JP2004022332A - Electrode using fibrous hydrogen storage alloy, battery using fibrous hydrogen storage alloy and electric double layer capacitor - Google Patents

Electrode using fibrous hydrogen storage alloy, battery using fibrous hydrogen storage alloy and electric double layer capacitor Download PDF

Info

Publication number
JP2004022332A
JP2004022332A JP2002175543A JP2002175543A JP2004022332A JP 2004022332 A JP2004022332 A JP 2004022332A JP 2002175543 A JP2002175543 A JP 2002175543A JP 2002175543 A JP2002175543 A JP 2002175543A JP 2004022332 A JP2004022332 A JP 2004022332A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
fibrous
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002175543A
Other languages
Japanese (ja)
Inventor
Kazuo Tsutsumi
堤 香津雄
Kazuya Nishimura
西村 和也
Susumu Mitsuta
光田 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Osaka Gas Co Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2002175543A priority Critical patent/JP2004022332A/en
Publication of JP2004022332A publication Critical patent/JP2004022332A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a battery with a drastic improvement both in a charging speed and a discharging speed. <P>SOLUTION: A fibrous hydrogen storage alloy is used as a negative electrode for a nickel hydride battery. Here, the fibrous hydrogen storage alloy in a shape of an unwoven fabric or a fabric, a plurality of fibrous hydrogen storage alloys in a bundle, or the like, can be used as an electrode. The battery using the fibrous hydrogen storage alloy is structured, for instance, of a positive electrode with carbon fiber with its surface coated with nickel/nickel hydride arrayed piece by piece or bundle by bundle or made into a woven or an unwoven fabric, and a negative electrode with the fibrous hydrogen storage alloys arrayed piece by piece or bundle by bundle or made into a woven or an unwoven fabric laminated with a separator between, to which, a positive electrode collector is fitted so that at least one end of a fibrous matter laid out as the positive electrode comes in contact and a negative electrode collector is fitted so that at least one end of the fibrous hydrogen storage alloys laid out as the negative electrode comes in contact and with electrolyte solution filled in cells. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金を繊維状とし、電池活物質として繊維状水素吸蔵合金を使用することで、高性能な電池となるようにしたものである。
【0002】
【従来の技術】
特許第3051401号公報には、電池活物質を粉体又は粒子にして構成した、いわゆる三次元電池が開示されている。また、積層化された三次元電池についても既に特許出願がなされている(特願平11−309627)。また、粒子状活物質を充填して固定層とした三次元電池についても、本出願人が特許出願している(特願2000−332281、特願2000−332503)。また、活物質材料粉末に導電フィラーを加えて樹脂で粒子状等に成形し硬化させた電池活物質(特願2001−280847)や、活物質材料粉末に導電フィラーを加え樹脂で硬化させた一次成形体をプレート状等に二次成形した電池活物質(特願2001−280848)についても、本出願人が特許出願している。さらに、電子伝導性のある繊維状物質表面に電池活物質をつけたものを、交互にあるいはランダムに並べるだけ、あるいは織物状にして、これらを積層することで構成した電池(特願2002−118639)についても、本出願人が特許出願している。
【0003】
【発明が解決しようとする課題】
一方、正極としてニッケル/水酸化ニッケル、負極として水素吸蔵合金を用いるニッケル水素二次電池が従来から知られている。そして、現在の水素吸蔵合金の製造直後の形態はブロック状あるいは微粉末状となっている。固気反応として水素を吸蔵/放出させるだけなら問題にならないが、上記のように二次電池として利用するためには、水素吸蔵合金の電子伝導性が重要となってくる。この場合、電池反応は水素吸蔵合金の表面で起こるので、比表面積が大きいほど反応し易くなるが、比表面積を大きくするために微粉末の水素吸蔵合金を用いると、電子伝導性が悪くなるという問題がある。そのため、バインダーを用いて強固に圧密したり、導電性バインダーを用いたりしているが、電池の性能低下は避けられない。
【0004】
例えば、特開平6−140032号公報には、水素吸蔵合金成分の混合物の溶融液に金属繊維を含有させたのち凝固させて得た水素吸蔵合金塊を、粉末化し、結着剤にて一体化してなる水素吸蔵合金電極が開示されている。また、特開平6−310132号公報には、水素吸蔵合金の粉末とニッケル粉末又は繊維等の導電剤及び高分子結着剤を混合して集電体に一体的に結合するという技術が開示されている。また、特開平10−69904号公報には、水素吸蔵合金粉末に結着剤と樹脂とを混合したものを集電体に塗着一体化した水素吸蔵合金電極が開示されている。また、特開平11−3702号公報には、ニッケル粉末又はニッケル繊維をシート状に焼結して形成した導電性芯体に、水素吸蔵合金を主体とするペーストを塗布して構成した水素吸蔵合金電極が開示されている。
【0005】
本発明は上記の諸点に鑑みなされたもので、水素吸蔵合金を繊維状とすることで、電子伝導性を確保しながら、大きな比表面積が得られるようにし、電池活物質として繊維状水素吸蔵合金を用いて、充電速度、放電速度ともに飛躍的に向上した高性能な電池とすることを目的とする。また、繊維状水素吸蔵合金を不織布や織物などとし電池活物質として用いることで、電池の組み立てが容易となり、電池製造コストを低減することができる技術を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、繊維状の水素吸蔵合金をニッケル水素電池等の負極として用いるようにしたものである。この場合、例えば、繊維状の水素吸蔵合金を不織布としたもの、繊維状の水素吸蔵合金を織物としたもの、繊維状の水素吸蔵合金を複数本束ねたもの等が電極として使用できる。
また、繊維径の異なる繊維状水素吸蔵合金を上記の電極として使用できる。繊維径が細いと電池の出力が大きくなり、繊維径が太いと出力は小さいがエネルギー密度が大きくなる。
また、組成の異なる繊維状水素吸蔵合金を上記の電極として使用できる。水素吸蔵合金の組成によって出力、耐久性等が変わってくる。また、繊維径及び組成の異なる繊維状水素吸蔵合金を上記の電極として使用することも可能である。
また、ニッケル繊維、ニッケルメッキした繊維、カーボンファイバーなどの電子伝導性のある繊維状物質と繊維状水素吸蔵合金を集束している複合繊維を電極として用いることができ、この複合繊維を上記の各構成の電極として使用することが可能である。また、有機繊維と繊維状水素吸蔵合金を集束している複合繊維を電極として用いることができ、有機繊維を同時に集束させることで、水素吸蔵合金の全体としての膨張収縮を緩和することができる。さらに、有機繊維と電子伝導性のある繊維状物質と繊維状水素吸蔵合金を集束している複合繊維を電極として用いることができる。
また、上記の繊維状水素吸蔵合金や複合繊維に金属メッキしたものを電極として用いることができる。金属メッキすることにより、繊維の結束を強くし、導電性、形状の維持が良くなる。
【0007】
なお、水素吸蔵合金を繊維状とする方法としては、一例として、水素吸蔵合金を溶融状態とし、遠心力により繊維状とする方法、水素吸蔵合金を圧延する方法、水素吸蔵合金を引抜加工する方法、水素吸蔵合金を押出加工する方法、水素吸蔵合金を削り細繊維化する方法、水素吸蔵合金を引っ張る方法などが挙げられる。これらの方法で水素吸蔵合金を繊維状とする際には、繊維表面の酸化を防止するため、窒素、アルゴンなどの不活性ガス雰囲気中、又は真空中で作業を行うことが好ましい。
【0008】
本発明の繊維状水素吸蔵合金を用いた電池は、粒子状、針状、繊維状、棒状、箔状、板状、ブロック状などの形状に導電性材料を含有して形成されたニッケル/水酸化ニッケルからなる正極と、繊維状水素吸蔵合金を1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが、正極と負極の間に電子伝導性が無くイオン伝導性のあるセパレータを挟んで積層され、敷設した正極の少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、電池セルに電解液を充填して構成されたことを特徴としている。例えば、正極を粒子状、板状、ブロック状などとする場合は、活物質材料粉と導電性材料に樹脂を混合して成形・固化する。
【0009】
また、本発明の繊維状水素吸蔵合金を用いた電池は、粒子状、針状、繊維状、棒状、箔状、板状、ブロック状などの形状に導電性材料を含有して形成されたニッケル/水酸化ニッケルからなる正極と、繊維状水素吸蔵合金の表面を多孔性絶縁体又は/及びプロトン伝導性絶縁体で被覆したものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが積層され、敷設した正極の少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、電池セルに電解液を充填して構成されたことを特徴としている。
【0010】
また、本発明の繊維状水素吸蔵合金を用いた電池は、電子伝導性のある繊維状物質の表面をニッケル/水酸化ニッケルでコートしたものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした正極と、繊維状水素吸蔵合金を1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが、正極と負極の間に電子伝導性が無くイオン伝導性のあるセパレータを挟んで積層され、正極として敷設した繊維状物質の少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、電池セルに電解液を充填して構成されたことを特徴としている。なお、正極で使用する繊維状物質としては、例えば、炭素繊維、金属繊維などの電子伝導性のある物質、表面に金属メッキした有機繊維、無機繊維、繊維状のプラスチック、ゴムなどが使用可能である。
