JP2010080171A - Alkaline secondary battery - Google Patents

Alkaline secondary battery Download PDF

Info

Publication number
JP2010080171A
JP2010080171A JP2008245552A JP2008245552A JP2010080171A JP 2010080171 A JP2010080171 A JP 2010080171A JP 2008245552 A JP2008245552 A JP 2008245552A JP 2008245552 A JP2008245552 A JP 2008245552A JP 2010080171 A JP2010080171 A JP 2010080171A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
secondary battery
rare earth
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008245552A
Other languages
Japanese (ja)
Inventor
Takahiro Endo
賢大 遠藤
Masaru Kihara
勝 木原
Akira Saguchi
明 佐口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008245552A priority Critical patent/JP2010080171A/en
Publication of JP2010080171A publication Critical patent/JP2010080171A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline secondary battery equipped with an anode containing a rare-earth Mg-Ni-based hydrogen storage alloy, suitable for heightened capacity, and with improved cycle characteristics. <P>SOLUTION: The alkaline secondary battery containing particles (14) of a hydrogen storage alloy in an anode (4), the hydrogen storage alloy contains a component expressed in general formula:M<SB>1-β</SB>Mg<SB>β</SB>Ni<SB>γ-δ-ε</SB>Zn<SB>δ</SB>T<SB>ε</SB>. In the formula, M is one or two or more elements selected from a group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr, and Hf, and at least expresses an element containing Sm. Subscripts β, γ, δ, ε express numbers satisfying the followings: 0.05≤β≤0.15, 2.8≤γ≤4.0, 0.1≤δ≤1.0, 0≤ε≤0.25. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素吸蔵合金を含む負極を備えたアルカリ二次電池に関する。   The present invention relates to an alkaline secondary battery provided with a negative electrode containing a hydrogen storage alloy.

アルカリ二次電池には、水素吸蔵合金を含む負極を備えるものがある。負極は、例えば以下のようにして製造可能である。まず、水素吸蔵合金と、結着剤と、水と、必要に応じて導電剤を含むペーストを調製する。ペーストは例えばニッケルパンチングシートに塗着され、乾燥させられる。乾燥後、水素吸蔵合金等が付着したニッケルパンチングシートはロール圧延されてから裁断され、負極が作製される。   Some alkaline secondary batteries include a negative electrode containing a hydrogen storage alloy. The negative electrode can be manufactured, for example, as follows. First, a paste containing a hydrogen storage alloy, a binder, water, and a conductive agent as necessary is prepared. The paste is applied, for example, to a nickel punching sheet and dried. After drying, the nickel punching sheet to which a hydrogen storage alloy or the like is attached is rolled and then cut to produce a negative electrode.

この負極に用いる水素吸蔵合金としては、例えば、CaCu型結晶構造を主結晶相とするMmNi(AB)系水素吸蔵合金(Mmはミッシュメタル)のNiの一部を、Co、Mn又はAlなどの元素で置換したものがある。この水素吸蔵合金は、既に実用化されている。
しかしながら、上記水素吸蔵合金を用いて、近年の高容量化に対応しようとしても、当該水素吸蔵合金では水素吸蔵量が足りないことにより、正極容量と負極容量とのバランスが保てなくなり、電池が成り立たなくなっている。
Examples of the hydrogen storage alloy used in this negative electrode include, for example, a part of Ni of an MmNi 5 (AB 5 ) -based hydrogen storage alloy (Mm is a misch metal) having a CaCu 5 type crystal structure as a main crystal phase, Co, Mn or Some are substituted with elements such as Al. This hydrogen storage alloy has already been put into practical use.
However, even when trying to cope with the recent increase in capacity using the above hydrogen storage alloy, the hydrogen storage alloy has insufficient hydrogen storage capacity, so that the balance between the positive electrode capacity and the negative electrode capacity cannot be maintained, and the battery It is no longer true.

