JP2005093289A - Hydrogen storage alloy for alkaline storage battery and alkaline storage battery - Google Patents

Hydrogen storage alloy for alkaline storage battery and alkaline storage battery Download PDF

Info

Publication number
JP2005093289A
JP2005093289A JP2003326522A JP2003326522A JP2005093289A JP 2005093289 A JP2005093289 A JP 2005093289A JP 2003326522 A JP2003326522 A JP 2003326522A JP 2003326522 A JP2003326522 A JP 2003326522A JP 2005093289 A JP2005093289 A JP 2005093289A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alkaline
storage alloy
alkaline storage
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003326522A
Other languages
Japanese (ja)
Other versions
JP4420641B2 (en
Inventor
Tsudoi Imazato
集 今里
Jun Ishida
潤 石田
Shigekazu Yasuoka
茂和 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003326522A priority Critical patent/JP4420641B2/en
Publication of JP2005093289A publication Critical patent/JP2005093289A/en
Application granted granted Critical
Publication of JP4420641B2 publication Critical patent/JP4420641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the deterioration of a hydrogen storage alloy and obtain a sufficient cycle life in an alkaline storage battery using the alloy containing a rare-earth element, Mg, Ni and Al, with an intensity ratio I<SB>A</SB>/I<SB>B</SB>of the strongest peak intensity I<SB>A</SB>appearing within a range of 2θ=31° to 33° to the strongest peak intensity I<SB>B</SB>appearing within a range of 2θ=40° to 44° in an X-ray diffraction measurement using a Cu-Kα ray. <P>SOLUTION: For a negative electrode of the alkaline storage battery, the alloy is used, wherein a layer of an oxide or a hydroxide is formed on the surfaces of hydrogen storage alloy powder containing at least the rare-earth element, Mg, Ni and Al and the intensity ratio I<SB>A</SB>/I<SB>B</SB>between the strongest peak intensity I<SB>A</SB>appearing within the range of 2θ=31°to 33° and that I<SB>B</SB>appearing within the range of 2θ=40° to 44° in the X-ray diffraction measurement using the Cu-Kα ray, and a specific surface area X (m<SP>2</SP>/g) and an oxygen density Y(ppm) satisfies a condition of X<SP>2</SP>/Y ≤1.3×10<SP>-5</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、アルカリ蓄電池用水素吸蔵合金及びこのアルカリ蓄電池用水素吸蔵合金を負極に用いたアルカリ蓄電池に係り、特に、少なくとも希土類元素とマグネシウムとニッケルとアルミニウムとを含み、Cu−Kα線をX線源とするX線回折測定において2θ=31°〜33°の範囲に現れる最強ピーク強度(I)と、2θ=40°〜44°の範囲に現れる最強ピーク強度(I)との強度比(I/I)が0.1以上である水素吸蔵合金を用いたアルカリ蓄電池において、上記の水素吸蔵合金が劣化するのを抑制して、十分なサイクル寿命が得られるようにした点に特徴を有するものである。 The present invention relates to a hydrogen storage alloy for an alkaline storage battery and an alkaline storage battery using this hydrogen storage alloy for an alkaline storage battery as a negative electrode. Intensity ratio between the strongest peak intensity (I A ) appearing in the range of 2θ = 31 ° to 33 ° and the strongest peak intensity (I B ) appearing in the range of 2θ = 40 ° to 44 ° in the X-ray diffraction measurement using the source In an alkaline storage battery using a hydrogen storage alloy having (I A / I B ) of 0.1 or more, the above-described hydrogen storage alloy is prevented from deteriorating and a sufficient cycle life is obtained. It has characteristics.

アルカリ蓄電池の一種であるニッケル・水素蓄電池は、各種のポータブル機器やハイブリッド電気自動車に広く使用されており、このニッケル・水素蓄電池をさらに高性能化させることが期待されている。   Nickel-hydrogen storage batteries, which are a type of alkaline storage battery, are widely used in various portable devices and hybrid electric vehicles, and it is expected that the nickel-hydrogen storage battery will have higher performance.

ニッケル・水素蓄電池においては、その負極に使用する水素吸蔵合金として、CaCu5型の結晶を主相とする希土類−ニッケル系の水素吸蔵合金や、Ti,Zr,V及びNiを含むラーベス相系の水素吸蔵合金等が一般に使用されている。 In a nickel-hydrogen storage battery, as a hydrogen storage alloy used for the negative electrode, a rare earth-nickel hydrogen storage alloy having a CaCu 5 type crystal as a main phase, or a Laves phase system containing Ti, Zr, V and Ni is used. A hydrogen storage alloy or the like is generally used.

しかし、これらの水素吸蔵合金は、水素吸蔵能力が必ずしも十分であるとはいえず、ニッケル・水素蓄電池の容量をさらに高容量化させることが困難であるという問題があった。   However, these hydrogen storage alloys do not necessarily have sufficient hydrogen storage capacity, and there is a problem that it is difficult to further increase the capacity of the nickel-hydrogen storage battery.

