used in various portable devices and hybrid electric vehicles, and it is expected that these alkaline storage batteries will be further improved in performance. .

ここで、このようなアルカリ蓄電池においては、その負極に使用する水素吸蔵合金として、一般に、CaCu5型結晶を主相とする希土類−Ni系金属間化合物であるLaNi5系の水素吸蔵合金や、Ti,Zr,V及びNiを構成元素として含有するラーベス相を主相とする水素吸蔵合金等が一般に使用されている。 Here, in such an alkaline storage battery, as a hydrogen storage alloy used for the negative electrode, generally, a LaNi 5 type hydrogen storage alloy which is a rare earth-Ni intermetallic compound having a CaCu 5 type crystal as a main phase, In general, a hydrogen storage alloy having a Laves phase containing Ti, Zr, V and Ni as constituent elements as a main phase is used.

しかし、上記の各水素吸蔵合金は、水素吸蔵能力が必ずしも十分であるとはいえず、アルカリ蓄電池をさらに高容量化させることが困難であった。   However, each of the above hydrogen storage alloys does not necessarily have sufficient hydrogen storage capacity, and it has been difficult to further increase the capacity of the alkaline storage battery.

そこで、近年においては、上記の希土類−ニッケル系水素吸蔵合金における水素吸蔵能力を向上させるために、特許文献1に示されるように、上記の希土類−ニッケル系水素吸蔵合金にMg等を含有させて、CaCu5型以外のCe2Ni7型やCeNi3型等の結晶構造を有するMg−Ni−希土類系水素吸蔵合金を用いることが提案されている。 Therefore, in recent years, in order to improve the hydrogen storage capacity of the rare earth-nickel hydrogen storage alloy, as shown in Patent Document 1, the rare earth-nickel hydrogen storage alloy contains Mg or the like. It has been proposed to use a Mg—Ni—rare earth-based hydrogen storage alloy having a crystal structure such as Ce 2 Ni 7 type or CeNi 3 type other than CaCu 5 type.

ここで、上記のようなMg−Ni−希土類系水素吸蔵合金は、一般にクラックが生じやすく、反応性の高い新しい面が放電反応に寄与するため、低温での放電特性や、高率放電時における放電容量は比較的良好である一方、水素吸蔵合金における耐食性が悪くなり、充放電を繰り返した場合、この水素吸蔵合金がアルカリ電解液により酸化されて劣化すると共に、アルカリ蓄電池におけるアルカリ電解液が次第に消費されて、セパレータに含まれるアルカリ電解液が減少し、アルカリ蓄電池における内部抵抗が増大して、アルカリ蓄電池のサイクル寿命が大きく低下するという問題があった。   Here, the Mg-Ni-rare earth-based hydrogen storage alloy as described above is generally prone to cracking, and a new surface with high reactivity contributes to the discharge reaction. While the discharge capacity is relatively good, the corrosion resistance of the hydrogen storage alloy deteriorates, and when charging and discharging are repeated, the hydrogen storage alloy is oxidized and deteriorated by the alkaline electrolyte, and the alkaline electrolyte in the alkaline storage battery gradually increases. When consumed, the alkaline electrolyte contained in the separator is reduced, the internal resistance of the alkaline storage battery is increased, and the cycle life of the alkaline storage battery is greatly reduced.

このため、従来においては、特許文献2に示されるように、上記のようなMg−Ni−希土類系水素吸蔵合金を用いたアルカリ蓄電池の負極にフッ素樹脂を混合させ、この負極にアルカリ電解液が浸透するのを適度に抑制し、充放電を繰り返した場合に、負極における上記の水素吸蔵合金が微粉化したり、酸化したりするのを抑制して、アルカリ蓄電池のサイクル寿命を向上させることが提案されている。   For this reason, conventionally, as shown in Patent Document 2, a fluororesin is mixed with the negative electrode of the alkaline storage battery using the Mg—Ni-rare earth-based hydrogen storage alloy as described above, and an alkaline electrolyte is added to the negative electrode. Proposal to improve the cycle life of alkaline storage battery by moderately suppressing penetration and suppressing the above hydrogen storage alloy in the negative electrode from being pulverized or oxidized when repeated charging and discharging. Has been.