一方、上記したAB型系水素吸蔵合金よりも常温下において多量の水素を吸蔵する合金として、希土類−Mg−Ni系の水素吸蔵合金(希土類−Mg−Ni系合金)が知られている。この希土類−Mg−Ni系合金を用いたアルカリ二次電池においては、特に近年、サイクル寿命及び放電特性を向上させる取組みがなされている(特許文献1参照)。
特開2002-164045号公報
On the other hand, as an alloy capable of absorbing a large amount of hydrogen at room temperature under than AB 5 type hydrogen storage alloy described above, the rare earth -Mg-Ni-based hydrogen storage alloy (a rare earth -Mg-Ni alloy) have been known. In the alkaline secondary battery using the rare earth-Mg-Ni alloy, particularly, efforts have been recently made to improve cycle life and discharge characteristics (see Patent Document 1).
Japanese Patent Laid-Open No. 2002-164045

しかしながら、特許文献1が開示するアルカリ二次電池においても、十分な特性改善が達成されていないのが現状である。
本発明は上述した事情に基づいてなされ、その目的は、希土類-Mg-Ni系の水素吸蔵合金を含む負極を備えて高容量化に適し、且つ、サイクル特性が改善されたアルカリ二次電池を提供することにある。
However, even in the alkaline secondary battery disclosed in Patent Document 1, the current situation is that sufficient characteristic improvement has not been achieved.
The present invention has been made based on the above-described circumstances, and an object of the present invention is to provide an alkaline secondary battery that includes a negative electrode containing a rare earth-Mg-Ni-based hydrogen storage alloy and that is suitable for high capacity and has improved cycle characteristics. It is to provide.

上記した目的を達成すべく、本発明者等は、希土類-Mg-Ni系水素吸蔵合金の耐食性を確保する手段を鋭意検討した。本発明者等は、この検討過程で、希土類-Mg-Ni系水素吸蔵合金にSmとZnを含ませることにより、十分な耐食性が確保されることを見出し、本発明に想到した。
すなわち、本発明の一態様によれば、正極と、水素吸蔵合金を含む負極と、アルカリ電解液とを備えたアルカリ二次電池において、前記水素吸蔵合金の組成は、一般式:
M1−βMgβNiγ−δ−εZnδTε
(ただし、式中、Mは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる1種又は2種以上の元素であって、少なくともSmを含む1種又は2種以上の元素を表し、Tは、Al,V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、添字β,γ,δ,εは、それぞれ0.05≦β≦0.15,2.8≦γ≦4.0,0.1≦δ≦1.0,0≦ε≦0.25を満たす数を表す。)にて表されることを特徴とするアルカリ二次電池が提供される(請求項1)。
In order to achieve the above-mentioned object, the present inventors diligently studied means for ensuring the corrosion resistance of the rare earth-Mg-Ni-based hydrogen storage alloy. In the course of this study, the present inventors have found that sufficient corrosion resistance is ensured by including Sm and Zn in the rare earth-Mg—Ni-based hydrogen storage alloy, and have arrived at the present invention.
That is, according to one aspect of the present invention, in an alkaline secondary battery including a positive electrode, a negative electrode including a hydrogen storage alloy, and an alkaline electrolyte, the composition of the hydrogen storage alloy is represented by the general formula:
M 1-β Mg β Ni γ-δ-ε Zn δ T ε
(Wherein, M is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr And one or more elements selected from the group consisting of Hf and at least one element including Sm, and T is Al, V, Nb, Ta, Cr, Mo, Represents at least one element selected from the group consisting of Mn, Fe, Co, Ga, Sn, In, Cu, Si, P and B, and the subscripts β, γ, δ and ε are 0.05 ≦ β ≦ 0.15, 2.8 ≦ γ ≦ 4.0, 0.1 ≦ δ ≦ 1.0, and 0 ≦ ε ≦ 0.25.) An alkaline secondary battery is provided.