そして、近年においては、上記の希土類−ニッケル系の水素吸蔵合金にMg等を含有させて、水素吸蔵合金における水素吸蔵能力を向上させたCaCu5型以外の結晶構造を有する水素吸蔵合金を用いるようにしたものが提案されている(例えば、特許文献1及び特許文献2参照。)。 In recent years, a hydrogen storage alloy having a crystal structure other than the CaCu 5 type in which the above-described rare earth-nickel hydrogen storage alloy contains Mg or the like to improve the hydrogen storage capability of the hydrogen storage alloy is used. (See, for example, Patent Document 1 and Patent Document 2).

しかし、上記のような結晶構造を有する水素吸蔵合金は、CaCu5型の結晶を主相とする希土類−ニッケル系の水素吸蔵合金に比べ、アルカリ電解液等と反応して劣化されやすく、十分なサイクル寿命が得られないという問題があった。
特開平11−339792号公報 特開2002−164045号公報
However, the hydrogen storage alloy having the above crystal structure is more likely to be deteriorated by reacting with an alkaline electrolyte or the like than the rare earth-nickel-based hydrogen storage alloy having a CaCu 5 type crystal as a main phase. There was a problem that the cycle life could not be obtained.
JP-A-11-339792 JP 2002-164045 A

この発明は、少なくとも希土類元素とマグネシウムとニッケルとアルミニウムとを含み、Cu−Kα線をX線源とするX線回折測定において2θ=31°〜33°の範囲に現れる最強ピーク強度(I)と、2θ=40°〜44°の範囲に現れる最強ピーク強度(I)との強度比(I/I)が0.1以上である水素吸蔵合金を用いたアルカリ蓄電池における上記のような問題を解決することを課題とするものである。 The present invention includes at least a rare earth element, magnesium, nickel, and aluminum, and the strongest peak intensity (I A ) that appears in a range of 2θ = 31 ° to 33 ° in an X-ray diffraction measurement using Cu—Kα rays as an X-ray source. When, as described above for the alkaline storage battery using the 2 [Theta] = 40 ° strongest peak intensity appearing in the range of ~44 ° (I B) and the intensity ratio of (I a / I B) is hydrogen absorbing alloy is 0.1 or more It is an object to solve a problem.

すなわち、この発明は、上記のような水素吸蔵合金を用いたアルカリ蓄電池において、上記の水素吸蔵合金がアルカリ電解液等と反応して劣化されるのを抑制し、十分なサイクル寿命が得られるようにすることを課題とするものである。   That is, the present invention suppresses the deterioration of the hydrogen storage alloy by reacting with an alkaline electrolyte or the like in an alkaline storage battery using the hydrogen storage alloy as described above, so that a sufficient cycle life can be obtained. It is a problem to make.

この発明におけるアルカリ蓄電池用水素吸蔵合金においては、上記のような課題を解決するため、アルカリ蓄電池の負極に用いるアルカリ蓄電池用水素吸蔵合金であって、少なくとも希土類元素とマグネシウムとニッケルとアルミニウムとを含み、Cu−Kα線をX線源とするX線回折測定において2θ=31°〜33°の範囲に現れる最強ピーク強度(I)と、2θ=40°〜44°の範囲に現れる最強ピーク強度(I)との強度比(I/I)が0.1以上である水素吸蔵合金粉末の表面に酸化物又は水酸化物の層を形成すると共に、この水素吸蔵合金粉末の比表面積をX(m2/g)、酸素濃度をY(ppm)とした場合に、X2/Y≦1.3×10-5の条件を満たすようにした。 In order to solve the above problems, the hydrogen storage alloy for alkaline storage batteries according to the present invention is a hydrogen storage alloy for alkaline storage batteries used for the negative electrode of alkaline storage batteries, and includes at least a rare earth element, magnesium, nickel, and aluminum. , the strongest peak intensity and the strongest peak intensity appearing in the range of 2θ = 31 ° ~33 ° in X-ray diffraction measurement of the Cu-K [alpha line and X-ray source (I a), appears in the range of 2θ = 40 ° ~44 ° with (I B) and the intensity ratio of (I a / I B) to form a layer of oxide or hydroxide on the surface of the hydrogen-absorbing alloy powder is 0.1 or more, the specific surface area of the hydrogen-absorbing alloy powder Is X (m 2 / g) and the oxygen concentration is Y (ppm), the condition of X 2 /Y≦1.3×10 −5 is satisfied.

また、この発明においては、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、その負極における水素吸蔵合金に、上記のアルカリ蓄電池用水素吸蔵合金を用いるようにした。   In the present invention, in the alkaline storage battery including the positive electrode, the negative electrode using the hydrogen storage alloy, and the alkaline electrolyte, the hydrogen storage alloy for the alkaline storage battery is used as the hydrogen storage alloy in the negative electrode. did.