【0011】
また、本発明の繊維状水素吸蔵合金を用いた電池は、電子伝導性のある繊維状物質の表面をニッケル/水酸化ニッケルでコートし、さらにその外側を多孔性絶縁体又は/及びプロトン伝導性絶縁体で被覆したものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした正極と、繊維状水素吸蔵合金の表面を多孔性絶縁体又は/及びプロトン伝導性絶縁体で被覆したものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが積層され、正極として敷設した繊維状物質の少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、電池セルに電解液を充填して構成されたことを特徴としている。
【0012】
多孔性絶縁体としては、テフロン(登録商標)、ポリエチレン、ポリプロピレン、ナイロンなどのメンブラン膜や不織布などが使用可能である。また、多孔性絶縁体としては、水又はアルコールに可溶な溶剤に溶解する樹脂を用いて、溶剤に溶解した樹脂から水又はアルコールで溶剤を抽出して多孔質とした樹脂が使用可能である。水に可溶な溶剤に溶解した樹脂としては、ジメチルスルフォオキサイド(DMSO)に溶解したポリエーテルスルフォン(PES)樹脂、アセトンに溶解したポリスチレン、ジメチルホルムアミド(DMF)もしくはDMSOに溶解したポリスルホン、DMF、DMSOもしくはエチレンカーボネートに溶解したポリアクリロニトリル、DMF、DMSOもしくはN−メチル−2−ピロリドン(NMP)に溶解したポリフッ化ビニリデン、DMFもしくはNMPに溶解したポリアミド、DMFもしくはNMPに溶解したポリイミドなどが用いられる。アルコールに可溶な溶剤に溶解した樹脂としては、塩化メチレンに溶解した酢酸セルロース、塩化メチレンに溶解したオキサイドフェニレンエーテル(PPO)などが用いられる。この場合、電解液は水溶液系であり、水(OHイオン)が移動するためには細孔が必要である(電解液の流通)。
また、プロトン伝導性絶縁体としては、NAFION(登録商標)のような固体電解質などが使用可能である。この場合、電解液は非水溶液系(有機溶媒)であり、プロトンが移動するためには細孔は不要である。なお、上記のイオンという表現にはプロトンも含まれるので、電子伝導性が無くイオン伝導性があるものであれば、多孔性絶縁体とプロトン伝導性絶縁体とを区別しなくても特に問題はないが、電解液の種類が異なることと、細孔の有無が異なるので、あえて区別して記載している。
【0013】
本発明の繊維状水素吸蔵合金を用いた電気二重層(化学)キャパシタ(コンデンサ)は、粒子状、針状、繊維状、棒状、箔状、板状、ブロック状などのカーボンからなる正極と、繊維状水素吸蔵合金を1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが、正極と負極の間に電子伝導性が無くイオン伝導性のあるセパレータを挟んで積層され、正極として敷設したカーボンの少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、セルに電解液を充填して構成されたことを特徴としている。
【0014】
また、本発明の繊維状水素吸蔵合金を用いた電気二重層(化学)キャパシタ(コンデンサ)は、粒子状、針状、繊維状、棒状、箔状、板状、ブロック状などのカーボンからなる正極と、繊維状水素吸蔵合金の表面を多孔性絶縁体又は/及びプロトン伝導性絶縁体で被覆したものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが積層され、正極として敷設したカーボンの少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、セルに電解液を充填して構成されたことを特徴としている。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。図1、図2は、本発明の実施の第1形態による繊維状水素吸蔵合金を用いた電池の一例を示している。本実施の形態は、一例として、正極としてカーボンファイバーにニッケル/水酸化ニッケルをつけたもの、負極として繊維状水素吸蔵合金の織物を使用したニッケル水素電池である。本実施の形態の電池の製造例について説明する。
【0016】
繊維状水素吸蔵合金の製作
まず、ブロック状の水素吸蔵合金を用意する。なお、水素吸蔵合金の組成は特に限定されない。以降の操作は窒素雰囲気中で行う。例えば、水素吸蔵合金を直径10mmの貫通孔を有するダイスから押出/引抜加工して棒状とする。直径10mmのダイスから8mm、6mm、4mm、2mm、1mmと順次小さい直径の貫通孔を有するダイスへ変えて押出/引抜加工する。これにより、直径が1mmの細長い水素吸蔵合金が得られる。この水素吸蔵合金を長さ方向に引っ張りどんどん細くしていく。そして、直径が100μmとなった水素吸蔵合金を100本束ねて、さらに引っ張り細くしていく。この場合、集束剤として樹脂を使用してもよい。さらに、直径が10μmとなった水素吸蔵合金を10000本束ねて、さらに引っ張り直径が2μmになるまで細くしていく。素材は細繊維化で加工硬化するため、細繊維化した繊維は焼きなまして、次の細繊維化を行う。このようにして繊維状水素吸蔵合金が得られるが、繊維の最終的な直径は任意である。
【0017】
ニッケル水素電池の負極の製作
得られた繊維状の水素吸蔵合金を織物とし、シート状にカットする。織物とする場合は、平織り、綾織り、トンキャップ織り等とすることができる。得られた繊維状水素吸蔵合金織物シートを負極として使用する。
【0018】
ニッケル水素電池の正極の製作
例えば、内容積10リットルのヘンシェルミキサーに粒子状黒鉛(アセチレンブラック、ケッチェンブラック)を150g入れ、1000rpmで約3分間攪拌して粒子状黒鉛を十分に分散する。これに、電池用水酸化ニッケル粉末を1000g添加し、約3分間1000rpmで混合する。別途、60℃に加熱したキシレン2000gにエチレン酢酸ビニルコーポリマーを300g添加し溶解させる。60℃に加熱した前記の粒子状黒鉛と水酸化ニッケル粉の混合物に、加熱キシレンに溶解した樹脂を添加し、60℃に加熱保持しながらヘンシェルミキサーで攪拌し、分散する。これにカーボンファイバーを浸漬し、引き上げる。そして、真空加熱炉により50℃で真空乾燥し、キシレンを気化させる。このニッケル/水酸化ニッケルで表面をコートしたカーボンファイバーを正極として使用する。
【0019】
ニッケル水素電池の組み立て
正極として使用する水酸化ニッケルを表面にコートしたカーボンファイバー10を一列に並べて、その上にセパレータ12としてテフロン(登録商標)の膜を敷く。このとき、正極集電体側となる端は正極のカーボンファイバー10の断面が露出した状態でセパレータ12とともに位置を揃えて、負極集電体側となる端ではセパレータ12の方が長くなるようにする。なお、セパレータとしては、テフロン、ポリエチレン、ポリプロピレン、ナイロンなどの織物や不織布又はメンブラン膜等が使用可能である。そして、セパレータ12の上に負極として使用する繊維状水素吸蔵合金織物シート14を敷く。このとき、負極集電体側となる端は繊維状水素吸蔵合金織物シート14の端部が露出した状態でセパレータ12とともに位置を揃えて、負極集電体と繊維状水素吸蔵合金織物シートが接する状態とし、正極集電体側となる端ではセパレータ12の方が長くなるようにする。さらにその上にセパレータ12を敷き、正極と負極をセパレータを挟んで積層していく。この積層体を電池セル16に充填し、積層体に対して直角方向(垂直方向)から正極のカーボンファイバー10とセパレータ12を揃えた面に正極集電体18を押しつける。正極集電体18側が底面となるようにした状態で、電解質(KOH、NaOH、LiOH等)溶液を注入した後、負極の繊維状水素吸蔵合金織物シート14とセパレータ12を揃えた面、すなわち、正極集電体18と反対側から負極集電体20を押しつけて電池を完成させる。なお、図2では、手前側の負極集電体の図示を省略している。
【0020】
つぎに、本実施の形態の電池について充電及び放電の詳細を説明する。
(充電)
電池に電圧をかけ、発電手段(図示せず)から負極集電体20へ電子を供給する。電子は負極集電体20より負極活物質に移動して反応する。反応によって発生したイオンはセパレータ12を通過し、正極活物質と反応して電子を放出する。この電子は正極集電体18に移動して発電手段に送られる。
(放電)
負荷(図示せず)から正極集電体18へ電子が供給される。電子は正極集電体18より正極活物質に移動し反応する。反応によって発生したイオンはセパレータ12を通過し、負極活物質と反応して電子を放出する。この電子は負極集電体20に移動して負荷に送られる。
【0021】
図3、図4は、本発明の実施の第2形態による繊維状水素吸蔵合金を用いた電池の一例を示している。本実施の形態は、一例として、正極としてカーボンファイバーにニッケル/水酸化ニッケルをつけたもの、負極として繊維状水素吸蔵合金の不織布を使用したニッケル水素電池である。本実施の形態の電池の製造例について説明する。
【0022】
ニッケル水素電池の負極、正極の製作
繊維状水素吸蔵合金の製作については、上記の実施の第1形態の製造例と同様である。得られた繊維状の水素吸蔵合金とカーボンファイバーを複合繊維としたものを不織布とし、シート状にカットする。得られた繊維状水素吸蔵合金・カーボンファイバー複合不織布シートを負極として使用する。ニッケル水素電池の正極の製作については、上記の実施の第1形態の製造例と同様である。
【0023】
ニッケル水素電池の組み立て
正極として使用する水酸化ニッケルを表面にコートしたカーボンファイバー10を一列に並べて、その上にセパレータ12としてテフロン(登録商標)の膜を敷く。このとき、正極集電体側となる端は正極のカーボンファイバー10の断面が露出した状態でセパレータ12とともに位置を揃えて、負極集電体側となる端ではセパレータ12の方が長くなるようにする。そして、セパレータ12の上に負極として使用する繊維状水素吸蔵合金・カーボンファイバー複合不織布シート22を敷く。このとき、負極集電体側となる端は繊維状水素吸蔵合金・カーボンファイバー複合不織布シート22の端部が露出した状態でセパレータ12とともに位置を揃えて、負極集電体と不織布シートが接する状態とし、正極集電体側となる端ではセパレータ12の方が長くなるようにする。さらにその上にセパレータ12を敷き、正極と負極をセパレータを挟んで積層していく。この積層体を電池セル16に充填し、積層体に対して直角方向(垂直方向)から正極のカーボンファイバー10とセパレータ12を揃えた面に正極集電体18を押しつける。正極集電体18側が底面となるようにした状態で、電解質(KOH、NaOH、LiOH等)溶液を注入した後、負極の繊維状水素吸蔵合金・カーボンファイバー複合不織布シート22とセパレータ12を揃えた面、すなわち、正極集電体18と反対側から負極集電体20を押しつけて電池を完成させる。
他の構成及び作用効果は、実施の第1形態の場合と同様である。
【0024】
図5、図6は、本発明の実施の第3形態による繊維状水素吸蔵合金を用いた電気二重層(化学)キャパシタの一例を示している。本実施の形態の電気二重層(化学)キャパシタの製造例について説明する。
繊維状水素吸蔵合金の製作
まず、ブロック状の水素吸蔵合金を用意する。なお、水素吸蔵合金の組成は特に限定されない。以降の操作は窒素雰囲気中で行う。例えば、鋭角なハイス(金属材料の高速切削用の鋼)でブロック状の水素吸蔵合金を削り出し、繊維状の水素吸蔵合金を得る。
電気二重層(化学)キャパシタの負極として使用する際の、負極の製作
得られた繊維状の水素吸蔵合金を不織布とし、シート状にカットする。得られた繊維状水素吸蔵合金不織布シートを負極として使用する。
【0025】
電気二重層(化学)キャパシタの組み立て
正極として使用するカーボンファイバー24を一列に並べて、その上にセパレータ12としてテフロン(登録商標)の膜を敷く。このとき、正極集電体側となる端はカーボンファイバー24の断面が露出した状態でセパレータ12とともに位置を揃えて、負極集電体側となる端ではセパレータ12の方が長くなるようにする。なお、セパレータとしては、テフロン、ポリエチレン、ポリプロピレン、ナイロンなどの織物や不織布又はメンブラン膜等が使用可能である。そして、セパレータ12の上に負極として使用する繊維状水素吸蔵合金不織布シート26を敷く。このとき、負極集電体側となる端は繊維状水素吸蔵合金不織布シート26の端部が露出した状態でセパレータ12とともに位置を揃えて、負極集電体と繊維状水素吸蔵合金不織布シートが接する状態とし、正極集電体側となる端ではセパレータ12の方が長くなるようにする。さらにその上にセパレータ12を敷き、正極と負極をセパレータを挟んで積層していく。この積層体をセル28に充填し、積層体に対して直角方向(垂直方向)からカーボンファイバー24とセパレータ12を揃えた面に正極集電体18を押しつける。正極集電体18側が底面となるようにした状態で、電解質(KOH、NaOH、LiOH等)溶液を注入した後、負極の繊維状水素吸蔵合金不織布シート26とセパレータ12を揃えた面、すなわち、正極集電体18と反対側から負極集電体20を押しつけて電気二重層(化学)キャパシタを完成させる。なお、図6では、手前側の負極集電体の図示を省略している。