好ましくは、前記水素吸蔵合金は、前記Mとして、SmとともにLa及びCeを少なくとも含み、前記Mで表される元素の合計原子数に占める、LaとCeの合計原子数の割合が40%以上であり且つCeの原子数の割合が25%以下である(請求項2)。   Preferably, the hydrogen storage alloy contains at least La and Ce together with Sm as the M, and the ratio of the total number of atoms of La and Ce in the total number of atoms of the element represented by M is 40% or more. And the ratio of the number of Ce atoms is 25% or less (claim 2).

本発明の請求項1のアルカリ二次電池においては、負極が、Sm及びZnを必須元素として含む所定の組成を有する希土類-Mg-Ni系水素吸蔵合金を含んでいる。この希土類-Mg-Ni系水素吸蔵合金は常温下での水素吸蔵量が多いことから、このアルカリ二次電池は、高容量化に適している。また、この希土類-Mg-Ni系水素吸蔵合金は優れた耐食性を有することから、このアルカリ二次電池はサイクル特性において優れている。   In the alkaline secondary battery according to claim 1 of the present invention, the negative electrode includes a rare earth-Mg—Ni-based hydrogen storage alloy having a predetermined composition containing Sm and Zn as essential elements. Since this rare earth-Mg-Ni hydrogen storage alloy has a large amount of hydrogen storage at room temperature, this alkaline secondary battery is suitable for high capacity. In addition, since this rare earth-Mg—Ni-based hydrogen storage alloy has excellent corrosion resistance, this alkaline secondary battery is excellent in cycle characteristics.

請求項2のアルカリ二次電池においては、希土類−Mg−Ni系合金がLa量が多いことで、希土類−Mg−Ni系合金の耐腐食性及び耐酸化性が向上し、サイクル特性が向上する。また、希土類−Mg−Ni系合金がCeを含有することで、アルカリ二次電池の放電特性が向上する。   In the alkaline secondary battery according to claim 2, the rare earth-Mg-Ni alloy has a large amount of La, whereby the corrosion resistance and oxidation resistance of the rare earth-Mg-Ni alloy are improved, and the cycle characteristics are improved. . Moreover, when the rare earth-Mg-Ni alloy contains Ce, the discharge characteristics of the alkaline secondary battery are improved.

図1は、本発明の一実施形態のアルカリ二次電池として、円筒形ニッケル水素二次電池を示す。
ニッケル水素二次電池は、有底円筒形状の導電性を有する容器(外装缶)1を備え、容器1内には、図示しないアルカリ電解液とともに、電極群2が収容されている。電極群2は、それぞれ帯状の正極3、負極4及びセパレータ5を渦巻き状に巻回して形成されている。平面(ニッケル水素二次電池の横断面)でみて、正極3、負極4及びセパレータ5は渦巻き形状をそれぞれ有し、セパレータ5を挟んで、正極3と負極4とが重ね合わされている。
FIG. 1 shows a cylindrical nickel-hydrogen secondary battery as an alkaline secondary battery according to an embodiment of the present invention.
The nickel-hydrogen secondary battery includes a bottomed cylindrical conductive container (exterior can) 1, and an electrode group 2 is accommodated in the container 1 together with an alkaline electrolyte (not shown). The electrode group 2 is formed by winding a belt-like positive electrode 3, a negative electrode 4, and a separator 5 in a spiral shape. When viewed in a plane (transverse section of the nickel-hydrogen secondary battery), the positive electrode 3, the negative electrode 4, and the separator 5 each have a spiral shape, and the positive electrode 3 and the negative electrode 4 are overlapped with the separator 5 interposed therebetween.