ここで、上記のような水素吸蔵合金を用いたアルカリ蓄電池においては、上記の水素吸蔵合金粉末の表面に、表面積の小さい緻密な酸化物又は水酸化物の層を設けて、この水素吸蔵合金粉末の比表面Xを小さくすることにより、水素吸蔵合金の活性度及び劣化が抑制されると共に、水素吸蔵合金粉末の表面における単位面積あたりの酸化物又は水酸化物の量、すなわち単位面積あたりの酸素量を多くすることにより、水素吸蔵合金の表面における反応活性な部位が酸化物又は水酸化物の層によって十分に被覆され、水素吸蔵合金の活性度及び劣化が抑制されることを見出した。   Here, in the alkaline storage battery using the hydrogen storage alloy as described above, a dense oxide or hydroxide layer having a small surface area is provided on the surface of the hydrogen storage alloy powder, and the hydrogen storage alloy powder. By reducing the specific surface X, the activity and deterioration of the hydrogen storage alloy are suppressed, and the amount of oxide or hydroxide per unit area on the surface of the hydrogen storage alloy powder, that is, oxygen per unit area It has been found that by increasing the amount, the reactive sites on the surface of the hydrogen storage alloy are sufficiently covered with the oxide or hydroxide layer, and the activity and deterioration of the hydrogen storage alloy are suppressed.

ここで、上記の水素吸蔵合金粉末の表面積をS、この水素吸蔵合金粉末表面の酸素量をq、この水素吸蔵合金粉末の質量をWとした場合、水素吸蔵合金粉末の比表面積XはX=S/Wで、水素吸蔵合金粉末の表面における単位面積あたりの酸素量OはO=q/Sで表わされ、水素吸蔵合金粉末の表面における単位面積あたりの酸素量Oを多くすることは、O=q/Sの逆数1/(q/S)を小さくすることを意味する。   Here, when the surface area of the hydrogen storage alloy powder is S, the amount of oxygen on the surface of the hydrogen storage alloy powder is q, and the mass of the hydrogen storage alloy powder is W, the specific surface area X of the hydrogen storage alloy powder is X = In S / W, the oxygen amount O per unit area on the surface of the hydrogen storage alloy powder is represented by O = q / S, and increasing the oxygen amount O per unit area on the surface of the hydrogen storage alloy powder is: It means that the inverse 1 / (q / S) of O = q / S is made small.

このため、上記のように水素吸蔵合金粉末の比表面Xを小さくすると共に、水素吸蔵合金粉末の表面における単位面積あたりの酸素量を多くする場合、比表面積X=S/Wと、上記のOの逆数1/(q/S)との積(S/W)×[1/(q/S)]を小さくすることになる。   Therefore, when reducing the specific surface X of the hydrogen storage alloy powder as described above and increasing the amount of oxygen per unit area on the surface of the hydrogen storage alloy powder, the specific surface area X = S / W and the above O The product (S / W) × [1 / (q / S)] of the inverse of 1 / (q / S) is reduced.

そして、この(S/W)×[1/(q/S)]の式を変形すると、
(S/W)×[1/(q/S)]=(S/W)/(q/S)=(S/W)2/(q/W)
となる。
And when this equation (S / W) × [1 / (q / S)] is transformed,
(S / W) × [1 / (q / S)] = (S / W) / (q / S) = (S / W) 2 / (q / W)
It becomes.

ここで、上記の水素吸蔵合金粉末においては、その内部における酸素量を無視することができるため、上記の水素吸蔵合金粉末表面の酸素量qは、水素吸蔵合金粉末全体の酸素量とほぼ等しいといえるため、上記のq/Wは水素吸蔵合金粉末の酸素濃度Yとなり、上記のようにX2/Yの値を小さくすることが好ましいことになる。 Here, in the above hydrogen storage alloy powder, the amount of oxygen in the inside thereof can be ignored. Therefore, the oxygen amount q on the surface of the hydrogen storage alloy powder is almost equal to the oxygen amount of the entire hydrogen storage alloy powder. Therefore, q / W is the oxygen concentration Y of the hydrogen storage alloy powder, and it is preferable to reduce the value of X 2 / Y as described above.

そして、上記のX2/Yの値を1.3×10-5以下にすると、水素吸蔵合金粉末の表面に緻密な酸化物又は水酸化物の層が形成されると共に、酸化物又は水酸化物の層が形成された水素吸蔵合金粉末の表面における酸素濃度が高くなって、水素吸蔵合金粉末の表面が酸化物又は水酸化物の層によって十分に被覆されるようになり、水素吸蔵合金がアルカリ電解液等と反応して劣化するのが抑制されるようになると考えられる。 When the value of X 2 / Y is 1.3 × 10 −5 or less, a dense oxide or hydroxide layer is formed on the surface of the hydrogen storage alloy powder, and the oxide or hydroxide The oxygen concentration on the surface of the hydrogen-absorbing alloy powder on which the product layer is formed becomes high, and the surface of the hydrogen-absorbing alloy powder is sufficiently covered with the oxide or hydroxide layer. It is considered that the deterioration due to reaction with an alkaline electrolyte or the like is suppressed.

以上のように、この発明においては、正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、その負極における水素吸蔵合金に、少なくとも希土類元素とマグネシウムとニッケルとアルミニウムとを含み、Cu−Kα線をX線源とするX線回折測定において2θ=31°〜33°の範囲に現れる最強ピーク強度(I)と、2θ=40°〜44°の範囲に現れる最強ピーク強度(I)との強度比(I/I)が0.1以上である水素吸蔵合金を用いるようにしたため、CaCu5型の結晶を主相とする希土類−ニッケル系の水素吸蔵合金を用いた場合に比べて、高容量のアルカリ蓄電池が得られるようになる。 As described above, in the present invention, in an alkaline storage battery including a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, the hydrogen storage alloy in the negative electrode includes at least a rare earth element, magnesium, nickel, and aluminum. wherein the door, and Cu-K [alpha line X-ray source and X-ray diffraction strongest peak intensity appearing in the range of 2θ = 31 ° ~33 ° in the measurement (I a), appears in the range of 2θ = 40 ° ~44 ° since the strongest peak intensity (I B) and the intensity ratio of (I a / I B) is to use a hydrogen absorbing alloy is 0.1 or more, the rare earth as a main phase crystal type 5 CaCu - hydrogen nickel Compared to the case of using an occlusion alloy, a high capacity alkaline storage battery can be obtained.