【0026】
図7、図8は、本発明の実施の第4形態による繊維状水素吸蔵合金を用いた電池の一例を示している。本実施の形態は、一例として、正極としてカーボンファイバーにニッケル/水酸化ニッケルをつけ、さらにその外側に多孔質樹脂をコートしたもの、負極として繊維状水素吸蔵合金の表面に多孔質樹脂をコートしたものを使用したニッケル水素電池である。本実施の形態の電池の製造例について説明する。
【0027】
ニッケル水素電池の負極の製作
繊維状水素吸蔵合金の製作については、上記の実施の第1形態の製造例と同様である。得られた繊維状の水素吸蔵合金を、PESをDMSOに溶解させた樹脂液に浸漬して引き上げる。これを水に浸漬し、DMSOを水で抽出しPESを固化することで多孔質膜とする。この外側を多孔質膜でコートした繊維状水素吸蔵合金を負極として使用する。
【0028】
ニッケル水素電池の正極の製作
例えば、硝酸ニッケル浴中でカーボンファイバーを陰極、ニッケル板を陽極として電気分解を行い、カーボンファイバー表面にニッケル/水酸化ニッケルを電解析出させる。つぎに、PESをDMSOに溶解させた樹脂液に上記のカーボンファイバーを浸漬して引き上げる。これを水に浸漬し、DMSOを水で抽出しPESを固化することで多孔質膜とする。このニッケル/水酸化ニッケルで表面をコートし、さらに外側を多孔質膜でコートしたカーボンファイバーを正極として使用する。
【0029】
ニッケル水素電池の組み立て
正極として使用するニッケル/水酸化ニッケルを表面にコートしさらに外側を多孔質膜でコートしたカーボンファイバー30を、断面が露出した一方の端を正極集電体側として位置を揃え、他方の多孔質膜32で被覆した端が負極集電体側となるように並べる。負極として使用する外側を多孔質膜でコートした繊維状水素吸蔵合金34を、断面が露出した一方の端を負極集電体側として位置を揃え、他方の多孔質膜32で被覆した端が正極集電体側となるように並べる。正極と負極はランダムに並べてもかまわないが、交互に並べた方がより高性能な電池となる。この積層体を電池セル16に充填し、積層体に対して直角方向(垂直方向)から正極として使用するカーボンファイバー30の断面側に正極集電体18を押しつける。正極集電体18側が底面となるようにした状態で、電解液を注入した後、反対側である、外側を多孔質膜でコートした繊維状水素吸蔵合金34の断面側に負極集電体20を押しつけて電池を完成させる。
【0030】
つぎに、本実施の形態の電池について充電及び放電の詳細を説明する。
(充電)
電池に電圧をかけ、発電手段(図示せず)から負極集電体20へ電子を供給する。電子は負極集電体20より負極活物質に移動して反応する。反応によって発生したイオンは多孔質膜32を通過し、正極活物質と反応して電子を放出する。この電子は正極集電体18に移動して発電手段に送られる。
(放電)
負荷(図示せず)から正極集電体18へ電子が供給される。電子は正極集電体18より正極活物質に移動し反応する。反応によって発生したイオンは多孔質膜32を通過し、負極活物質と反応して電子を放出する。この電子は負極集電体20に移動して負荷に送られる。
【0031】
図9、図10は、本発明の実施の第5形態による繊維状水素吸蔵合金を用いた電池の一例を示している。本実施の形態は、一例として、正極としてカーボンファイバーにニッケル/水酸化ニッケルをつけ、さらにその外側にプロトン伝導性絶縁体をコートしたもの、負極として繊維状水素吸蔵合金の表面にプロトン伝導性絶縁体をコートしたものを使用したニッケル水素電池である。本実施の形態の電池の製造例について説明する。
【0032】
ニッケル水素電池の負極の製作
繊維状水素吸蔵合金の製作については、上記の実施の第1形態の製造例と同様である。得られた繊維状の水素吸蔵合金を、NAFION(登録商標)に浸漬して引き上げる。この外側をプロトン伝導性絶縁体でコートした繊維状水素吸蔵合金を負極として使用する。
ニッケル水素電池の正極の製作
例えば、硝酸ニッケル浴中でカーボンファイバーを陰極、ニッケル板を陽極として電気分解を行い、カーボンファイバー表面にニッケル/水酸化ニッケルを電解析出させる。つぎに、NAFION(登録商標)に上記のカーボンファイバーを浸漬して引き上げる。このニッケル/水酸化ニッケルで表面をコートし、さらに外側をプロトン伝導性絶縁体でコートしたカーボンファイバーを正極として使用する。
【0033】
ニッケル水素電池の組み立て
正極として使用するニッケル/水酸化ニッケルを表面にコートしさらに外側をプロトン伝導性絶縁体でコートしたカーボンファイバー36を、断面が露出した一方の端を正極集電体側として位置を揃え、他方のプロトン伝導性絶縁体38で被覆した端が負極集電体側となるように並べる。負極として使用する外側をプロトン伝導性絶縁体でコートした繊維状水素吸蔵合金40を、断面が露出した一方の端を負極集電体側として位置を揃え、他方のプロトン伝導性絶縁体38で被覆した端が正極集電体側となるように並べる。正極と負極はランダムに並べてもかまわないが、交互に並べた方がより高性能な電池となる。この積層体を電池セル16に充填し、積層体に対して直角方向(垂直方向)から正極として使用するカーボンファイバー36の断面側に正極集電体18を押しつける。正極集電体18側が底面となるようにした状態で、電解液を注入した後、反対側である、外側をプロトン伝導性絶縁体でコートした繊維状水素吸蔵合金40の断面側に負極集電体20を押しつけて電池を完成させる。
他の構成及び作用効果は、実施の第4形態の場合と同様である。
【0034】
図11〜図14は、本発明の実施の第6形態による繊維状水素吸蔵合金を用いた電池の一例を示している。本実施の形態は、一例として、繊維状水素吸蔵合金を負極として使用し、正極側は樹脂を用いてプレート状に成形した水酸化ニッケルを充填して構成したニッケル水素電池である。本実施の形態の電池の製造例について説明する。
【0035】
ニッケル水素電池の正極の製作
例えば、内容積10リットルのヘンシェルミキサーに粒子状黒鉛(アセチレンブラック、ケッチェンブラック)を150g入れ、1000rpmで約3分間攪拌して粒子状黒鉛を十分に分散する。これに、電池用水酸化ニッケル粉末を1000g、炭素繊維(商品名:ドナS−247)を100g添加し、約3分間1000rpmで混合する。別途、60℃に加熱したキシレン1000gにエチレン酢酸ビニルコーポリマーを150g添加し溶解させる。60℃に加熱した前記の水素吸蔵合金粉と導電性フィラーの混合物に、加熱キシレンに溶解した樹脂を添加し、60℃に加熱保持しながらヘンシェルミキサーで攪拌する。次いで、攪拌しながらヘンシェルミキサーを冷却し、混練物を冷却粉砕して粉末状とする。この粉末をハイスピードミキサーに入れ、アジテータで粉体全体を攪拌しつつ、チョッパーで造粒粒子の粒径を調節する。ハイスピードミキサーは2リットル容量の物、アジテータの回転数は600rpm、チョッパーの回転数は1500rpmで、この条件で攪拌しつつ、粉体の温度を常温から50℃に昇温する。造粒粒子が生成した後、冷却しつつ攪拌を停止する。粒子はキシレンを含んでいるため、この粒子を減圧乾燥機に入れ、50℃に加熱してキシレンを除去する。この粒子を冷却した後、2.88mm目の篩と1mm目の篩でふるい、1〜2.88mmの一次成形粒子とする。 一次成形粒子90gを100mm□の型枠に充填し、型枠ごと100℃に加熱して一次成形粒子に含有される樹脂(エチレン酢酸ビニルコーポリマー)を軟化させる。次いで、型枠中で0.1MPaの圧力をかけた状態で、温度を下げ、樹脂を硬化させる。これを型枠から取り出し、得られたプレート状活物質44を正極として使用する(図11)。
【0036】
ニッケル水素電池の負極の製作
繊維状水素吸蔵合金の製作については、上記の実施の第1形態の製造例と同様である。得られた繊維状水素吸蔵合金46を複数本並べ、その端部を一つのニッケルプレートで固定し、負極外部端子48とする。得られた外部端子付き繊維状活物質50を負極として使用する(図12)。
【0037】
ニッケル水素電池の組み立て
図13に示すように、正極であるプレート状活物質44を横にして置いた上にセパレータ12を敷く。その上に負極である外部端子付き繊維状活物質50を置き、負極外部端子48を外部にはみ出させる。さらに上から絶縁シート52(セパレータで可)をかぶせる。この状態のものを、図14に示すように、正極であるプレート状活物質44が、正極集電体であり電池セルも兼ねる正極外部端子54と接触するように、電池セル16に充填する。電解液を入れた後、蓋32をして電池を完成させる。
なお、本実施の形態においては、例えば、粒子状の正極活物質を充填した電池セルに、負極である繊維状水素吸蔵合金を挿入して電池を構成することも可能である。
【0038】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 水素吸蔵合金を繊維状とすることで、電子伝導性を確保しながら、大きな比表面積が得られるので、電池活物質として繊維状水素吸蔵合金を用いることにより、充電速度、放電速度ともに飛躍的に向上した高性能な電池となる。また、負極側の導電助剤が不要となり、低コスト化を図ることができる。
(2) 繊維状水素吸蔵合金を不織布や織物などとして電池活物質に用いると、電池の組み立てが容易であり、電池製造コストを低減することができる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態による繊維状水素吸蔵合金を用いた電池の一例を示す繊維の長手方向から見た模式図である。
【図2】本発明の実施の第1形態による繊維状水素吸蔵合金を用いた電池の一例を示す繊維の横断面方向から見た模式図である。
【図3】本発明の実施の第2形態による繊維状水素吸蔵合金を用いた電池の一例を示す繊維の長手方向から見た模式図である。
【図4】本発明の実施の第2形態による繊維状水素吸蔵合金を用いた電池の一例を示す繊維の横断面方向から見た模式図である。
【図5】本発明の実施の第3形態による繊維状水素吸蔵合金を用いた電気二重層(化学)キャパシタの一例を示す繊維の長手方向から見た模式図である。
【図6】本発明の実施の第3形態による繊維状水素吸蔵合金を用いた電気二重層(化学)キャパシタの一例を示す繊維の横断面方向から見た模式図である。
【図7】本発明の実施の第4形態による繊維状水素吸蔵合金を用いた電池の一例を示す繊維の長手方向から見た模式図である。
【図8】本発明の実施の第4形態による繊維状水素吸蔵合金を用いた電池の一例を示す繊維の横断面方向から見た模式図である。
【図9】本発明の実施の第5形態による繊維状水素吸蔵合金を用いた電池の一例を示す繊維の長手方向から見た模式図である。
【図10】本発明の実施の第5形態による繊維状水素吸蔵合金を用いた電池の一例を示す繊維の横断面方向から見た模式図である。
【図11】本発明の実施の第6形態の電池におけるプレート状活物質の一例を示す模式図である。
【図12】本発明の実施の第6形態の電池における外部端子付き繊維状活物質の一例を示す模式図である。
【図13】本発明の実施の第6形態の電池における組立工程を示す模式図である。
【図14】本発明の実施の第6形態による繊維状水素吸蔵合金を用いた電池の一例を示す繊維の長手方向から見た模式図である。
【符号の説明】
10 水酸化ニッケルを表面にコートしたカーボンファイバー
12 セパレータ
14 繊維状水素吸蔵合金織物シート
16 電池セル
18 正極集電体
20 負極集電体
22 繊維状水素吸蔵合金・カーボンファイバー複合不織布シート
24 カーボンファイバー
26 繊維状水素吸蔵合金不織布シート
28 セル
30 ニッケル/水酸化ニッケルを表面にコートしさらに外側を多孔質膜でコートしたカーボンファイバー
32 多孔質膜
34 外側を多孔質膜でコートした繊維状水素吸蔵合金
36 ニッケル/水酸化ニッケルを表面にコートしさらに外側をプロトン伝導性絶縁体でコートしたカーボンファイバー
38 プロトン伝導性絶縁体
40 外側をプロトン伝導性絶縁体でコートした繊維状水素吸蔵合金
44 プレート状活物質
48 負極外部端子
50 外部端子付き繊維状活物質
52 絶縁シート
54 正極外部端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a high-performance battery by using a fibrous hydrogen storage alloy and using a fibrous hydrogen storage alloy as a battery active material.