電極群2の最外周は、負極4の一部(最外周部)によって形成され、負極4の最外周部が容器1の内周面と接触して容器1と負極4とが電気的に接続されている。
容器1の開口端には、円形の封口板6が配置され、封口板6は中央にガス抜き孔7を有する。封口板6の外周縁と容器1の開口端縁との間には、リング状の絶縁性ガスケット8が配置されている。容器1の開口端縁を径方向内側に縮径するかしめ加工によって、容器1の開口端に絶縁性ガスケット8を介して封口板6が気密に固定されている。
The outermost periphery of the electrode group 2 is formed by a part of the negative electrode 4 (outermost peripheral part), and the outermost peripheral part of the negative electrode 4 is in contact with the inner peripheral surface of the container 1 so that the container 1 and the negative electrode 4 are electrically connected. Has been.
A circular sealing plate 6 is disposed at the opening end of the container 1, and the sealing plate 6 has a gas vent hole 7 in the center. A ring-shaped insulating gasket 8 is disposed between the outer peripheral edge of the sealing plate 6 and the opening edge of the container 1. The sealing plate 6 is airtightly fixed to the opening end of the container 1 via the insulating gasket 8 by caulking processing in which the opening edge of the container 1 is reduced radially inward.

電極群2と封口板6との間には正極リード9が配置されている。正極リード9の一端は電極群2中の正極3に接続され、正極リード9の他端は封口板6の内面に接続されている。封口板6の外面上には、ガス抜き孔7を閉塞するようにゴム製の弁体10が配置され、更に、弁体10を囲むようにフランジ付きの円筒形状の正極端子11が取り付けられている。   A positive electrode lead 9 is disposed between the electrode group 2 and the sealing plate 6. One end of the positive electrode lead 9 is connected to the positive electrode 3 in the electrode group 2, and the other end of the positive electrode lead 9 is connected to the inner surface of the sealing plate 6. A rubber valve body 10 is disposed on the outer surface of the sealing plate 6 so as to close the gas vent hole 7, and a flanged cylindrical positive terminal 11 is attached so as to surround the valve body 10. Yes.

また、容器1の開口端縁上には、絶縁材料からなる環状の押さえ板12が配置され、正極端子11の円筒部は、押さえ板12の中央孔を貫通して突出している。押さえ板12の外周部は、外装チューブ13によって覆われ、外装チューブ13は、容器1の外周面及び容器1の他端部の外周縁も被覆している。
正極3は、導電性を有する正極基板と、正極基板に保持された正極合剤とから構成されている。正極基板は、多孔質の金属体であり、このような正極基板として、例えば、ニッケルめっきによって作製された網状、スポンジ状、繊維状、若しくはフエルト状の金属体を用いることができる。
An annular pressing plate 12 made of an insulating material is disposed on the opening edge of the container 1, and the cylindrical portion of the positive electrode terminal 11 projects through the central hole of the pressing plate 12. The outer peripheral portion of the pressing plate 12 is covered with the outer tube 13, and the outer tube 13 also covers the outer peripheral surface of the container 1 and the outer peripheral edge of the other end portion of the container 1.
The positive electrode 3 includes a positive electrode substrate having conductivity and a positive electrode mixture held on the positive electrode substrate. The positive electrode substrate is a porous metal body, and as such a positive electrode substrate, for example, a net-like, sponge-like, fibrous, or felt-like metal body produced by nickel plating can be used.

正極合剤は、正極活物質としてのニッケル酸化物(水酸化ニッケル)を主成分とする粉末(水酸化ニッケル粉末)と、必要に応じて導電剤と、結着剤とを含む。
水酸化ニッケル粉末としては、ニッケルの平均価数が2価よりも大きく且つ各粒子の表面の少なくとも一部若しくは全部がコバルト化合物、例えばオキシ水酸化コバルト(CoOOH)で被覆されている粉末を用いるのが好ましい。また、水酸化ニッケル粉末は、コバルト及び亜鉛が固溶していてもよい。
The positive electrode mixture includes a powder (nickel hydroxide powder) mainly composed of nickel oxide (nickel hydroxide) as a positive electrode active material, and a conductive agent and a binder as necessary.
As the nickel hydroxide powder, a powder in which the average valence of nickel is larger than divalent and at least part or all of the surface of each particle is coated with a cobalt compound, for example, cobalt oxyhydroxide (CoOOH) is used. Is preferred. Moreover, cobalt hydroxide and zinc may be dissolved in the nickel hydroxide powder.