しかし、上記のように負極にフッ素樹脂を混合させて、アルカリ電解液が負極に浸透するのを適度に抑制させるようにしたアルカリ蓄電池においても、充放電を数多く繰り返して行うと、依然として上記の水素吸蔵合金粉末が酸化され、アルカリ蓄電池のサイクル寿命を十分に向上させることができないという問題があった。
特開2002−69554号公報 特開2005−190863号公報
However, even in an alkaline storage battery in which a fluororesin is mixed in the negative electrode as described above and the alkaline electrolyte is appropriately suppressed from penetrating into the negative electrode, if the charge and discharge are repeated many times, the above-mentioned hydrogen There was a problem that the storage alloy powder was oxidized and the cycle life of the alkaline storage battery could not be sufficiently improved.
JP 2002-69554 A JP 2005-190863 A

本発明は、水素吸蔵合金を用いたアルカリ蓄電池用負極を使用したアルカリ蓄電池における上記のような問題を解決することを課題とするものであり、特に、Mg−Ni−希土類系水素吸蔵合金を用いたアルカリ蓄電池用負極を使用したアルカリ蓄電池において、上記のアルカリ蓄電池用負極を改善し、充放電を繰り返して行った場合に、上記の水素吸蔵合金粉末が酸化されるのを十分に抑制して、サイクル寿命に優れたアルカリ蓄電池が得られるようにすることを課題とするものである。   An object of the present invention is to solve the above-mentioned problems in an alkaline storage battery using a negative electrode for an alkaline storage battery using a hydrogen storage alloy, and in particular, a Mg—Ni-rare earth hydrogen storage alloy is used. In the alkaline storage battery using the negative electrode for alkaline storage battery, when the above negative electrode for alkaline storage battery was improved and repeated charging and discharging, the above hydrogen storage alloy powder was sufficiently suppressed from being oxidized, An object of the present invention is to obtain an alkaline storage battery having excellent cycle life.

本発明のアルカリ蓄電池用負極においては、上記のような課題を解決するため、水素吸蔵合金を用いたアルカリ蓄電池用負極において、このアルカリ蓄電池用負極中にフッ素オイルを含有させ、加えてフッ素樹脂を含有させ、上記フッ素オイルとしては、クロロトリフルオロエチレンの低重合物とした。
In the negative electrode for alkaline storage batteries of the present invention, in order to solve the above-mentioned problems, in the negative electrode for alkaline storage batteries using a hydrogen storage alloy, the negative electrode for alkaline storage batteries contains fluorine oil, and in addition, a fluorine resin is added. As the fluorine oil, a low polymer of chlorotrifluoroethylene was used.

また、上記のフッ素樹脂としては、例えば、四フッ化エチレン樹脂、四フッ化エチレン−六フッ化プロピレン共重合体、四フッ化エチレン−パーフルオロビニルエーテル共重合体から選択される少なくとも1種を用いることができる。   Moreover, as said fluororesin, for example, at least one selected from tetrafluoroethylene resin, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluorovinyl ether copolymer is used. be able to.

また、本発明のアルカリ蓄電池用負極において、使用する水素吸蔵合金の種類は特に限定されないが、前記のように水素吸蔵能力に優れるが耐食性が低いCaCu5型以外のCe2Ni7型やCeNi3型等の結晶構造を有するMg−Ni−希土類系水素吸蔵合金を用いた場合に効果があり、例えば、一般式Ln1-xMgxNiy-a-bAlab(式中、Lnは、Yを含む希土類元素とZrとTiとから選択される少なくとも1種の元素、Mは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,Bから選択される少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で示される水素吸蔵合金を用いた場合に効果がある。 Moreover, in the negative electrode for alkaline storage batteries of the present invention, the type of hydrogen storage alloy to be used is not particularly limited. However, as described above, Ce 2 Ni 7 type and CeNi 3 other than CaCu 5 type which have excellent hydrogen storage ability but low corrosion resistance. This is effective when an Mg—Ni—rare earth-based hydrogen storage alloy having a crystal structure such as a mold is used. For example, the general formula Ln 1-x Mg x Ni yab Al a M b (where Ln is Y At least one element selected from rare earth elements and Zr and Ti, M is V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P , B, 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3. The effect is achieved when the hydrogen storage alloy shown in (9) is used. A.

また、本発明のアルカリ蓄電池においては、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、その負極の上記のようなアルカリ蓄電池負極を用いるようにした。   Moreover, in the alkaline storage battery of the present invention, the alkaline storage battery negative electrode as described above is used in an alkaline storage battery including a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte.

本発明においては、上記のようにアルカリ蓄電池用負極中にフッ素オイルを含有させるようにしたため、このようなアルカリ蓄電池用負極を使用したアルカリ蓄電池においては、アルカリ電解液中においても安定なフッ素オイルにより水素吸蔵合金の一部が覆われて、水素吸蔵合金とアルカリ電解液との接触が制限されるようになり、充放電を繰り返した場合に、上記の水素吸蔵合金が酸化されるのが抑制され、アルカリ蓄電池におけるサイクル寿命が向上する。   In the present invention, since the fluorine oil is contained in the alkaline storage battery negative electrode as described above, the alkaline storage battery using such an alkaline storage battery negative electrode has a stable fluorine oil even in an alkaline electrolyte. Part of the hydrogen storage alloy is covered, and the contact between the hydrogen storage alloy and the alkaline electrolyte is limited, and when the charge and discharge are repeated, the above-described hydrogen storage alloy is prevented from being oxidized. The cycle life in the alkaline storage battery is improved.