また、この発明においては、上記の水素吸蔵合金粉末の表面に酸化物又は水酸化物の層を形成すると共に、この水素吸蔵合金粉末の比表面積をX(m2/g)、酸素濃度をY(ppm)とした場合に、X2/Y≦1.3×10-5の条件を満たすようにしたため、この水素吸蔵合金がアルカリ電解液等と反応して劣化するのが抑制されるようになる。 In the present invention, an oxide or hydroxide layer is formed on the surface of the hydrogen storage alloy powder, the specific surface area of the hydrogen storage alloy powder is X (m 2 / g), and the oxygen concentration is Y. (Ppm), since the condition of X 2 /Y≦1.3×10 −5 is satisfied, the hydrogen storage alloy is prevented from being deteriorated by reacting with an alkaline electrolyte or the like. Become.

この結果、この発明においては、高容量で十分なサイクル寿命を有するアルカリ蓄電池が得られるようになる。   As a result, in the present invention, an alkaline storage battery having a high capacity and a sufficient cycle life can be obtained.

以下、アルカリ蓄電池用水素吸蔵合金の製造例について説明すると共に、この発明の条件を満たすアルカリ蓄電池用水素吸蔵合金を用いたこの発明の実施例に係るアルカリ蓄電池においては、サイクル寿命が向上することを、比較例を挙げて明らかにする。なお、この発明におけるアルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池は、特に下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, an example of producing a hydrogen storage alloy for an alkaline storage battery will be described, and in the alkaline storage battery according to an embodiment of the present invention using a hydrogen storage alloy for an alkaline storage battery that satisfies the conditions of the present invention, the cycle life is improved. It is clarified by giving a comparative example. In addition, the hydrogen storage alloy for alkaline storage batteries and alkaline storage battery in this invention are not specifically limited to what was shown in the following Example, It can implement by changing suitably in the range which does not change the summary.

(アルカリ蓄電池用水素吸蔵合金A〜Fの製造)
アルカリ蓄電池用水素吸蔵合金A〜Fを製造するにあたっては、希土類元素のLa,Pr及びNdと、Mgと、Niと、Alとを、合金組成が(La0.2Pr0.4Nd0.40.83Mg0.17Ni3.1Al0.2になるように混合した後、アルゴン雰囲気中において溶解し、これを冷却させて水素吸蔵合金のインゴットを作製した。
(Manufacture of hydrogen storage alloys A to F for alkaline storage batteries)
In producing the hydrogen storage alloys A to F for alkaline storage batteries, the rare earth elements La, Pr, and Nd, Mg, Ni, and Al have an alloy composition of (La 0.2 Pr 0.4 Nd 0.4 ) 0.83 Mg 0.17 Ni 3.1 After mixing so that Al becomes 0.2 , it melt | dissolved in argon atmosphere, this was cooled, and the ingot of the hydrogen storage alloy was produced.

そして、この水素吸蔵合金のインゴットを1000℃で熱処理して均質化させた後、不活性雰囲気中において機械的に粉砕し、これを分級して、体積平均粒径が65μmになった上記の(La0.2Pr0.4Nd0.40.83Mg0.17Ni3.1Al0.2からなる組成の水素吸蔵合金粉末を得た。 The hydrogen storage alloy ingot was heat treated at 1000 ° C. to be homogenized, and then mechanically pulverized in an inert atmosphere, and classified to obtain a volume average particle diameter of 65 μm as described above ( La was obtained 0.2 Pr 0.4 Nd 0.4) 0.83 Mg 0.17 Ni 3.1 hydrogen-absorbing alloy powder having a composition consisting of Al 0.2.

ここで、このように作製した水素吸蔵合金粉末について、Cu−Kα線をX線源とするX線回折測定装置(RIGAKU RINT2000システム)を用い、スキャンスピード2°/min,スキャンステップ0.02°,走査範囲20°〜80°の範囲でX線回折測定を行い、2θ=31°〜33°の範囲に現れる最強ピーク強度(I)と、2θ=40°〜44°の範囲に現れる最強ピーク強度(I)とを測定し、これらの強度比(I/I)を求めた結果、強度比I/Iは0.53であり、CaCu5型とは異なる結晶構造を有していた。 Here, with respect to the hydrogen storage alloy powder thus produced, an X-ray diffraction measurement apparatus (RIGAKU RINT2000 system) using Cu—Kα rays as an X-ray source is used, a scanning speed of 2 ° / min, and a scanning step of 0.02 °. , subjected to X-ray diffraction measurement in the range of the scanning range 20 ° to 80 °, the strongest peak intensity (I a) which appears in the range of 2θ = 31 ° ~33 °, appears in the range of 2θ = 40 ° ~44 ° strongest and measuring the peak intensity (I B), these intensity ratio (I a / I B) result of obtaining, intensity ratio I a / I B is 0.53, the crystal structure different from the CaCu 5 type Had.