[0002]
[Prior art]
Japanese Patent No. 3040101 discloses a so-called three-dimensional battery in which a battery active material is constituted by powder or particles. A patent application has already been filed for a laminated three-dimensional battery (Japanese Patent Application No. 11-309627). The present applicant has also applied for a patent for a three-dimensional battery in which a fixed layer is filled with a particulate active material (Japanese Patent Application Nos. 2000-332281 and 2000-332503). Also, a battery active material (Japanese Patent Application No. 2001-280847) in which a conductive filler is added to an active material powder and molded into a particle or the like with a resin and cured, or a primary material in which a conductive filler is added to the active material powder and cured with a resin. The present applicant has also applied for a patent for a battery active material (Japanese Patent Application No. 2001-280848) in which a formed body is secondarily formed into a plate shape or the like. Furthermore, a battery formed by simply arranging battery conductive materials on the surface of an electron conductive fibrous material alternately or randomly, or forming a woven fabric, and laminating them (Japanese Patent Application No. 2002-118639). The applicant has filed a patent application for ()).
[0003]
[Problems to be solved by the invention]
On the other hand, a nickel-hydrogen secondary battery using a nickel / nickel hydroxide as a positive electrode and a hydrogen storage alloy as a negative electrode has been conventionally known. And, the form immediately after the production of the current hydrogen storage alloy is in the form of a block or a fine powder. There is no problem if hydrogen is only absorbed / released as a solid-gas reaction, but in order to be used as a secondary battery as described above, the electron conductivity of the hydrogen storage alloy becomes important. In this case, since the battery reaction occurs on the surface of the hydrogen storage alloy, the larger the specific surface area, the easier it is to react.However, when a fine powdered hydrogen storage alloy is used to increase the specific surface area, the electron conductivity is deteriorated. There's a problem. For this reason, the binder is firmly consolidated using a binder, or a conductive binder is used, but a decrease in battery performance is inevitable.
[0004]
For example, Japanese Patent Application Laid-Open No. 6-140032 discloses that a hydrogen storage alloy mass obtained by adding metal fibers to a melt of a mixture of hydrogen storage alloy components and then solidifying the powder is powdered and integrated with a binder. A hydrogen storage alloy electrode is disclosed. JP-A-6-310132 discloses a technique in which a powder of a hydrogen storage alloy and a conductive agent such as nickel powder or fiber and a polymer binder are mixed and integrally bonded to a current collector. ing. Also, Japanese Patent Application Laid-Open No. 10-69904 discloses a hydrogen storage alloy electrode in which a mixture of a binder and a resin mixed with a hydrogen storage alloy powder is applied to a current collector and integrated. JP-A-11-3702 discloses a hydrogen storage alloy formed by applying a paste mainly composed of a hydrogen storage alloy to a conductive core formed by sintering nickel powder or nickel fiber into a sheet. An electrode is disclosed.
[0005]
The present invention has been made in view of the above-described points. By making the hydrogen storage alloy into a fibrous form, a large specific surface area can be obtained while securing electron conductivity, and the fibrous hydrogen storage alloy is used as a battery active material. It is an object of the present invention to provide a high-performance battery in which both the charging speed and the discharging speed are dramatically improved by using the same. It is another object of the present invention to provide a technique in which the use of a fibrous hydrogen storage alloy in the form of a nonwoven fabric or a woven fabric as a battery active material facilitates battery assembly and reduces battery manufacturing costs.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses a fibrous hydrogen storage alloy as a negative electrode of a nickel-metal hydride battery or the like. In this case, for example, a fibrous hydrogen storage alloy made of a nonwoven fabric, a fibrous hydrogen storage alloy made of a woven fabric, or a bundle of a plurality of fibrous hydrogen storage alloys can be used as the electrode.
Further, fibrous hydrogen storage alloys having different fiber diameters can be used as the electrodes. If the fiber diameter is small, the output of the battery is large, and if the fiber diameter is large, the output is small but the energy density is large.
Further, fibrous hydrogen storage alloys having different compositions can be used as the electrodes. Output, durability and the like vary depending on the composition of the hydrogen storage alloy. In addition, fibrous hydrogen storage alloys having different fiber diameters and compositions can be used as the above-mentioned electrodes.
In addition, a composite fiber in which a fibrous substance having electron conductivity and a fibrous hydrogen storage alloy such as a nickel fiber, a nickel-plated fiber, and a carbon fiber are bundled can be used as an electrode. It can be used as an electrode in a configuration. In addition, a composite fiber in which the organic fibers and the fibrous hydrogen storage alloy are bundled can be used as an electrode. By simultaneously bundling the organic fibers, the expansion and contraction of the hydrogen storage alloy as a whole can be reduced. Further, a composite fiber in which organic fibers, a fibrous substance having electron conductivity, and a fibrous hydrogen storage alloy are bundled can be used as an electrode.
Further, the above-mentioned fibrous hydrogen storage alloy or composite fiber obtained by metal plating can be used as the electrode. The metal plating strengthens the binding of the fibers and improves the conductivity and the shape.
[0007]
In addition, as a method of making the hydrogen storage alloy into a fibrous form, as an example, a method in which the hydrogen storage alloy is melted and made into a fibrous form by centrifugal force, a method in which the hydrogen storage alloy is rolled, and a method in which the hydrogen storage alloy is drawn A method of extruding a hydrogen storage alloy, a method of shaving a hydrogen storage alloy into fine fibers, and a method of pulling a hydrogen storage alloy. When the hydrogen storage alloy is formed into a fibrous form by these methods, it is preferable to perform the operation in an atmosphere of an inert gas such as nitrogen or argon or in a vacuum in order to prevent oxidation of the fiber surface.
[0008]
A battery using the fibrous hydrogen storage alloy of the present invention is formed of nickel / water containing a conductive material in the form of particles, needles, fibers, rods, foils, plates, blocks, or the like. A positive electrode made of nickel oxide, and a negative electrode made of a fibrous hydrogen storage alloy arranged one by one or in a bundle or a woven or non-woven fabric are used. The positive electrode current collector is attached so that at least one end of the laid positive electrode is in contact with the battery, and the negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid as the negative electrode is in contact with the battery cell. It is characterized by being filled with an electrolytic solution. For example, when the positive electrode is formed in a particle shape, a plate shape, a block shape, or the like, a resin is mixed with the active material powder and the conductive material, and the mixture is molded and solidified.
[0009]
In addition, a battery using the fibrous hydrogen storage alloy of the present invention is formed of nickel containing a conductive material in the form of particles, needles, fibers, rods, foils, plates, blocks, or the like. / A positive electrode made of nickel hydroxide and a negative electrode made of a fibrous hydrogen storage alloy whose surface is coated with a porous insulator and / or a proton conductive insulator, one by one or in a bundle, or a woven or nonwoven fabric The positive electrode current collector is attached so that at least one end of the laid positive electrode is in contact, and the negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid as the negative electrode is in contact with the battery cell. It is characterized by being filled with an electrolytic solution.
[0010]
Also, the battery using the fibrous hydrogen storage alloy of the present invention may be prepared by coating a surface of an electron conductive fibrous substance with nickel / nickel hydroxide one by one or in a bundle, or fabric or nonwoven fabric. A positive electrode and a negative electrode made of a fibrous hydrogen storage alloy arranged one by one or in a bundle or a woven or non-woven fabric are sandwiched between a positive electrode and a negative electrode by a separator having no ion conductivity and ion conductivity. The positive electrode current collector is attached so that at least one end of the fibrous material laid as the positive electrode is stacked, and the negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid as the negative electrode is attached. The cell is characterized by being filled with an electrolytic solution. In addition, as the fibrous substance used in the positive electrode, for example, a carbon fiber, an electron conductive substance such as a metal fiber, an organic fiber metal-plated on the surface, an inorganic fiber, a fibrous plastic, rubber, and the like can be used. is there.
[0011]
Also, in the battery using the fibrous hydrogen storage alloy of the present invention, the surface of the fibrous substance having electron conductivity is coated with nickel / nickel hydroxide, and the outside is coated with a porous insulator or / and proton conductive material. A cathode coated with an insulator or woven or non-woven, arranged one by one or in a bundle, and a fibrous hydrogen storage alloy whose surface is coated with a porous insulator and / or a proton conductive insulator. A negative electrode made of woven or non-woven fabric is laminated one by one or in a bundle, and a positive electrode current collector is attached so that at least one end of a fibrous substance laid as a positive electrode is in contact with the negative electrode, and fibrous hydrogen laid as a negative electrode A negative electrode current collector is attached so that at least one end of the storage alloy is in contact with the storage alloy, and the battery cell is filled with an electrolytic solution.