また、上記のアルカリ蓄電池用負極中にフッ素オイルに加えてフッ素樹脂を含有させているので、フッ素オイルとフッ素樹脂との親和性が高いため、フッ素オイルがフッ素樹脂と水素吸蔵合金との間において糊剤の役割を果たし、フッ素樹脂が水素吸蔵合金の表面に強固に存在するようになる。
Furthermore, since by containing a fluorine resin in addition to the fluorine oil in the negative electrode during a above alkaline storage battery, it has high affinity with fluorine oil and a fluorine resin, fluorine oil between the fluororesin and the hydrogen storage alloy It plays the role of a paste and the fluororesin is firmly present on the surface of the hydrogen storage alloy.

この結果、水素吸蔵合金がアルカリ電解液により酸化されて劣化するのが一層抑制されると共に、アルカリ蓄電池におけるアルカリ電解液が次第に消費されるのも抑制され、アルカリ蓄電池における内部抵抗が増大するのが防止されて、アルカリ蓄電池のサイクル寿命がさらに向上するようになる。   As a result, the hydrogen storage alloy is further suppressed from being oxidized and deteriorated by the alkaline electrolyte, and the consumption of the alkaline electrolyte in the alkaline storage battery is also suppressed, and the internal resistance in the alkaline storage battery is increased. As a result, the cycle life of the alkaline storage battery is further improved.

特に、アルカリ蓄電池用負極における水素吸蔵合金に、前記のように水素吸蔵能力に優れるが耐食性が低い一般式Ln1-xMgxNiy-a-bAlab(式中、Lnは、Yを含む希土類元素とZrとTiとから選択される少なくとも1種の元素、Mは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,Bから選択される少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で示される水素吸蔵合金を用いた場合には、高容量のアルカリ蓄電池が得られると共に、水素吸蔵合金がアルカリ電解液により酸化されて劣化するが適切に防止され、サイクル寿命が大幅に向上されるようになる。 In particular, the hydrogen storage alloy in the negative electrode for an alkaline storage battery has the general formula Ln 1-x Mg x Ni yab Al a M b (wherein Ln is a rare earth including Y, which has excellent hydrogen storage capacity but low corrosion resistance as described above. At least one element selected from the elements, Zr and Ti, M is V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, B At least one element selected from the group consisting of 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9. When a hydrogen storage alloy represented by the above condition is used, a high capacity alkaline storage battery is obtained, and the hydrogen storage alloy is oxidized and deteriorated by an alkaline electrolyte, but is appropriately prevented, and the cycle life is reduced. It will be greatly improved.

以下、本発明の実施例に係るアルカリ蓄電池用負極及びこのアルカリ蓄電池用負極を用いたアルカリ蓄電池について説明すると共に、比較例を挙げ、本発明の実施例に係るアルカリ蓄電池用負極を用いたアルカリ蓄電池においては、水素吸蔵合金がアルカリ電解液により酸化されるのが適切に防止されて、サイクル寿命が向上されることを明らかにする。なお、本発明におけるアルカリ蓄電池用負極及びアルカリ蓄電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the negative electrode for an alkaline storage battery according to an embodiment of the present invention and the alkaline storage battery using the negative electrode for an alkaline storage battery will be described, a comparative example will be given, and the alkaline storage battery using the negative electrode for an alkaline storage battery according to an embodiment of the present invention. , It is clarified that the hydrogen storage alloy is appropriately prevented from being oxidized by the alkaline electrolyte and the cycle life is improved. In addition, the negative electrode for alkaline storage batteries and alkaline storage battery in this invention are not limited to what was shown to the following Example, In the range which does not change the summary, it can implement suitably.

(実施例1)
実施例1においては、アルカリ蓄電池を作製するにあたり、下記のようにして作製した負極と正極とを用いるようにした。
Example 1
In Example 1, when producing an alkaline storage battery, a negative electrode and a positive electrode produced as described below were used.

[負極の作製]
負極を作製するにあたっては、NdとSmとMgとNiとAlとを所定の合金組成になるように混合し、これをアルゴンガス雰囲気中において高周波誘導溶解炉を用いて溶融させた後、これを冷却させて水素吸蔵合金のインゴットを得た。
[Production of negative electrode]
In producing the negative electrode, Nd, Sm, Mg, Ni and Al are mixed so as to have a predetermined alloy composition, and this is melted in a high-frequency induction melting furnace in an argon gas atmosphere. After cooling, an ingot of hydrogen storage alloy was obtained.