そして、アルカリ蓄電池用水素吸蔵合金A〜Eについては、上記の水素吸蔵合金粉末を30wt%の水酸化カリウム水溶液に浸漬させて酸化処理を行う一方、アルカリ蓄電池用水素吸蔵合金Fについては、上記の水素吸蔵合金粉末をそのまま用いるようにした。   For the hydrogen storage alloys A to E for alkaline storage batteries, the hydrogen storage alloy powder is immersed in a 30 wt% potassium hydroxide aqueous solution for oxidation treatment, while for the hydrogen storage alloys F for alkaline storage batteries, The hydrogen storage alloy powder was used as it was.

ここで、上記の水素吸蔵合粉末を30wt%の水酸化カリウム水溶液に浸漬させて酸化処理するにあたり、アルカリ蓄電池用水素吸蔵合金Aにおいては浸漬槽の中央に設けた攪拌翼を用いて40rpmで60分間攪拌させ、アルカリ蓄電池用水素吸蔵合金Bにおいては50rpmで60分間攪拌させ、アルカリ蓄電池用水素吸蔵合金Cにおいては60rpmで60分間攪拌させ、アルカリ蓄電池用水素吸蔵合金Dにおいては40rpmで80分間攪拌させ、アルカリ蓄電池用水素吸蔵合金Eにおいては50rpmで80分間攪拌させるようにした。   Here, when the above hydrogen storage powder is immersed in a 30 wt% potassium hydroxide aqueous solution and oxidized, in the hydrogen storage alloy A for alkaline storage batteries, a stirring blade provided at the center of the immersion tank is used at 60 rpm at 60 rpm. Stirring is performed for 60 minutes at 50 rpm for the hydrogen storage alloy B for alkaline storage batteries, 60 minutes for 60 minutes for the hydrogen storage alloy C for alkaline storage batteries, and 80 minutes at 40 rpm for the hydrogen storage alloy D for alkaline storage batteries. In the hydrogen storage alloy E for alkaline storage batteries, stirring was performed at 50 rpm for 80 minutes.

その後は、このように酸化処理した各水素吸蔵合粉末を水洗し、乾燥させて、アルカリ蓄電池用水素吸蔵合金A〜Eを得た。   Then, each hydrogen storage compound powder oxidized in this way was washed with water and dried to obtain hydrogen storage alloys A to E for alkaline storage batteries.

ここで、上記のように酸化処理したアルカリ蓄電池用水素吸蔵合金A〜Eを、X線光電子分光(ESCA)及びエネルギー分散型電子線マイクロアナライザーを備えた透過型電子顕微鏡(TEM−EDX)によって調べた結果、水素吸蔵合粉末の表面に、希土類元素とマグネシウムとニッケルとアルミニウムとを含む酸化物又は水酸化物の層が形成されており、ほとんどの酸素が水素吸蔵合粉末の表面に存在していることを確認した。   Here, the hydrogen storage alloys A to E for alkaline storage batteries oxidized as described above are examined by a transmission electron microscope (TEM-EDX) equipped with X-ray photoelectron spectroscopy (ESCA) and an energy dispersive electron beam microanalyzer. As a result, an oxide or hydroxide layer containing rare earth elements, magnesium, nickel, and aluminum is formed on the surface of the hydrogen storage powder, and most of the oxygen exists on the surface of the hydrogen storage powder. I confirmed.

次に、上記のアルカリ蓄電池用水素吸蔵合金A〜Fについては、それぞれBET法によって比表面積X(m2/g)を測定すると共に、不活性ガス中の融解法によって酸素濃度Y(ppm)を測定し、さらにX2/Yの値を算出し、その結果を下記の表1に示した。 Next, for the hydrogen storage alloys A to F for alkaline storage batteries, the specific surface area X (m 2 / g) is measured by the BET method, and the oxygen concentration Y (ppm) is determined by the melting method in an inert gas. Then, X 2 / Y value was calculated, and the result is shown in Table 1 below.

Figure 2005093289
Figure 2005093289

この結果、アルカリ蓄電池用水素吸蔵合金A〜Dは、この発明のX2/Y≦1.3×10-5の条件を満たしていたが、アルカリ蓄電池用水素吸蔵合金E,Fはこの条件を満たしていなかった。 As a result, the hydrogen storage alloys A to D for alkaline storage batteries satisfied the condition of X 2 /Y≦1.3×10 −5 of the present invention, but the hydrogen storage alloys E and F for alkaline storage batteries satisfy this condition. Did not meet.