[0012]
As the porous insulator, a membrane film or a nonwoven fabric of Teflon (registered trademark), polyethylene, polypropylene, nylon or the like can be used. Further, as the porous insulator, a resin that is soluble in water or an alcohol-soluble solvent, and a porous resin obtained by extracting the solvent with water or alcohol from the resin dissolved in the solvent can be used. . Examples of the resin dissolved in a water-soluble solvent include polyethersulfone (PES) resin dissolved in dimethyl sulfoxide (DMSO), polystyrene dissolved in acetone, dimethylformamide (DMF) or polysulfone dissolved in DMSO, and DMF. , Polyacrylonitrile dissolved in DMSO or ethylene carbonate, DMF, polyvinylidene fluoride dissolved in DMSO or N-methyl-2-pyrrolidone (NMP), polyamide dissolved in DMF or NMP, polyimide dissolved in DMF or NMP, etc. are used. Can be Examples of the resin dissolved in a solvent soluble in alcohol include cellulose acetate dissolved in methylene chloride, and oxide phenylene ether (PPO) dissolved in methylene chloride. In this case, the electrolyte is an aqueous solution, and water (OH In order for ions to move, pores are required (flow of electrolyte).
As the proton conductive insulator, a solid electrolyte such as NAFION (registered trademark) can be used. In this case, the electrolyte is a non-aqueous solution (organic solvent), and pores are not necessary for proton transfer. In addition, since the expression of the above-mentioned ion also includes a proton, as long as it does not have electronic conductivity and has ion conductivity, there is no particular problem without distinguishing between a porous insulator and a proton-conductive insulator. However, since the type of the electrolyte is different and the presence or absence of the pores is different, they are discriminated separately.
[0013]
The electric double layer (chemical) capacitor (condenser) using the fibrous hydrogen storage alloy of the present invention is a positive electrode composed of carbon such as particles, needles, fibers, rods, foils, plates, and blocks; A fibrous hydrogen storage alloy is arranged one by one or in a bundle, or a woven or non-woven negative electrode is laminated with an ion-conductive separator without electronic conductivity between the positive and negative electrodes. The positive electrode current collector is attached so that at least one end of the laid carbon is in contact, and the negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid as the negative electrode is in contact, and the cell is filled with an electrolytic solution. It is characterized by having been constituted.
[0014]
Further, the electric double layer (chemical) capacitor (capacitor) using the fibrous hydrogen storage alloy of the present invention is a positive electrode made of carbon such as particles, needles, fibers, rods, foils, plates, and blocks. And a negative electrode made of a fibrous hydrogen storage alloy whose surface is coated with a porous insulator and / or a proton conductive insulator, one by one or in a bundle, or a woven or nonwoven fabric, and The positive electrode current collector is attached so that at least one end of the laid carbon is in contact, and the negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid as the negative electrode is in contact, and the cell is filled with an electrolytic solution. It is characterized by having been constituted.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. 1 and 2 show an example of a battery using the fibrous hydrogen storage alloy according to the first embodiment of the present invention. The present embodiment is, as an example, a nickel-metal hydride battery using carbon fiber as a positive electrode with nickel / nickel hydroxide attached thereto and using a fibrous hydrogen storage alloy fabric as a negative electrode. A manufacturing example of the battery of the present embodiment will be described.
[0016]
Production of fibrous hydrogen storage alloy
First, a block-shaped hydrogen storage alloy is prepared. The composition of the hydrogen storage alloy is not particularly limited. Subsequent operations are performed in a nitrogen atmosphere. For example, the hydrogen storage alloy is extruded / drawn from a die having a through-hole having a diameter of 10 mm into a rod shape. Extrusion / drawing is performed by changing from a die having a diameter of 10 mm to a die having through holes with smaller diameters in order of 8 mm, 6 mm, 4 mm, 2 mm, and 1 mm. Thereby, an elongated hydrogen storage alloy having a diameter of 1 mm is obtained. This hydrogen storage alloy is pulled in the length direction and becomes thinner. Then, 100 hydrogen-absorbing alloys having a diameter of 100 μm are bundled and further pulled and thinned. In this case, a resin may be used as the sizing agent. Further, 10,000 hydrogen-absorbing alloys having a diameter of 10 μm are bundled and further thinned until the tensile diameter becomes 2 μm. Since the material is processed and hardened by the formation of fine fibers, the fine fibers are annealed to perform the next fine fibers. Thus, a fibrous hydrogen storage alloy is obtained, but the final diameter of the fiber is arbitrary.
[0017]
Production of negative electrode for nickel-metal hydride battery
The obtained fibrous hydrogen storage alloy is made into a woven fabric and cut into a sheet. In the case of a woven fabric, plain weave, twill weave, toncap weave and the like can be used. The obtained fibrous hydrogen storage alloy fabric sheet is used as a negative electrode.
[0018]
Manufacture of positive electrode for nickel-metal hydride battery
For example, 150 g of particulate graphite (acetylene black, Ketjen black) is put into a Henschel mixer having an internal volume of 10 liters, and the mixture is stirred at 1000 rpm for about 3 minutes to sufficiently disperse the particulate graphite. To this, 1000 g of nickel hydroxide powder for a battery is added and mixed at 1000 rpm for about 3 minutes. Separately, 300 g of ethylene vinyl acetate copolymer is added and dissolved in 2000 g of xylene heated to 60 ° C. A resin dissolved in heated xylene is added to a mixture of the particulate graphite and nickel hydroxide powder heated to 60 ° C., and the mixture is stirred and dispersed by a Henschel mixer while being heated and maintained at 60 ° C. Immerse carbon fiber in this and pull it up. Then, vacuum drying is performed at 50 ° C. in a vacuum heating furnace to vaporize xylene. The carbon fiber whose surface is coated with this nickel / nickel hydroxide is used as a positive electrode.
[0019]
Assembling nickel-metal hydride batteries
A carbon fiber 10 coated on its surface with nickel hydroxide used as a positive electrode is arranged in a line, and a Teflon (registered trademark) film is laid thereon as a separator 12. At this time, the end on the positive electrode current collector side is aligned with the separator 12 in a state where the cross section of the carbon fiber 10 of the positive electrode is exposed, and the separator 12 is longer on the end on the negative electrode current collector side. As the separator, a woven or nonwoven fabric such as Teflon, polyethylene, polypropylene, or nylon, a membrane film, or the like can be used. Then, a fibrous hydrogen storage alloy fabric sheet 14 used as a negative electrode is laid on the separator 12. At this time, the end on the negative electrode current collector side is aligned with the separator 12 in a state where the end of the fibrous hydrogen storage alloy fabric sheet 14 is exposed, and the negative electrode current collector and the fibrous hydrogen storage alloy fabric sheet are in contact with each other. At the end on the positive electrode current collector side, the separator 12 is made longer. Further, a separator 12 is laid thereon, and a positive electrode and a negative electrode are laminated with the separator interposed therebetween. This laminate is filled in a battery cell 16, and a positive electrode current collector 18 is pressed from a direction perpendicular to the laminate (vertical direction) onto a surface where the carbon fiber 10 of the positive electrode and the separator 12 are aligned. After injecting an electrolyte (KOH, NaOH, LiOH, etc.) solution with the positive electrode current collector 18 side serving as the bottom surface, a surface where the fibrous hydrogen storage alloy fabric sheet 14 and the separator 12 of the negative electrode are aligned, The battery is completed by pressing the negative electrode current collector 20 from the side opposite to the positive electrode current collector 18. In FIG. 2, illustration of the negative electrode current collector on the near side is omitted.
[0020]
Next, charging and discharging of the battery of the present embodiment will be described in detail.
(charging)
A voltage is applied to the battery, and electrons are supplied from the power generation means (not shown) to the negative electrode current collector 20. The electrons move from the negative electrode current collector 20 to the negative electrode active material and react. The ions generated by the reaction pass through the separator 12, react with the positive electrode active material, and emit electrons. The electrons move to the positive electrode current collector 18 and are sent to the power generation means.
(Discharge)
Electrons are supplied from a load (not shown) to the positive electrode current collector 18. The electrons move from the positive electrode current collector 18 to the positive electrode active material and react. The ions generated by the reaction pass through the separator 12, react with the negative electrode active material, and emit electrons. The electrons move to the negative electrode current collector 20 and are sent to the load.
[0021]
3 and 4 show an example of a battery using the fibrous hydrogen storage alloy according to the second embodiment of the present invention. The present embodiment is, for example, a nickel-metal hydride battery using carbon fiber as a positive electrode with nickel / nickel hydroxide attached thereto and a non-woven fabric of a fibrous hydrogen storage alloy as a negative electrode. A manufacturing example of the battery of the present embodiment will be described.
[0022]
Manufacture of negative and positive electrodes for nickel-metal hydride batteries
The production of the fibrous hydrogen storage alloy is the same as the production example of the first embodiment. The resulting fibrous hydrogen storage alloy and carbon fiber as a composite fiber is made into a nonwoven fabric and cut into a sheet. The obtained fibrous hydrogen storage alloy / carbon fiber composite nonwoven fabric sheet is used as a negative electrode. The production of the positive electrode of the nickel-metal hydride battery is the same as the production example of the first embodiment.
[0023]
Assembling nickel-metal hydride batteries
A carbon fiber 10 coated on its surface with nickel hydroxide used as a positive electrode is arranged in a line, and a Teflon (registered trademark) film is laid thereon as a separator 12. At this time, the end on the positive electrode current collector side is aligned with the separator 12 in a state where the cross section of the carbon fiber 10 of the positive electrode is exposed, and the separator 12 is longer on the end on the negative electrode current collector side. Then, a fibrous hydrogen storage alloy / carbon fiber composite nonwoven fabric sheet 22 to be used as a negative electrode is laid on the separator 12. At this time, the end on the negative electrode current collector side is aligned with the separator 12 in a state where the end of the fibrous hydrogen storage alloy / carbon fiber composite nonwoven fabric sheet 22 is exposed, so that the negative electrode current collector and the nonwoven fabric sheet are in contact with each other. At the end on the positive electrode current collector side, the separator 12 is made longer. Further, a separator 12 is laid thereon, and a positive electrode and a negative electrode are laminated with the separator interposed therebetween. This laminate is filled in a battery cell 16, and a positive electrode current collector 18 is pressed from a direction perpendicular to the laminate (vertical direction) onto a surface where the carbon fiber 10 of the positive electrode and the separator 12 are aligned. After injecting an electrolyte (KOH, NaOH, LiOH, etc.) solution with the positive electrode current collector 18 side serving as the bottom surface, the fibrous hydrogen storage alloy / carbon fiber composite nonwoven fabric sheet 22 of the negative electrode and the separator 12 were aligned. The battery is completed by pressing the negative electrode current collector 20 from the surface, that is, the side opposite to the positive electrode current collector 18.
The other configuration and operation and effect are the same as those of the first embodiment.
[0024]
5 and 6 show an example of an electric double layer (chemical) capacitor using a fibrous hydrogen storage alloy according to a third embodiment of the present invention. A manufacturing example of the electric double layer (chemical) capacitor of the present embodiment will be described.
Production of fibrous hydrogen storage alloy
First, a block-shaped hydrogen storage alloy is prepared. The composition of the hydrogen storage alloy is not particularly limited. Subsequent operations are performed in a nitrogen atmosphere. For example, a block-shaped hydrogen storage alloy is cut with sharp high-speed steel (metal for high-speed cutting of a metal material) to obtain a fibrous hydrogen storage alloy.