正極合剤の導電剤としては、例えばコバルト酸化物(CoO)、コバルト水酸化物(Co(OH))などのコバルト化合物や金属コバルトから選択された1種又は2種以上の粉末を用いることができる。なお、水酸化ニッケル粉末の粒子の表面がコバルト化合物で被覆されている場合、この被覆のコバルト化合物も導電剤として機能し、正極合剤は導電剤の粉末を含んでいなくてもよい。つまり、導電剤の形態は、粉末又は被覆のいずれであってもよく、双方であってもよい。 As the conductive agent of the positive electrode mixture, for example, one or more powders selected from cobalt compounds such as cobalt oxide (CoO) and cobalt hydroxide (Co (OH) 2 ) and metallic cobalt are used. Can do. In addition, when the surface of the nickel hydroxide powder particles is coated with a cobalt compound, the coated cobalt compound also functions as a conductive agent, and the positive electrode mixture may not include the conductive agent powder. That is, the form of the conductive agent may be either powder or coating, or both.

正極合剤の結着剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、PTFE(ポリテトラフルオロエチレン)ディスパージョン、HPC(ヒドロキシプロピルセルロース)ディスパージョンなどを用いることができる。
正極3は、例えば以下のようにして製造することができる。
まず、水酸化ニッケル粉末と、結着剤と、水と、必要に応じて導電剤とを含むペーストを調製する。ペーストは例えばスポンジ状のニッケル製金属体に充填され、乾燥させられる。乾燥後、水酸化ニッケル粉末等が充填された金属体は、ロール圧延されてから裁断され、正極3が作製される。
As the binder of the positive electrode mixture, for example, carboxymethylcellulose, methylcellulose, PTFE (polytetrafluoroethylene) dispersion, HPC (hydroxypropylcellulose) dispersion, and the like can be used.
The positive electrode 3 can be manufactured, for example, as follows.
First, a paste containing nickel hydroxide powder, a binder, water, and a conductive agent as necessary is prepared. The paste is filled, for example, in a sponge-like nickel metal body and dried. After drying, the metal body filled with nickel hydroxide powder or the like is roll-rolled and then cut to produce the positive electrode 3.

負極4は、帯状をなす導電性の負極基板(芯体)を有し、この負極基板に負極合剤が保持されている。
負極基板は、貫通孔が分布されたシート状の金属材からなり、例えば、ニッケルめっきされた鉄製のパンチングメタルを用いることができる。負極合剤は、負極基板の貫通孔内に充填されるとともに、負極基板の両面上に層状にして保持される。
The negative electrode 4 has a conductive negative electrode substrate (core body) having a strip shape, and a negative electrode mixture is held on the negative electrode substrate.
The negative electrode substrate is made of a sheet-like metal material in which through holes are distributed. For example, nickel-plated iron punching metal can be used. The negative electrode mixture is filled in the through holes of the negative electrode substrate and is held in layers on both surfaces of the negative electrode substrate.

負極合剤は、図1中円内に概略的に示したけれども、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子14と、必要に応じて例えばカーボン等の導電助剤(図示せず)と、これら水素吸蔵合金及び導電助剤を負極基板に結着する結着剤16とからなる。結着剤16としては親水性若しくは疎水性のポリマー等を用いることができ、導電助剤としては、カーボンブラックや黒鉛を用いることができる。なお、活物質が水素の場合、負極容量は水素吸蔵合金量により規定されるので、本発明では、水素吸蔵合金のことを負極活物質ともいう。また、負極4のことを水素吸蔵合金電極ともいう。   Although the negative electrode mixture is schematically shown in a circle in FIG. 1, the hydrogen storage alloy particles 14 capable of occluding and releasing hydrogen as a negative electrode active material, and a conductive auxiliary agent such as carbon (see FIG. And a binder 16 that binds these hydrogen storage alloy and conductive additive to the negative electrode substrate. A hydrophilic or hydrophobic polymer or the like can be used as the binder 16, and carbon black or graphite can be used as the conductive assistant. In the case where the active material is hydrogen, the negative electrode capacity is defined by the amount of the hydrogen storage alloy. Therefore, in the present invention, the hydrogen storage alloy is also referred to as a negative electrode active material. The negative electrode 4 is also referred to as a hydrogen storage alloy electrode.