(実施例1〜4及び比較例1,2のアルカリ蓄電池)
実施例1〜4及び比較例1,2のアルカリ蓄電池を作製するにあたり、負極における水素吸蔵合金として、実施例1では上記のアルカリ蓄電池用水素吸蔵合金Aを、実施例2では上記のアルカリ蓄電池用水素吸蔵合金Bを、実施例3では上記のアルカリ蓄電池用水素吸蔵合金Cを、実施例4では上記のアルカリ蓄電池用水素吸蔵合金Dを、比較例1では上記のアルカリ蓄電池用水素吸蔵合金Eを、比較例2では上記のアルカリ蓄電池用水素吸蔵合金Fを用いるようにした。
(Alkaline storage batteries of Examples 1 to 4 and Comparative Examples 1 and 2)
In producing the alkaline storage batteries of Examples 1 to 4 and Comparative Examples 1 and 2, as the hydrogen storage alloy in the negative electrode, in Example 1, the above-described hydrogen storage alloy A for alkaline storage batteries was used, and in Example 2, the above-described alkaline storage battery was used. The hydrogen storage alloy B, the hydrogen storage alloy C for alkaline storage batteries in Example 3, the hydrogen storage alloy D for alkaline storage batteries in Example 4, and the hydrogen storage alloy E for alkaline storage batteries in Comparative Example 1 were used. In Comparative Example 2, the above hydrogen storage alloy F for alkaline storage batteries was used.

次に、上記の各水素吸蔵合金粉末100重量部に対して、ポリエチレンオキシドを0.5重量部、ポリビニルピロリドンを0.5重量部、水を20重量部の割合で混合させてペーストを調製し、このペーストをニッケル鍍金を施したパンチングメタルからなる導電性芯体の両面に均一に塗布し、これを乾燥させてプレスした後、所定の寸法に切断して、負極に用いる水素吸蔵合金電極を作製した。   Next, a paste was prepared by mixing 0.5 parts by weight of polyethylene oxide, 0.5 parts by weight of polyvinylpyrrolidone, and 20 parts by weight of water with respect to 100 parts by weight of each of the above hydrogen storage alloy powders. The paste was uniformly applied to both surfaces of a nickel-plated punching metal conductive core, dried and pressed, and then cut to a predetermined size to form a hydrogen storage alloy electrode used for the negative electrode. Produced.

一方、正極を作製するにあたっては、亜鉛を2.5wt%,コバルトを1.0wt%含有する水酸化ニッケル粉末を硫酸コバルト水溶液中に投入し、これを攪拌しながら、1モルの水酸化ナトリウム水溶液を徐々に滴下してpHが11になるまで反応させ、その後、沈殿物を濾過し、これを水洗し、真空乾燥させて、表面に水酸化コバルトが5wt%被覆された水酸化ニッケルを得た。そして、このように水酸化コバルトが被覆された水酸化ニッケルに25wt%の水酸化ナトリウム水溶液を1:10の重量比になるように加えて含浸させ、これを8時間攪拌しながら85℃で加熱処理した後、これを水洗し、乾燥させて、上記の水酸化ニッケルの表面がナトリウム含有コバルト酸化物で被覆された正極材料を得た。   On the other hand, in preparing the positive electrode, nickel hydroxide powder containing 2.5 wt% zinc and 1.0 wt% cobalt was put into a cobalt sulfate aqueous solution, and 1 mol of sodium hydroxide aqueous solution was stirred while stirring the powder. Was gradually added dropwise to react until the pH reached 11, and then the precipitate was filtered, washed with water, and dried under vacuum to obtain nickel hydroxide having a surface coated with 5 wt% cobalt hydroxide. . The nickel hydroxide thus coated with cobalt hydroxide is impregnated with a 25 wt% sodium hydroxide aqueous solution added at a weight ratio of 1:10 and heated at 85 ° C. with stirring for 8 hours. After the treatment, this was washed with water and dried to obtain a positive electrode material in which the surface of the nickel hydroxide was coated with sodium-containing cobalt oxide.

そして、この正極材料を95重量部、酸化亜鉛を3重量部、水酸化コバルトを2重量部の割合で混合させたものに、0.2wt%のヒドロキシプロピルセルロース水溶液を50重量部加え、これらを混合させてスラリーを調製し、このスラリーをニッケル発泡体に充填し、これを乾燥させてプレスした後、所定の寸法に切断して非焼結式ニッケル極からなる正極を作製した。   Then, 95 parts by weight of the positive electrode material, 3 parts by weight of zinc oxide, and 2 parts by weight of cobalt hydroxide were mixed with 50 parts by weight of 0.2 wt% hydroxypropylcellulose aqueous solution. A slurry was prepared by mixing, and the slurry was filled in a nickel foam, dried and pressed, and then cut into a predetermined size to produce a positive electrode composed of a non-sintered nickel electrode.

また、セパレータとしてはポリプロピレン製の不織布を使用し、アルカリ電解液としては、KOHとNaOHとLiOHとが15:2:1の重量比で含まれる比重1.30のアルカリ電解液を使用した。   In addition, a nonwoven fabric made of polypropylene was used as the separator, and an alkaline electrolyte having a specific gravity of 1.30 containing KOH, NaOH, and LiOH in a weight ratio of 15: 2: 1 was used as the alkaline electrolyte.

そして、実施例1〜4及び比較例1,2においては、これらを使用して、それぞれ設計容量が1900mAhになった、図1に示すような円筒型のアルカリ蓄電池を作製した。   In Examples 1 to 4 and Comparative Examples 1 and 2, a cylindrical alkaline storage battery as shown in FIG. 1 having a design capacity of 1900 mAh was produced.