次いで、この水素吸蔵合金のインゴットを不活性雰囲気中において熱処理して均質化させた後、この水素吸蔵合金のインゴットを不活性雰囲気中において機械的に粉砕し、これを分級して、質量積分50%にあたる平均粒径が65μmになった水素吸蔵合金の粉末を得た。ここで、このようにして得た水素吸蔵合金の組成を高周波プラズマ分光分析法(ICP)によって分析した結果、組成はNd0.36Sm0.54Mg0.10Ni3.33Al0.17になっていた。 Next, the hydrogen storage alloy ingot was heat treated in an inert atmosphere to be homogenized, and then the hydrogen storage alloy ingot was mechanically pulverized in an inert atmosphere and classified to obtain a mass integral of 50 %, A hydrogen storage alloy powder having an average particle size of 65 μm was obtained. Here, as a result of analyzing the composition of the hydrogen storage alloy thus obtained by high-frequency plasma spectroscopy (ICP), the composition was Nd 0.36 Sm 0.54 Mg 0.10 Ni 3.33 Al 0.17 .

そして、上記の水素吸蔵合金の粉末100質量部に対して、スチレン・ブタジエン共重合ゴム(SBR)を1質量部、ポリアクリル酸ナトリウムを0.2質量部、カルボキシメチルセルロースを0.2質量部、ケッチェンブラックを1質量部、水を50質量部、フッ素オイルであるクロロトリフルオロエチレンの低重合物を0.2質量部、フッ素樹脂である四フッ化エチレン−六フッ化プロピレン共重合体の分散液を固形分の四フッ化エチレン−六フッ化プロピレン共重合体が1質量部の割合になるように添加し、これらを常温において混練させて、ペーストを調製した。   And, with respect to 100 parts by mass of the hydrogen storage alloy powder, 1 part by mass of styrene / butadiene copolymer rubber (SBR), 0.2 part by mass of sodium polyacrylate, 0.2 part by mass of carboxymethyl cellulose, 1 part by mass of ketjen black, 50 parts by mass of water, 0.2 part by mass of a low polymer of chlorotrifluoroethylene as a fluoro oil, and a tetrafluoroethylene-hexafluoropropylene copolymer as a fluororesin The dispersion was added so that the solid content of tetrafluoroethylene-hexafluoropropylene copolymer was 1 part by mass, and these were kneaded at room temperature to prepare a paste.

次いで、このペーストをパンチングメタルからなる導電性芯体の両面に均一に塗布し、これを乾燥させてプレスした後、これを所定の寸法に切断して負極を作製した。   Next, this paste was uniformly applied on both surfaces of a conductive metal core made of punching metal, dried and pressed, and then cut into a predetermined size to produce a negative electrode.

[正極の作製]
正極を作製するにあたっては、亜鉛を2.5質量%,コバルトを1.0質量%含有する水酸化ニッケル粉末を硫酸コバルト水溶液中に投入し、これを攪拌しながら、1モルの水酸化ナトリウム水溶液を徐々に滴下してpHを11にして反応させ、その後、沈殿物を濾過し、これを水洗し、真空乾燥させて、表面に水酸化コバルトが5質量%被覆された水酸化ニッケルを得た。
[Production of positive electrode]
In preparing the positive electrode, nickel hydroxide powder containing 2.5% by mass of zinc and 1.0% by mass of cobalt was charged into a cobalt sulfate aqueous solution, and 1 mol of sodium hydroxide aqueous solution was added while stirring the powder. Was gradually added dropwise to cause the reaction to pH 11, and then the precipitate was filtered, washed with water, and dried under vacuum to obtain nickel hydroxide having a surface coated with 5% by weight of cobalt hydroxide. .

次いで、このように水酸化コバルトが被覆された水酸化ニッケルに、25質量%の水酸化ナトリウム水溶液を1:10の質量比になるように加えて含浸させ、これを8時間攪拌しながら85℃で加熱処理した後、これを水洗し、65℃で乾燥させて、上記の水酸化ニッケルの表面がナトリウム含有高次コバルト酸化物で被覆された正極活物質を得た。   Next, the nickel hydroxide thus coated with cobalt hydroxide was impregnated with a 25% by mass sodium hydroxide aqueous solution so as to have a mass ratio of 1:10. Then, this was washed with water and dried at 65 ° C. to obtain a positive electrode active material in which the nickel hydroxide surface was coated with sodium-containing higher cobalt oxide.

次いで、この正極活物質を95質量部、酸化亜鉛を3質量部、水酸化コバルトを2質量部の割合で混合させたものに、結着剤のヒドロキシプロピルセルロースが0.2質量%含まれる水溶液を50質量部加え、これらを混合させてスラリーを調製した。   Next, an aqueous solution containing 95 parts by mass of the positive electrode active material, 3 parts by mass of zinc oxide, and 2 parts by mass of cobalt hydroxide and 0.2 mass% of the binder hydroxypropylcellulose. Was added and mixed to prepare a slurry.