Production of negative electrode when used as negative electrode of electric double layer (chemical) capacitor
The obtained fibrous hydrogen storage alloy is made into a nonwoven fabric and cut into a sheet. The obtained fibrous hydrogen storage alloy nonwoven fabric sheet is used as a negative electrode.
[0025]
Assembly of electric double layer (chemical) capacitor
The carbon fibers 24 used as the positive electrode are arranged in a line, and a Teflon (registered trademark) film is laid thereon as the separator 12. At this time, the end on the positive electrode current collector side is aligned with the separator 12 in a state where the cross section of the carbon fiber 24 is exposed, and the separator 12 is longer on the end on the negative electrode current collector side. As the separator, a woven or nonwoven fabric such as Teflon, polyethylene, polypropylene, or nylon, a membrane film, or the like can be used. Then, a fibrous hydrogen storage alloy nonwoven fabric sheet 26 used as a negative electrode is laid on the separator 12. At this time, the end on the negative electrode current collector side is aligned with the separator 12 in a state where the end of the fibrous hydrogen storage alloy nonwoven fabric sheet 26 is exposed, and the negative electrode current collector and the fibrous hydrogen storage alloy nonwoven fabric sheet are in contact with each other. At the end on the positive electrode current collector side, the separator 12 is made longer. Further, a separator 12 is laid thereon, and a positive electrode and a negative electrode are laminated with the separator interposed therebetween. The stack is filled in a cell 28, and the positive electrode current collector 18 is pressed against a surface where the carbon fibers 24 and the separator 12 are aligned from a direction perpendicular to the stack (vertical direction). After injecting an electrolyte (KOH, NaOH, LiOH, etc.) solution in a state where the positive electrode current collector 18 side is the bottom surface, a surface where the fibrous hydrogen storage alloy nonwoven fabric sheet 26 of the negative electrode and the separator 12 are aligned, The negative electrode current collector 20 is pressed from the side opposite to the positive electrode current collector 18 to complete the electric double layer (chemical) capacitor. In FIG. 6, the illustration of the negative electrode current collector on the near side is omitted.
[0026]
7 and 8 show an example of a battery using a fibrous hydrogen storage alloy according to a fourth embodiment of the present invention. In the present embodiment, as an example, a positive electrode is made by attaching nickel / nickel hydroxide to carbon fiber and further coating a porous resin on the outside thereof, and a negative electrode is formed by coating a porous resin on the surface of a fibrous hydrogen storage alloy. This is a nickel-metal hydride battery. A manufacturing example of the battery of the present embodiment will be described.
[0027]
Production of negative electrode for nickel-metal hydride battery
The production of the fibrous hydrogen storage alloy is the same as the production example of the first embodiment. The obtained fibrous hydrogen storage alloy is immersed in a resin solution of PES dissolved in DMSO and pulled up. This is immersed in water, DMSO is extracted with water, and PES is solidified to form a porous membrane. A fibrous hydrogen storage alloy whose outside is coated with a porous film is used as a negative electrode.
[0028]
Manufacture of positive electrode for nickel-metal hydride battery
For example, electrolysis is performed using a carbon fiber as a cathode and a nickel plate as an anode in a nickel nitrate bath, and nickel / nickel hydroxide is electrolytically deposited on the carbon fiber surface. Next, the above-mentioned carbon fiber is immersed in a resin solution in which PES is dissolved in DMSO and pulled up. This is immersed in water, DMSO is extracted with water, and PES is solidified to form a porous membrane. A carbon fiber coated on the surface with this nickel / nickel hydroxide and further coated on the outside with a porous film is used as a positive electrode.
[0029]
Assembling nickel-metal hydride batteries
The carbon fiber 30 coated on its surface with nickel / nickel hydroxide used as a positive electrode and further coated with a porous film on the outside is aligned with one end having a cross-section exposed to the positive electrode current collector side, and the other porous film is formed. 32 are arranged such that the end covered with 32 is on the negative electrode current collector side. A fibrous hydrogen storage alloy 34 having an outer surface coated with a porous film used as a negative electrode was aligned with one end having an exposed cross section as the negative electrode current collector side, and the other end covered with the porous film 32 was formed as a positive electrode collector. Arrange them so that they are on the electrical side. Although the positive electrode and the negative electrode may be arranged randomly, alternately arranging them results in a higher performance battery. The stacked body is filled in the battery cells 16, and the positive electrode current collector 18 is pressed from a direction perpendicular to the stacked body (perpendicular direction) to a cross-sectional side of the carbon fiber 30 used as a positive electrode. After injecting the electrolytic solution with the positive electrode current collector 18 side being the bottom surface, the negative electrode current collector 20 was placed on the opposite side of the cross-sectional side of the fibrous hydrogen storage alloy 34 coated with a porous film on the outside. Press to complete the battery.
[0030]
Next, charging and discharging of the battery of the present embodiment will be described in detail.
(charging)
A voltage is applied to the battery, and electrons are supplied from the power generation means (not shown) to the negative electrode current collector 20. The electrons move from the negative electrode current collector 20 to the negative electrode active material and react. The ions generated by the reaction pass through the porous film 32, react with the positive electrode active material, and emit electrons. The electrons move to the positive electrode current collector 18 and are sent to the power generation means.
(Discharge)
Electrons are supplied from a load (not shown) to the positive electrode current collector 18. The electrons move from the positive electrode current collector 18 to the positive electrode active material and react. The ions generated by the reaction pass through the porous film 32, react with the negative electrode active material, and emit electrons. The electrons move to the negative electrode current collector 20 and are sent to the load.
[0031]
9 and 10 show an example of a battery using the fibrous hydrogen storage alloy according to the fifth embodiment of the present invention. In the present embodiment, as an example, a carbon fiber is coated with nickel / nickel hydroxide as a positive electrode, and a proton conductive insulator is further coated on the outside, and a proton conductive insulating material is formed on the surface of a fibrous hydrogen storage alloy as a negative electrode. This is a nickel-metal hydride battery using a body-coated one. A manufacturing example of the battery of the present embodiment will be described.
[0032]
Production of negative electrode for nickel-metal hydride battery
The production of the fibrous hydrogen storage alloy is the same as the production example of the first embodiment. The obtained fibrous hydrogen storage alloy is immersed in NAFION (registered trademark) and pulled up. A fibrous hydrogen storage alloy whose outside is coated with a proton conductive insulator is used as a negative electrode.
Manufacture of positive electrode for nickel-metal hydride battery
For example, electrolysis is performed using a carbon fiber as a cathode and a nickel plate as an anode in a nickel nitrate bath, and nickel / nickel hydroxide is electrolytically deposited on the carbon fiber surface. Next, the carbon fiber is immersed in NAFION (registered trademark) and pulled up. A carbon fiber coated on the surface with this nickel / nickel hydroxide and further coated on the outside with a proton conductive insulator is used as a positive electrode.
[0033]
Assembling nickel-metal hydride batteries
A carbon fiber 36 coated on the surface with nickel / nickel hydroxide used as a positive electrode and further coated with a proton-conductive insulator on the surface is aligned with one end having an exposed cross section as the positive electrode current collector side, and the other proton They are arranged so that the end covered with the conductive insulator 38 is on the negative electrode current collector side. A fibrous hydrogen storage alloy 40 used as a negative electrode and coated on the outside with a proton-conductive insulator was aligned with one end having an exposed cross section as the negative electrode current collector side, and covered with the other proton-conductive insulator 38. Arrange so that the end is on the positive electrode current collector side. Although the positive electrode and the negative electrode may be arranged randomly, alternately arranging them results in a higher performance battery. The stack is filled in the battery cells 16, and the positive electrode current collector 18 is pressed from a direction perpendicular (vertical direction) to the cross section of the carbon fiber 36 used as the positive electrode. After injecting the electrolytic solution with the positive electrode current collector 18 side being the bottom surface, the negative electrode current collecting was performed on the opposite side, that is, on the cross-sectional side of the fibrous hydrogen storage alloy 40 whose outside was coated with a proton conductive insulator. Press the body 20 to complete the battery.
Other configurations and operational effects are the same as those of the fourth embodiment.
[0034]
11 to 14 show an example of a battery using the fibrous hydrogen storage alloy according to the sixth embodiment of the present invention. In the present embodiment, as an example, a nickel-metal hydride battery is configured in which a fibrous hydrogen storage alloy is used as a negative electrode and the positive electrode side is filled with nickel hydroxide formed into a plate shape using a resin. A manufacturing example of the battery of the present embodiment will be described.
[0035]
Manufacture of positive electrode for nickel-metal hydride battery
For example, 150 g of particulate graphite (acetylene black, Ketjen black) is put into a Henschel mixer having an internal volume of 10 liters, and the mixture is stirred at 1000 rpm for about 3 minutes to sufficiently disperse the particulate graphite. To this, 1000 g of nickel hydroxide powder for a battery and 100 g of carbon fiber (trade name: Donna S-247) are added and mixed at 1,000 rpm for about 3 minutes. Separately, 150 g of ethylene vinyl acetate copolymer is added to and dissolved in 1000 g of xylene heated to 60 ° C. To a mixture of the hydrogen storage alloy powder and the conductive filler heated to 60 ° C., a resin dissolved in heated xylene is added, and the mixture is stirred with a Henschel mixer while being heated and maintained at 60 ° C. Next, the Henschel mixer is cooled with stirring, and the kneaded material is cooled and pulverized to a powder. This powder is put into a high-speed mixer, and the particle size of the granulated particles is adjusted with a chopper while stirring the whole powder with an agitator. The high speed mixer has a capacity of 2 liters, the rotation speed of the agitator is 600 rpm, and the rotation speed of the chopper is 1500 rpm. The temperature of the powder is raised from room temperature to 50 ° C. while stirring under these conditions. After the formation of the granulated particles, the stirring is stopped while cooling. Since the particles contain xylene, the particles are placed in a vacuum drier and heated to 50 ° C. to remove xylene. After cooling the particles, they are sieved with a 2.88 mm sieve and a 1 mm sieve to form primary molded particles of 1 to 2.88 mm. 90 g of the primary molded particles are filled in a 100 mm square mold, and the whole mold is heated to 100 ° C. to soften the resin (ethylene-vinyl acetate copolymer) contained in the primary molded particles. Next, while applying a pressure of 0.1 MPa in the mold, the temperature is lowered and the resin is cured. This is taken out of the mold, and the obtained plate-like active material 44 is used as a positive electrode (FIG. 11).
[0036]
Production of negative electrode for nickel-metal hydride battery
The production of the fibrous hydrogen storage alloy is the same as the production example of the first embodiment. A plurality of the obtained fibrous hydrogen storage alloys 46 are arranged, and the ends thereof are fixed with one nickel plate to form a negative electrode external terminal 48. The obtained fibrous active material 50 with external terminals is used as a negative electrode (FIG. 12).