ここで、これらの各アルカリ蓄電池を作製するにあたっては、図1に示すように、正極1と負極2との間にセパレータ3を介在させ、これらをスパイラル状に巻いて電池缶4内に収容させると共に、この電池缶4内に上記のアルカリ電解液を2.4g注液した後、電池缶4と正極蓋6との間に絶縁パッキン8を介して封口し、正極1を正極リード5を介して正極蓋6に接続させると共に、負極2を負極リード7を介して電池缶4に接続させ、上記の絶縁パッキン8により電池缶4と正極蓋6とを電気的に分離させた。また、上記の正極蓋6と正極外部端子9との間にコイルスプリング10を設け、電池の内圧が異常に上昇した場合には、このコイルスプリング10が圧縮されて電池内部のガスが大気中に放出されるようにした。   Here, in producing each of these alkaline storage batteries, as shown in FIG. 1, a separator 3 is interposed between the positive electrode 1 and the negative electrode 2, and these are spirally wound and accommodated in the battery can 4. At the same time, after 2.4 g of the above alkaline electrolyte was injected into the battery can 4, the battery can 4 and the positive electrode lid 6 were sealed with an insulating packing 8, and the positive electrode 1 was connected with the positive electrode lead 5. Then, the negative electrode 2 was connected to the battery can 4 via the negative electrode lead 7 and the battery can 4 and the positive electrode cover 6 were electrically separated by the insulating packing 8. In addition, when a coil spring 10 is provided between the positive electrode lid 6 and the positive electrode external terminal 9 and the internal pressure of the battery rises abnormally, the coil spring 10 is compressed and the gas inside the battery is brought into the atmosphere. To be released.

次に、上記のようにして作製した実施例1〜4及び比較例1,2の各アルカリ蓄電池を、それぞれ190mAの電流で16時間充電させ、これらを1時間放置させた後、380mAの電流で電池電圧が1.0Vになるまで放電させ、これらを1時間放置させて、各アルカリ蓄電池を活性化させた。   Next, each of the alkaline storage batteries of Examples 1 to 4 and Comparative Examples 1 and 2 manufactured as described above was charged with a current of 190 mA for 16 hours, and allowed to stand for 1 hour, and then with a current of 380 mA. The batteries were discharged until the battery voltage reached 1.0 V, and these were left for 1 hour to activate each alkaline storage battery.

そして、このように活性化させた実施例1〜4及び比較例1,2の各アルカリ蓄電池を、次いで、上記の各アルカリ蓄電池を、それぞれ1900mAの電流で電池電圧が最大値に達した後、10mV低下するまで充電させて1時間放置した後、1900mAの電流で電池電圧が1.0Vになるまで放電させて1時間放置し、これを1サイクルとして充放電を繰り返し、それぞれ1サイクル目の放電容量Q1と、100サイクル目の放電容量Q100と、200サイクル目の放電容量Q200とを測定し、下記の式により100サイクル目の容量維持率R100(%)と200サイクル目の容量維持率R200(%)とを算出し、その結果を下記の表2に示した。 Then, after each of the alkaline storage batteries of Examples 1 to 4 and Comparative Examples 1 and 2 thus activated, and then each of the alkaline storage batteries described above, the battery voltage reached a maximum value with a current of 1900 mA, respectively. Charge the battery until it drops to 10 mV and let it stand for 1 hour. Then, discharge the battery at a current of 1900 mA until the battery voltage reaches 1.0 V and leave it for 1 hour. a capacitor Q 1, and 100 th cycle discharge capacity Q 100, 200 to measure a discharge capacity Q 200 of cycle, the capacity maintenance rate at the 100th cycle by the following formula R 100 (%) 200 cycle capacity The maintenance rate R 200 (%) was calculated, and the results are shown in Table 2 below.

容量維持率R100(%)=(Q100/Q1)×100
容量維持率R200(%)=(Q200/Q1)×100
Capacity maintenance rate R 100 (%) = (Q 100 / Q 1 ) × 100
Capacity maintenance rate R 200 (%) = (Q 200 / Q 1 ) × 100

Figure 2005093289
Figure 2005093289

この結果、比表面積X(m2/g)と酸素濃度Y(ppm)とがX2/Y≦1.3×10-5の条件を満たすアルカリ蓄電池用水素吸蔵合金A〜Dを用いた実施例1〜4の各アルカリ蓄電池は、X2/Y≦1.3×10-5の条件を満たさないアルカリ蓄電池用水素吸蔵合金E,Fを用いた比較例1,2の各アルカリ蓄電池に比べて、200サイクル目の容量維持率R200が大きく向上していた。 As a result, implementation using the hydrogen storage alloys A to D for alkaline storage batteries in which the specific surface area X (m 2 / g) and the oxygen concentration Y (ppm) satisfy the condition of X 2 /Y≦1.3×10 −5. Each alkaline storage battery of Examples 1-4 is compared with each alkaline storage battery of Comparative Examples 1 and 2 using hydrogen storage alloys E and F for alkaline storage batteries that do not satisfy the condition of X 2 /Y≦1.3×10 −5. Thus, the capacity maintenance ratio R 200 at the 200th cycle was greatly improved.