そして、このスラリーを目付けが約600g/m2、多孔度が95%、厚みが約2mmのニッケル発泡体に充填し、これを乾燥させ、正極活物質密度が約2.9g/cm3−voidとなるように調整して圧延させた後、所定の寸法に切断して非焼結式ニッケル極からなる正極を作製した。 Then, this slurry is filled in a nickel foam having a basis weight of about 600 g / m 2 , a porosity of 95% and a thickness of about 2 mm, and is dried, and the positive electrode active material density is about 2.9 g / cm 3 -void. After being adjusted and rolled so as to be, a positive electrode made of a non-sintered nickel electrode was cut by cutting to a predetermined size.

そして、セパレータとしては、ポリプロピレン不織布をフッ素化ガスと亜硫酸ガスとでフッ素化処理して得られたスルホン基を有するポリプロピレン不織布を使用し、またアルカリ電解液としては、KOHとNaOHとLiOHとが15:2:1の質量比で含まれて比重が1.30になったアルカリ電解液を使用し、図1に示すようなAAサイズの円筒型で設計容量が1500mAhになったアルカリ蓄電池を作製した。   And as a separator, the polypropylene nonwoven fabric which has a sulfone group obtained by fluorinating a polypropylene nonwoven fabric with fluorinated gas and sulfurous acid gas is used, and KOH, NaOH, and LiOH are 15 as an alkaline electrolyte. : Using an alkaline electrolyte containing a mass ratio of 2: 1 and a specific gravity of 1.30, an AA-sized cylindrical storage battery with a design capacity of 1500 mAh as shown in FIG. 1 was produced. .

ここで、上記のアルカリ蓄電池を作製するにあたっては、図1に示すように、上記の正極1と負極2との間にセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させ、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、この電池缶4内にアルカリ電解液を注液させた後、電池缶4と正極蓋6との間に絶縁パッキン8を介して封口し、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6に設けられたガス放出口6aを閉塞させるようにして、この正極蓋6と正極外部端子9との間にコイルスプリング10によって付勢された閉塞板11を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて、電池内部のガスが大気中に放出されるようにした。   Here, in producing the alkaline storage battery, as shown in FIG. 1, a separator 3 is interposed between the positive electrode 1 and the negative electrode 2, and these are spirally wound and accommodated in a battery can 4. The positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5, and the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7, and an alkaline electrolyte is injected into the battery can 4. The battery can 4 and the positive electrode lid 6 were sealed via an insulating packing 8, and the battery can 4 and the positive electrode lid 6 were electrically separated by the insulating packing 8. Further, a closing plate 11 urged by a coil spring 10 is provided between the positive electrode cover 6 and the positive electrode external terminal 9 so as to close the gas discharge port 6a provided in the positive electrode cover 6, and the battery When the internal pressure of the battery rises abnormally, the coil spring 10 is compressed so that the gas inside the battery is released into the atmosphere.

参考例1
参考例1においては、上記の実施例1における負極の作製において、上記のフッ素オイルであるクロロトリフルオロエチレンの低重合物を添加させる一方、フッ素樹脂である四フッ化エチレン−六フッ化プロピレン共重合体を添加させないようにして負極を作製し、それ以外は、上記の実施例1の場合と同様にして、参考例1のアルカリ蓄電池を作製した。
( Reference Example 1 )
In Reference Example 1 , in the production of the negative electrode in Example 1 above, a low polymer of chlorotrifluoroethylene, which is the above-described fluoro oil, is added while tetrafluoroethylene-hexafluoropropylene co-polymer, which is a fluororesin, is added. A negative electrode was prepared without adding the polymer, and the alkaline storage battery of Reference Example 1 was prepared in the same manner as in Example 1 except that.

(比較例1)
比較例1においては、上記の実施例1における負極の作製において、上記のフッ素オイルであるクロロトリフルオロエチレンの低重合物と、フッ素樹脂である四フッ化エチレン−六フッ化プロピレン共重合体とを添加させないようにして負極を作製し、それ以外は、上記の実施例1の場合と同様にして、比較例1のアルカリ蓄電池を作製した。
(Comparative Example 1)
In Comparative Example 1, in the preparation of the negative electrode in Example 1 above, a low polymer of chlorotrifluoroethylene as the fluorine oil and a tetrafluoroethylene-hexafluoropropylene copolymer as the fluororesin The alkaline storage battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the negative electrode was produced without adding.

(比較例2)
比較例2においては、上記の実施例1における負極の作製において、上記のフッ素オイルであるクロロトリフルオロエチレンの低重合物だけを添加させないようにして負極を作製し、それ以外は、上記の実施例1の場合と同様にして、比較例2のアルカリ蓄電池を作製した。
(Comparative Example 2)
In Comparative Example 2, a negative electrode was prepared by adding only the low polymer of chlorotrifluoroethylene, which is the above-described fluorine oil, in the preparation of the negative electrode in Example 1 above. In the same manner as in Example 1, an alkaline storage battery of Comparative Example 2 was produced.