[0037]
Assembling nickel-metal hydride batteries
As shown in FIG. 13, the separator 12 is laid on the plate-shaped active material 44 serving as the positive electrode, which is placed sideways. The fibrous active material with external terminals 50 serving as a negative electrode is placed thereon, and the negative electrode external terminals 48 protrude outside. Further, an insulating sheet 52 (possible with a separator) is covered from above. In this state, as shown in FIG. 14, the battery cells 16 are filled so that the plate-shaped active material 44 as the positive electrode contacts the positive electrode external terminal 54 which is also a positive electrode current collector and also serves as a battery cell. After charging the electrolyte, the battery is completed by closing the lid 32.
In the present embodiment, for example, a battery can be formed by inserting a fibrous hydrogen storage alloy as a negative electrode into a battery cell filled with a particulate positive electrode active material.
[0038]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
(1) By making the hydrogen storage alloy fibrous, a large specific surface area can be obtained while securing electron conductivity. Therefore, by using the fibrous hydrogen storage alloy as the battery active material, both the charge rate and the discharge rate can be improved. The result is a dramatically improved high-performance battery. Further, a conductive auxiliary agent on the negative electrode side is not required, and cost reduction can be achieved.
(2) When the fibrous hydrogen storage alloy is used as a nonwoven fabric or a woven fabric for the battery active material, the battery can be easily assembled and the battery manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a battery using a fibrous hydrogen storage alloy according to a first embodiment of the present invention, viewed from the longitudinal direction of fibers.
FIG. 2 is a schematic diagram showing an example of a battery using the fibrous hydrogen storage alloy according to the first embodiment of the present invention, as viewed from a cross-sectional direction of fibers.
FIG. 3 is a schematic view showing an example of a battery using a fibrous hydrogen storage alloy according to a second embodiment of the present invention, as viewed from the longitudinal direction of fibers.
FIG. 4 is a schematic diagram illustrating an example of a battery using a fibrous hydrogen storage alloy according to a second embodiment of the present invention, as viewed from a cross-sectional direction of fibers.
FIG. 5 is a schematic view showing an example of an electric double layer (chemical) capacitor using a fibrous hydrogen storage alloy according to a third embodiment of the present invention, viewed from the longitudinal direction of fibers.
FIG. 6 is a schematic view showing an example of an electric double layer (chemical) capacitor using a fibrous hydrogen storage alloy according to a third embodiment of the present invention, as viewed from the cross-sectional direction of fibers.
FIG. 7 is a schematic diagram showing an example of a battery using a fibrous hydrogen storage alloy according to a fourth embodiment of the present invention, viewed from the longitudinal direction of fibers.
FIG. 8 is a schematic diagram illustrating an example of a battery using a fibrous hydrogen storage alloy according to a fourth embodiment of the present invention, as viewed from the cross-sectional direction of fibers.
FIG. 9 is a schematic view showing an example of a battery using a fibrous hydrogen storage alloy according to a fifth embodiment of the present invention, viewed from the longitudinal direction of fibers.
FIG. 10 is a schematic diagram illustrating an example of a battery using a fibrous hydrogen storage alloy according to a fifth embodiment of the present invention, as viewed from the cross-sectional direction of fibers.
FIG. 11 is a schematic view showing an example of a plate-like active material in a battery according to a sixth embodiment of the present invention.
FIG. 12 is a schematic view showing an example of a fibrous active material with an external terminal in a battery according to a sixth embodiment of the present invention.
FIG. 13 is a schematic diagram showing an assembling process in a battery according to a sixth embodiment of the present invention.
FIG. 14 is a schematic view showing an example of a battery using a fibrous hydrogen storage alloy according to a sixth embodiment of the present invention, viewed from the longitudinal direction of fibers.
[Explanation of symbols]
10. Carbon fiber coated on the surface with nickel hydroxide
12 separator
14. Fibrous hydrogen storage alloy fabric sheet
16 Battery cell
18 positive electrode current collector
20 Negative electrode current collector
22 Fibrous hydrogen storage alloy / carbon fiber composite nonwoven fabric sheet
24 carbon fiber
26 Fibrous hydrogen storage alloy nonwoven fabric sheet
28 cells
30 Carbon fiber coated on the surface with nickel / nickel hydroxide and further coated on the outside with a porous film
32 porous membrane
34 Fibrous hydrogen storage alloy coated on the outside with a porous membrane
36 Carbon fiber whose surface is coated with nickel / nickel hydroxide and whose outer side is coated with a proton conductive insulator
38 Proton conductive insulator
40 Fibrous hydrogen storage alloy coated with proton conductive insulator on the outside
44 Plate active material
48 Negative electrode external terminal
50 fibrous active material with external terminals
52 Insulation sheet
54 Positive external terminal

Claims (19)

ニッケル水素電池の負極である水素吸蔵合金を繊維状としたことを特徴とする繊維状水素吸蔵合金を用いた電極。An electrode using a fibrous hydrogen storage alloy, wherein the hydrogen storage alloy, which is a negative electrode of a nickel-metal hydride battery, is formed in a fibrous form. 繊維状の水素吸蔵合金を不織布とした請求項1記載の電極。The electrode according to claim 1, wherein the fibrous hydrogen storage alloy is a nonwoven fabric. 繊維状の水素吸蔵合金を織物とした請求項1記載の電極。The electrode according to claim 1, wherein the fibrous hydrogen storage alloy is woven. 繊維状の水素吸蔵合金を複数本束ねて構成した請求項1記載の電極。The electrode according to claim 1, wherein a plurality of fibrous hydrogen storage alloys are bundled. 繊維径の異なる繊維状水素吸蔵合金を用いた請求項1〜4のいずれかに記載の電極。5. The electrode according to claim 1, wherein fibrous hydrogen storage alloys having different fiber diameters are used. 組成の異なる繊維状水素吸蔵合金を用いた請求項1〜5のいずれかに記載の電極。The electrode according to any one of claims 1 to 5, wherein fibrous hydrogen storage alloys having different compositions are used. 電子伝導性のある繊維状物質と繊維状水素吸蔵合金を集束して複合繊維とした請求項1〜6のいずれかに記載の電極。The electrode according to any one of claims 1 to 6, wherein a fibrous substance having electron conductivity and a fibrous hydrogen storage alloy are bundled to form a composite fiber. 有機繊維と繊維状水素吸蔵合金を集束して複合繊維とした請求項1〜6のいずれかに記載の電極。The electrode according to any one of claims 1 to 6, wherein the organic fiber and the fibrous hydrogen storage alloy are bundled to form a composite fiber. 有機繊維と電子伝導性のある繊維状物質と繊維状水素吸蔵合金を集束して複合繊維とした請求項1〜6のいずれかに記載の電極。The electrode according to any one of claims 1 to 6, wherein organic fibers, a fibrous substance having electron conductivity, and a fibrous hydrogen storage alloy are bundled to form a composite fiber. 請求項1〜6のいずれかの繊維状水素吸蔵合金、又は請求項7、8もしくは9の複合繊維に金属メッキを施したことを特徴とする電極。An electrode, wherein the fibrous hydrogen storage alloy according to any one of claims 1 to 6, or the composite fiber according to claim 7, 8, or 9 is plated with metal. 粒子状、針状、繊維状、棒状、箔状、板状及びブロック状の少なくともいずれかの形状に導電性材料を含有して形成されたニッケル/水酸化ニッケルからなる正極と、繊維状水素吸蔵合金を1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが、正極と負極の間に電子伝導性が無くイオン伝導性のあるセパレータを挟んで積層され、敷設した正極の少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、電池セルに電解液を充填して構成されたことを特徴とする繊維状水素吸蔵合金を用いた電池。A positive electrode made of nickel / nickel hydroxide formed by containing a conductive material in at least one of a particle shape, a needle shape, a fiber shape, a bar shape, a foil shape, a plate shape, and a block shape; A negative electrode made by arranging alloys one by one or in a bundle, or a woven or non-woven fabric is laminated with an ion-conductive separator having no electronic conductivity between the positive electrode and the negative electrode, and at least one end of the laid positive electrode The negative electrode current collector was attached so that at least one end of the fibrous hydrogen storage alloy laid as a negative electrode was attached, and the battery cell was filled with an electrolytic solution so that the positive electrode current collector was attached so that A battery using a characteristic fibrous hydrogen storage alloy. 粒子状、針状、繊維状、棒状、箔状、板状及びブロック状の少なくともいずれかの形状に導電性材料を含有して形成されたニッケル/水酸化ニッケルからなる正極と、繊維状水素吸蔵合金の表面を多孔性絶縁体又は/及びプロトン伝導性絶縁体で被覆したものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが積層され、敷設した正極の少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、電池セルに電解液を充填して構成されたことを特徴とする繊維状水素吸蔵合金を用いた電池。A positive electrode made of nickel / nickel hydroxide formed by containing a conductive material in at least one of a particle shape, a needle shape, a fiber shape, a bar shape, a foil shape, a plate shape, and a block shape; An alloy whose surface is covered with a porous insulator and / or a proton conductive insulator is arranged one by one or in a bundle, or a woven or nonwoven fabric is laminated with a negative electrode, and at least one end of the laid positive electrode is in contact with the negative electrode A positive electrode current collector is attached, a negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid as a negative electrode is in contact with the battery cell, and the battery cell is filled with an electrolyte. Battery using a fibrous hydrogen storage alloy. 電子伝導性のある繊維状物質の表面をニッケル/水酸化ニッケルでコートしたものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした正極と、繊維状水素吸蔵合金を1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが、正極と負極の間に電子伝導性が無くイオン伝導性のあるセパレータを挟んで積層され、正極として敷設した繊維状物質の少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、電池セルに電解液を充填して構成されたことを特徴とする繊維状水素吸蔵合金を用いた電池。A positive electrode made of a woven or nonwoven fabric, or a positive electrode made of a woven or nonwoven fabric, and a fibrous hydrogen storage alloy, one by one or bundle Negatively arranged or woven or non-woven fabric is laminated with a separator having no ion conductivity between the positive electrode and the negative electrode, and at least one end of the fibrous material laid as the positive electrode is in contact with the negative electrode. A positive electrode current collector is attached to the battery, a negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid as the negative electrode is in contact with the battery, and the battery cell is filled with an electrolyte. A battery using a fibrous hydrogen storage alloy. 