この発明の実施例1〜4及び比較例1,2において作製したアルカリ蓄電池の概略断面図である。It is a schematic sectional drawing of the alkaline storage battery produced in Examples 1-4 and Comparative Examples 1 and 2 of this invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池缶
5 正極リード
6 正極蓋
7 負極リード
8 絶縁パッキン
9 正極外部端子
10 コイルスプリング
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery can 5 Positive electrode lead 6 Positive electrode lid 7 Negative electrode lead 8 Insulation packing 9 Positive electrode external terminal 10 Coil spring

Claims (2)

アルカリ蓄電池の負極に用いるアルカリ蓄電池用水素吸蔵合金であって、少なくとも希土類元素とマグネシウムとニッケルとアルミニウムとを含み、Cu−Kα線をX線源とするX線回折測定において2θ=31°〜33°の範囲に現れる最強ピーク強度(I)と、2θ=40°〜44°の範囲に現れる最強ピーク強度(I)との強度比(I/I)が0.1以上である水素吸蔵合金粉末の表面に酸化物又は水酸化物の層が形成されると共に、この水素吸蔵合金粉末の比表面積をX(m2/g)、酸素濃度をY(ppm)とした場合に、X2/Y≦1.3×10-5の条件を満たすことを特徴とするアルカリ蓄電池用水素吸蔵合金。 A hydrogen storage alloy for an alkaline storage battery used for a negative electrode of an alkaline storage battery, comprising at least a rare earth element, magnesium, nickel, and aluminum, and 2θ = 31 ° to 33 in an X-ray diffraction measurement using a Cu—Kα ray as an X-ray source. The intensity ratio (I A / I B ) between the strongest peak intensity (I A ) appearing in the range of ° and the strongest peak intensity (I B ) appearing in the range of 2θ = 40 ° to 44 ° is 0.1 or more. When an oxide or hydroxide layer is formed on the surface of the hydrogen storage alloy powder, the specific surface area of the hydrogen storage alloy powder is X (m 2 / g), and the oxygen concentration is Y (ppm). A hydrogen storage alloy for alkaline storage batteries characterized by satisfying the condition of X 2 /Y≦1.3×10 −5 . 正極と、水素吸蔵合金を用いた負極と、アルカリ電解液とを備えたアルカリ蓄電池において、負極の水素吸蔵合金として、請求項1に記載したアルカリ蓄電池用水素吸蔵合金を用いたことを特徴とするアルカリ蓄電池。
An alkaline storage battery comprising a positive electrode, a negative electrode using a hydrogen storage alloy, and an alkaline electrolyte, wherein the hydrogen storage alloy for an alkaline storage battery according to claim 1 is used as the hydrogen storage alloy of the negative electrode. Alkaline storage battery.
JP2003326522A 2003-09-18 2003-09-18 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery Expired - Lifetime JP4420641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326522A JP4420641B2 (en) 2003-09-18 2003-09-18 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326522A JP4420641B2 (en) 2003-09-18 2003-09-18 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2005093289A true JP2005093289A (en) 2005-04-07
JP4420641B2 JP4420641B2 (en) 2010-02-24

Family

ID=34456693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326522A Expired - Lifetime JP4420641B2 (en) 2003-09-18 2003-09-18 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4420641B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196092A (en) * 2009-02-24 2010-09-09 Sanyo Electric Co Ltd Hydrogen storage alloy, and alkaline storage battery provided with the alloy
JP2016012443A (en) * 2014-06-27 2016-01-21 Fdk株式会社 Nickel-hydrogen secondary battery
WO2020012809A1 (en) * 2018-07-11 2020-01-16 株式会社豊田自動織機 Nickel metal hydride battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196092A (en) * 2009-02-24 2010-09-09 Sanyo Electric Co Ltd Hydrogen storage alloy, and alkaline storage battery provided with the alloy
JP2016012443A (en) * 2014-06-27 2016-01-21 Fdk株式会社 Nickel-hydrogen secondary battery
CN106463786A (en) * 2014-06-27 2017-02-22 Fdk株式会社 Nickel hydrogen secondary battery
US10693194B2 (en) 2014-06-27 2020-06-23 Fdk Corporation Nickel hydrogen secondary battery
WO2020012809A1 (en) * 2018-07-11 2020-01-16 株式会社豊田自動織機 Nickel metal hydride battery

Also Published As

Publication number Publication date
JP4420641B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP5334426B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2004221057A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
US20050175896A1 (en) Hydrogen-absorbing alloy for alkaline storage batteries, alkaline storage battery, and method of manufacturing alkaline storage battery
JP4958411B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP5512176B2 (en) Alkaline storage battery and alkaline storage battery system
JP5252920B2 (en) Alkaline storage battery
JP5354970B2 (en) Hydrogen storage alloy and alkaline storage battery
JP5219338B2 (en) Method for producing alkaline storage battery
JP2006228536A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP4420641B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4989033B2 (en) Hydrogen storage alloys and nickel / hydrogen storage batteries for alkaline storage batteries
JP4342196B2 (en) Alkaline storage battery
JP4290023B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP4663275B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP2007254782A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2006236692A (en) Nickel hydrogen storage battery
JP4573609B2 (en) Alkaline storage battery
JP2006278189A (en) Hydrogen storage alloy for alkaline storage battery and nickel hydrogen battery
US20060078794A1 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4420641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

EXPY Cancellation because of completion of term