そして、上記のようにして作製した実施例1,参考例1及び比較例1,2の各アルカリ蓄電池を、それぞれ150mAの電流で16時間充電させた後、1500mAの電流で電池電圧が1.0Vになるまで放電させ、これを1サイクルとして3サイクルの充放電を行い、各アルカリ蓄電池を活性化させた。
And after charging each alkaline storage battery of Example 1, Reference Example 1 and Comparative Examples 1 and 2 produced as described above for 16 hours at a current of 150 mA, the battery voltage was 1.0 V at a current of 1500 mA. It was made to discharge until it became, and this was made into 1 cycle, and charge / discharge of 3 cycles was performed and each alkaline storage battery was activated.

次いで、このように活性化させた実施例1,参考例1及び比較例1,2の各アルカリ蓄電池を、それぞれ1500mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させて30分間放置した後、1500mAの電流で電池電圧が1.0Vになるまで放電させて30分間放置し、これを1サイクルとして充放電を繰り返して行い、各アルカリ蓄電池について放電容量が1000mAhになるまでのサイクル数を求め、比較例1のアルカリ蓄電池におけるサイクル数をサイクル寿命100として、各アルカリ蓄電池におけるサイクル寿命比を求め、その結果を下記の表1に示した。
Next, the alkaline storage batteries of Example 1, Reference Example 1 and Comparative Examples 1 and 2 thus activated were charged until the battery voltage reached the maximum value at a current of 1500 mA until the battery voltage decreased by 10 mV. After being left for 30 minutes, the battery is discharged at a current of 1500 mA until the battery voltage reaches 1.0 V, left for 30 minutes, and this is repeated as one cycle until the discharge capacity reaches 1000 mAh for each alkaline storage battery. The cycle number of each alkaline storage battery was determined with the cycle number of the alkaline storage battery of Comparative Example 1 as the cycle life 100, and the results are shown in Table 1 below.

また、上記のように活性化させた実施例1,参考例1及び比較例1,2の各アルカリ蓄電池を、上記のサイクル寿命の場合と同様にして200サイクルの充放電を行った後、各アルカリ蓄電池を分解し、これらを水洗してアルカリ電解液を取り除き、乾燥させた後、各アルカリ蓄電池の負極における水素吸蔵合金粉末を取り出し、酸素分析装置(LECO社製)を用い、不活性ガス中において融解抽出法により、各水素吸蔵合金粉末における酸素濃度(質量%)を測定し、比較例1における水素吸蔵合金粉末の酸素濃度を100として、各アルカリ蓄電池における水素吸蔵合金粉末の酸素濃度比を求め、その結果を下記の表1に示した。
In addition, each of the alkaline storage batteries of Example 1, Reference Example 1 and Comparative Examples 1 and 2 activated as described above was charged and discharged for 200 cycles in the same manner as in the case of the above cycle life. After decomposing the alkaline storage battery, washing it with water to remove the alkaline electrolyte and drying it, the hydrogen storage alloy powder in the negative electrode of each alkaline storage battery is taken out and in an inert gas using an oxygen analyzer (manufactured by LECO) Then, the oxygen concentration (mass%) in each hydrogen storage alloy powder was measured by the melt extraction method, and the oxygen concentration ratio of the hydrogen storage alloy powder in each alkaline storage battery was defined as 100 with the oxygen concentration of the hydrogen storage alloy powder in Comparative Example 1 being 100. The results are shown in Table 1 below.

Figure 0005334426
Figure 0005334426

この結果、水素吸蔵合金を用いた負極中に、フッ素オイルとフッ素樹脂とを含有させた実施例1及びフッ素オイルだけを含有させた参考例1の各アルカリ蓄電池は、負極中にフッ素オイルとフッ素樹脂との双方を含有させていない比較例1のアルカリ蓄電池や、負極中にフッ素樹脂だけを含有させてフッ素オイルを含有させていない比較例2のアルカリ蓄電池に比べて、サイクル寿命が向上すると共に、充放電を繰り返して行った後の水素吸蔵合金粉末に含まれる酸素濃度も低下していた。特に、負極中にフッ素オイルとフッ素樹脂との双方を含有させた実施例1のアルカリ蓄電池は、負極中にフッ素オイルだけを含有させた参考例1のアルカリ蓄電池に比べて、サイクル寿命がさらに向上すると共に、充放電を繰り返して行った後の水素吸蔵合金粉末に含まれる酸素濃度も一層低下していた。
As a result, each of the alkaline storage batteries of Example 1 in which fluorine oil and fluorine resin were contained in the negative electrode using the hydrogen storage alloy and Reference Example 1 in which only fluorine oil was contained was obtained in the negative electrode using fluorine oil and fluorine. Compared with the alkaline storage battery of Comparative Example 1 that does not contain both the resin and the alkaline storage battery of Comparative Example 2 that contains only the fluororesin in the negative electrode and does not contain the fluorine oil, the cycle life is improved. Moreover, the oxygen concentration contained in the hydrogen storage alloy powder after repeated charging and discharging was also reduced. In particular, the alkaline storage battery of Example 1 in which both the fluorine oil and the fluororesin are contained in the negative electrode further improves the cycle life as compared with the alkaline storage battery in Reference Example 1 in which only the fluorine oil is contained in the negative electrode. In addition, the oxygen concentration contained in the hydrogen storage alloy powder after repeated charge and discharge was further reduced.