電子伝導性のある繊維状物質の表面をニッケル/水酸化ニッケルでコートし、さらにその外側を多孔性絶縁体又は/及びプロトン伝導性絶縁体で被覆したものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした正極と、繊維状水素吸蔵合金の表面を多孔性絶縁体又は/及びプロトン伝導性絶縁体で被覆したものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが積層され、正極として敷設した繊維状物質の少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、電池セルに電解液を充填して構成されたことを特徴とする繊維状水素吸蔵合金を用いた電池。Whether the surface of the fibrous material having electron conductivity is coated with nickel / nickel hydroxide and the outside thereof is further covered with a porous insulator and / or a proton conductive insulator one by one or in a bundle. Or a positive electrode made of a woven or nonwoven fabric and a negative electrode made of a fibrous hydrogen storage alloy whose surface is coated with a porous insulator and / or a proton conductive insulator, one by one or in a bundle, or a woven or nonwoven fabric The positive electrode current collector is attached so that at least one end of the fibrous substance laid as the positive electrode is in contact with the negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid as the negative electrode is in contact with the positive electrode current collector. A battery using a fibrous hydrogen storage alloy, wherein the battery cell is filled with an electrolytic solution. 多孔性絶縁体が、テフロン(登録商標)、ナイロンもしくはポリエチレン、ポリプロピレンに代表されるポリオレフィン系のメンブラン膜もしくは不織布、又は水もしくはアルコールに可溶な溶剤に溶解する樹脂を用いて、溶剤に溶解した樹脂から水もしくはアルコールで溶剤を抽出して多孔質とした樹脂である請求項12又は14記載の繊維状水素吸蔵合金を用いた電池。The porous insulator was dissolved in a solvent using a polyolefin-based membrane film or non-woven fabric represented by Teflon (registered trademark), nylon or polyethylene, polypropylene, or a resin soluble in water or an alcohol-soluble solvent. 15. The battery using a fibrous hydrogen storage alloy according to claim 12, wherein the resin is a porous resin obtained by extracting a solvent from the resin with water or alcohol. 水に可溶な溶剤に溶解した樹脂が、ジメチルスルフォオキサイドに溶解したポリエーテルスルフォン樹脂、アセトンに溶解したポリスチレン、ジメチルホルムアミドもしくはジメチルスルフォオキサイドに溶解したポリスルホン、ジメチルホルムアミド、ジメチルスルフォオキサイドもしくはエチレンカーボネートに溶解したポリアクリロニトリル、ジメチルホルムアミド、ジメチルスルフォオキサイドもしくはN−メチル−2−ピロリドンに溶解したポリフッ化ビニリデン、ジメチルホルムアミドもしくはN−メチル−2−ピロリドンに溶解したポリアミド、又はジメチルホルムアミドもしくはN−メチル−2−ピロリドンに溶解したポリイミドであり、アルコールに可溶な溶剤に溶解した樹脂が、塩化メチレンに溶解した酢酸セルロース、又は塩化メチレンに溶解したオキサイドフェニレンエーテルである請求項15記載の繊維状水素吸蔵合金を用いた電池。A resin dissolved in a water-soluble solvent is a polyethersulfone resin dissolved in dimethylsulfoxide, polystyrene dissolved in acetone, polysulfone dissolved in dimethylformamide or dimethylsulfoxide, dimethylformamide, dimethylsulfoxide or Polyacrylonitrile dissolved in ethylene carbonate, dimethylformamide, polyvinylidene fluoride dissolved in dimethylsulfoxide or N-methyl-2-pyrrolidone, polyamide dissolved in dimethylformamide or N-methyl-2-pyrrolidone, or dimethylformamide or N -Polyimide dissolved in methyl-2-pyrrolidone, resin dissolved in a solvent soluble in alcohol, cellulose acetate dissolved in methylene chloride Or battery using fibrous hydrogen storage alloy of claim 15 wherein the oxide phenylene ether dissolved in methylene chloride. プロトン伝導性絶縁体が、NAFION(登録商標)に代表される固体電解質である請求項12又は14記載の繊維状水素吸蔵合金を用いた電池。15. The battery using a fibrous hydrogen storage alloy according to claim 12, wherein the proton conductive insulator is a solid electrolyte typified by NAFION (registered trademark). 粒子状、針状、繊維状、棒状、箔状、板状及びブロック状の少なくともいずれかの形状を有するカーボンからなる正極と、繊維状水素吸蔵合金を1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが、正極と負極の間に電子伝導性が無くイオン伝導性のあるセパレータを挟んで積層され、正極として敷設したカーボンの少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、セルに電解液を充填して構成されたことを特徴とする繊維状水素吸蔵合金を用いた電気二重層キャパシタ。A positive electrode made of carbon having at least one of a particle shape, a needle shape, a fiber shape, a rod shape, a foil shape, a plate shape, and a block shape, and a fibrous hydrogen storage alloy arranged one by one or in a bundle or woven fabric Alternatively, a negative electrode made of nonwoven fabric is laminated with a separator having no ion conductivity between the positive electrode and the negative electrode, and a positive electrode current collector is attached so that at least one end of the carbon laid as the positive electrode is in contact with the negative electrode. An electrode using a fibrous hydrogen storage alloy, wherein a negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid as a negative electrode is in contact with the cell, and the cell is filled with an electrolytic solution. Double layer capacitor. 粒子状、針状、繊維状、棒状、箔状、板状及びブロック状の少なくともいずれかの形状を有するカーボンからなる正極と、繊維状水素吸蔵合金の表面を多孔性絶縁体又は/及びプロトン伝導性絶縁体で被覆したものを1本ずつもしくは束状で並べるか又は織物もしくは不織布とした負極とが積層され、正極として敷設したカーボンの少なくとも一端が接するように正極集電体が取り付けられ、負極として敷設した繊維状水素吸蔵合金の少なくとも一端が接するように負極集電体が取り付けられ、セルに電解液を充填して構成されたことを特徴とする繊維状水素吸蔵合金を用いた電気二重層キャパシタ。A positive electrode made of carbon having at least one of a particle shape, a needle shape, a fiber shape, a rod shape, a foil shape, a plate shape, and a block shape, and a surface of a fibrous hydrogen storage alloy formed of a porous insulator and / or proton conductive material A negative electrode made of woven or non-woven fabric is laminated one by one or in bundles coated with a conductive insulator, and a positive electrode current collector is attached so that at least one end of carbon laid as a positive electrode is in contact with the negative electrode. An electric double layer using a fibrous hydrogen storage alloy, wherein the negative electrode current collector is attached so that at least one end of the fibrous hydrogen storage alloy laid in contact with the cell is filled with an electrolytic solution. Capacitors.
JP2002175543A 2002-06-17 2002-06-17 Electrode using fibrous hydrogen storage alloy, battery using fibrous hydrogen storage alloy and electric double layer capacitor Pending JP2004022332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175543A JP2004022332A (en) 2002-06-17 2002-06-17 Electrode using fibrous hydrogen storage alloy, battery using fibrous hydrogen storage alloy and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175543A JP2004022332A (en) 2002-06-17 2002-06-17 Electrode using fibrous hydrogen storage alloy, battery using fibrous hydrogen storage alloy and electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2004022332A true JP2004022332A (en) 2004-01-22

Family

ID=31174164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175543A Pending JP2004022332A (en) 2002-06-17 2002-06-17 Electrode using fibrous hydrogen storage alloy, battery using fibrous hydrogen storage alloy and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2004022332A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206004A (en) * 2008-02-29 2009-09-10 Sanyo Electric Co Ltd Anode for alkaline storage battery and alkaline storage battery
JP2010160912A (en) * 2009-01-06 2010-07-22 National Institute Of Advanced Industrial Science & Technology Alloy negative electrode for fiber battery
EP2367223A1 (en) * 2008-11-19 2011-09-21 National Institute of Advanced Industrial Science And Technology Nickel positive electrode for fiber battery
CN103280336A (en) * 2013-05-20 2013-09-04 天津大学 Method for preparing foam nickel load carbon-coated nickel particle composite material
US20210249688A1 (en) * 2018-09-28 2021-08-12 Lg Chem, Ltd. Method for Manufacturing Electrode Comprising Polymer-Based Solid Electrolyte and Electrode Manufactured by the Method
US11302910B2 (en) 2016-09-30 2022-04-12 Lg Energy Solution, Ltd. Lithium secondary battery negative electrode including protection layer made of conductive fabric, and lithium secondary battery including same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206004A (en) * 2008-02-29 2009-09-10 Sanyo Electric Co Ltd Anode for alkaline storage battery and alkaline storage battery
EP2367223A1 (en) * 2008-11-19 2011-09-21 National Institute of Advanced Industrial Science And Technology Nickel positive electrode for fiber battery
EP2367223A4 (en) * 2008-11-19 2013-12-04 Nat Inst Of Advanced Ind Scien Nickel positive electrode for fiber battery
US9620770B2 (en) 2008-11-19 2017-04-11 National Institute Of Advanced Industrial Science And Technology Nickel positive electrode for fiber battery
JP2010160912A (en) * 2009-01-06 2010-07-22 National Institute Of Advanced Industrial Science & Technology Alloy negative electrode for fiber battery
CN103280336A (en) * 2013-05-20 2013-09-04 天津大学 Method for preparing foam nickel load carbon-coated nickel particle composite material
US11302910B2 (en) 2016-09-30 2022-04-12 Lg Energy Solution, Ltd. Lithium secondary battery negative electrode including protection layer made of conductive fabric, and lithium secondary battery including same
US20210249688A1 (en) * 2018-09-28 2021-08-12 Lg Chem, Ltd. Method for Manufacturing Electrode Comprising Polymer-Based Solid Electrolyte and Electrode Manufactured by the Method

Similar Documents

Publication Publication Date Title
EP1947711B1 (en) Three-dimensional battery and its electrode structure and method for producing electrode material of three-dimensional battery
KR102065579B1 (en) Lithium-ion secondary battery and method of producing same
US11018379B2 (en) Electrode, secondary battery using same, and method for manufacturing electrode
KR101484433B1 (en) Bipolar battery current collector and bipolar battery
EP2131422A1 (en) Positive electrode-forming member, material for the same, method for producing the same, and lithium ion secondary battery
JP2003317794A (en) Fiber cell and its manufacturing method
KR20010102230A (en) Electrically conductive, freestanding microporous polymer sheet
WO1997008763A1 (en) Cell and production method thereof
DE102012208726A1 (en) Separators for a lithium-ion battery
JP2010073533A (en) Chargeable and dischargeable battery
Kim et al. Ultrahigh‐energy‐density flexible lithium‐metal full cells based on conductive fibrous skeletons
US20110059362A1 (en) Methods for forming foamed electrode structures
KR102098065B1 (en) Three-dimensional porous-structured electrode, methode of manufacturing and electrochemical device having the electrode
Kim et al. Fibrous skeleton‐framed, flexible high‐energy‐density quasi‐solid‐state lithium metal batteries
CN112310465A (en) Method for manufacturing sulfide-impregnated solid-state battery
JP6212305B2 (en) Composite current collector, and electrode and secondary battery using the same
JP2004022332A (en) Electrode using fibrous hydrogen storage alloy, battery using fibrous hydrogen storage alloy and electric double layer capacitor
KR100609445B1 (en) Hybrid Cell
CN110998924B (en) Lead storage battery
CN113964318A (en) Multilayer electrode for secondary battery
KR20220041168A (en) Method for manufacturing electrode of power storage device and electrode of power storage device
KR100313103B1 (en) Separator, secondary battery applying the same, and method for producing the battery
KR102640431B1 (en) Separator for capacitor and graphene capacitor comprising the same
KR102654826B1 (en) Electrode and Secondary Battery Using the Same, and Method for Manufacturing the Electrode
CN116779947A (en) Lithium ion battery and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209