なお、上記の実施例及び比較例においては、水素吸蔵合金として、前記の一般式Ln1-xMgxNiy-a-bAlab(式中、Lnは、Yを含む希土類元素とZrとTiとから選択される少なくとも1種の元素、Mは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,Bから選択される少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で示される水素吸蔵合金を用いたが、フッ素オイルやフッ素樹脂の作用は、他の水素吸蔵合金を用いた場合であっても同様であり、他の水素吸蔵合金を用いた場合においても同様の効果が得られる。 In the above examples and comparative examples, as the hydrogen storage alloy, the general formula Ln 1-x Mg x Ni yab Al a M b (wherein Ln is a rare earth element including Y, Zr and Ti, M is at least one element selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, and B. It is a seed element and satisfies the following conditions: 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, 2.8 ≦ y ≦ 3.9. The hydrogen storage alloy shown is used, but the action of fluorine oil and fluororesin is the same even when other hydrogen storage alloys are used, and the same effect is obtained even when other hydrogen storage alloys are used. Is obtained.

本発明の実施例1,参考例1及び比較例1,2において作製したアルカリ蓄電池の概略断面図である。It is a schematic sectional drawing of the alkaline storage battery produced in Example 1, Reference example 1, and Comparative examples 1 and 2 of this invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池缶
5 正極リード
6 正極蓋
6a ガス放出口
7 負極リード
8 絶縁パッキン
9 正極外部端子
10 コイルスプリング
11 閉塞板
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Positive electrode lead 6 Positive electrode cover 6a Gas discharge port 7 Negative electrode lead 8 Insulation packing 9 Positive electrode external terminal 10 Coil spring 11 Closure board

Claims (4)

水素吸蔵合金を用いたアルカリ蓄電池用負極において、このアルカリ蓄電池用負極中にフッ素オイルが含有され、さらに、フッ素樹脂が含まれ、
前記フッ素オイルは、クロロトリフルオロエチレンの低重合物である
ことを特徴とするアルカリ蓄電池用負極。
In the alkaline storage battery negative electrode using the hydrogen storage alloy, the alkaline storage battery negative electrode contains fluorine oil , and further contains a fluorine resin,
The negative electrode for an alkaline storage battery , wherein the fluorine oil is a low polymer of chlorotrifluoroethylene .
請求項1に記載したアルカリ蓄電池用負極において、上記のフッ素樹脂が、四フッ化エチレン樹脂、四フッ化エチレン−六フッ化プロピレン共重合体、四フッ化エチレン−パーフルオロビニルエーテル共重合体から選択される少なくとも1種であることを特徴とするアルカリ蓄電池用負極。2. The negative electrode for an alkaline storage battery according to claim 1, wherein the fluororesin is selected from a tetrafluoroethylene resin, a tetrafluoroethylene-hexafluoropropylene copolymer, and a tetrafluoroethylene-perfluorovinyl ether copolymer. A negative electrode for an alkaline storage battery, wherein the negative electrode is at least one kind. 請求項1または2の何れかに記載したアルカリ蓄電池用負極において、上記の水素吸蔵合金が、一般式LnThe negative electrode for an alkaline storage battery according to claim 1, wherein the hydrogen storage alloy has the general formula Ln. 1-x1-x MgMg xx NiNi y-a-by-a-b AlAl aa M bb (式中、Lnは、Yを含む希土類元素と(In the formula, Ln represents a rare earth element including Y and
ZrとTiとから選択される少なくとも1種の元素、Mは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P,Bから選択される少なくとも1種の元素であり、0.05≦x≦0.30、0.05≦a≦0.30、0≦b≦0.50、2.8≦y≦3.9の条件を満たす。)で示される水素吸蔵合金であることを特徴とするアルカリ蓄電池用負極。At least one element selected from Zr and Ti, M is selected from V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, and B At least one element selected from the group consisting of 0.05 ≦ x ≦ 0.30, 0.05 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.50, and 2.8 ≦ y ≦ 3.9. Fulfill. A negative electrode for an alkaline storage battery, wherein the negative electrode is a hydrogen storage alloy.
正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、上記の負極に請求項1〜3の何れか1項に記載のアルカリ蓄電池用負極を用いたことを特徴とするアルカリ蓄電池。An alkaline storage battery comprising a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, wherein the negative electrode for an alkaline storage battery according to any one of claims 1 to 3 is used as the negative electrode. Alkaline storage battery.
JP2008049042A 2008-02-29 2008-02-29 Negative electrode for alkaline storage battery and alkaline storage battery Active JP5334426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049042A JP5334426B2 (en) 2008-02-29 2008-02-29 Negative electrode for alkaline storage battery and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049042A JP5334426B2 (en) 2008-02-29 2008-02-29 Negative electrode for alkaline storage battery and alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2009206004A JP2009206004A (en) 2009-09-10
JP5334426B2 true JP5334426B2 (en) 2013-11-06

Family

ID=41148059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049042A Active JP5334426B2 (en) 2008-02-29 2008-02-29 Negative electrode for alkaline storage battery and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5334426B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893337B2 (en) * 2008-02-13 2018-02-13 Seeo, Inc. Multi-phase electrolyte lithium batteries
JP5415043B2 (en) * 2008-08-28 2014-02-12 三洋電機株式会社 Negative electrode for alkaline storage battery and alkaline storage battery
JP2011096619A (en) * 2009-02-12 2011-05-12 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery
JP5413460B2 (en) * 2009-07-01 2014-02-12 ダイキン工業株式会社 Hydrogen storage alloy electrode and nickel metal hydride battery
JP5482024B2 (en) * 2009-08-28 2014-04-23 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage battery
JP5482029B2 (en) * 2009-08-31 2014-04-23 三洋電機株式会社 Negative electrode for alkaline storage battery and alkaline storage battery
JP5573083B2 (en) * 2009-10-01 2014-08-20 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage battery
JP2011129463A (en) * 2009-12-21 2011-06-30 Sanyo Electric Co Ltd Cadmium anode for alkaline secondary battery
JP2012134110A (en) 2010-12-24 2012-07-12 Fdk Twicell Co Ltd Negative electrode for alkaline secondary battery, and alkaline secondary battery comprising the negative electrode
US9923245B2 (en) 2015-04-03 2018-03-20 Seeo, Inc. Fluorinated alkali ion electrolytes with urethane groups
WO2016164505A1 (en) 2015-04-07 2016-10-13 Seeo, Inc. Fluorinated alkali ion electrolytes with cyclic carbonate groups
WO2016182797A1 (en) 2015-05-12 2016-11-17 Seeo, Inc. Copolymers of peo and fluorinated polymers as electrolytes for lithium batteries
WO2016200559A1 (en) 2015-06-09 2016-12-15 Seeo, Inc. Peo-based graft copolymers with pendant fluorinated groups for use as electrolytes
EP3455896A4 (en) 2016-05-10 2020-01-01 Seeo, Inc Fluorinated electrolytes with nitrile groups
CN114725363B (en) * 2022-04-13 2024-03-26 浙江水利水电学院 V-base hydrogen storage alloy for nickel-hydrogen battery cathode and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101772A (en) * 1982-12-01 1984-06-12 Hitachi Maxell Ltd Silver oxide battery
JPH0997605A (en) * 1995-07-21 1997-04-08 Shin Etsu Chem Co Ltd Hydrogen storage alloy electrode and manufacture thereof
JPH0945331A (en) * 1995-08-02 1997-02-14 Furukawa Electric Co Ltd:The Hydrogen storage alloy electrode and nickel-hydrogen secondary battery using it
JP2004022332A (en) * 2002-06-17 2004-01-22 Kawasaki Heavy Ind Ltd Electrode using fibrous hydrogen storage alloy, battery using fibrous hydrogen storage alloy and electric double layer capacitor
JP2005190863A (en) * 2003-12-26 2005-07-14 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery

Also Published As

Publication number Publication date
JP2009206004A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5334426B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP5196953B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
US8563170B2 (en) Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JP5482029B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP5178013B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4342186B2 (en) Alkaline storage battery
JP2009076430A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP5219338B2 (en) Method for producing alkaline storage battery
JP2008210554A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP5283435B2 (en) Alkaline storage battery
US20090061317A1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
US20050175896A1 (en) Hydrogen-absorbing alloy for alkaline storage batteries, alkaline storage battery, and method of manufacturing alkaline storage battery
JP2009228096A (en) Hydrogen storage alloy
JP5436825B2 (en) Hydrogen storage alloy powder for alkaline storage battery, its production method and alkaline storage battery
JP2010108910A (en) Negative electrode for alkaline storage battery, alkaline storage battery, and method for manufacturing alkaline storage battery
JP5415043B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP4958411B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP4663275B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2010212117A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP5137417B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP2010080171A (en) Alkaline secondary battery
JP5482024B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2005093289A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R151 Written notification of patent or utility model registration

Ref document number: 5334426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151