この電池の水素吸蔵合金粒子14における水素吸蔵合金の組成は、一般式:
M1−βMgβNiγ−δ−εZnδTε ・・・(I)
で表される。
ただし、一般式(I)中、Mは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる1種又は2種以上の元素であって、少なくともSmを含む1種又は2種以上の元素を表し、Tは、Al,V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、添字β,γ,δ,εは、それぞれ0.05≦β≦0.15,2.8≦γ≦4.0,0.1≦δ≦1.0,0≦ε≦0.25を満たす数を表す。
The composition of the hydrogen storage alloy in the hydrogen storage alloy particles 14 of this battery has the general formula:
M 1-β Mg β Ni γ-δ-ε Zn δ T ε (I)
It is represented by
However, in general formula (I), M is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, One or more elements selected from the group consisting of Ti, Zr, and Hf, and at least one element including Sm, and T represents Al, V, Nb, Ta, Cr , Mo, Mn, Fe, Co, Ga, Sn, In, Cu, Si, P and B represent at least one element selected from the group consisting of subscripts β, γ, δ, and ε, respectively, 0.05 ≦ β ≦ 0.15, 2.8 ≦ γ ≦ 4.0, 0.1 ≦ δ ≦ 1.0, 0 ≦ ε ≦ 0.25.

一般式(I)で示される組成の水素吸蔵合金の結晶構造は、主たる結晶構造がCaCu型ではなく、AB型構造とAB型構造とを合わせた超格子構造であり、CeNi型であるか若しくはCeNi型に類似している。CeNi型に類似する結晶構造には、AB3.8型(CeCo19型若しくはPrCo19型)やAB3.0型(PuNi型)等が含まれる。
負極4は、例えば以下のようにして製造することができる。
The crystal structure of the hydrogen storage alloy having a composition represented by the general formula (I), the main crystal structure is not a 5-inch CaCu, a superlattice structure obtained by combining the AB 5 type structure and AB 2 type structure, Ce 2 Ni It is type 7 or similar to Ce 2 Ni type 7 . Crystal structures similar to Ce 2 Ni 7 type include AB 3.8 type (Ce 5 Co 19 type or Pr 5 Co 19 type), AB 3.0 type (PuNi 3 type), and the like.
The negative electrode 4 can be manufactured, for example, as follows.

まず、水素吸蔵合金粒子14、結着剤16、必要に応じて導電剤、及び、水を混練してペースト(負極用)を調製する。ペーストは負極基板に塗着され、乾燥させられる。乾燥後、水素吸蔵合金粒子14等が付着した負極基板はロール圧延及び裁断され、これにより負極4が作製される。
水素吸蔵合金粒子14は、例えば以下のようにして得られる。
First, a paste (for negative electrode) is prepared by kneading the hydrogen storage alloy particles 14, the binder 16, and, if necessary, a conductive agent and water. The paste is applied to the negative electrode substrate and dried. After drying, the negative electrode substrate to which the hydrogen storage alloy particles 14 and the like are attached is rolled and cut, whereby the negative electrode 4 is produced.
The hydrogen storage alloy particles 14 are obtained, for example, as follows.

まず、所定の組成となるよう金属原材料を秤量して混合し、この混合物を例えば高周波溶解炉で溶解してインゴットにする。得られたインゴットに、900〜1200℃の温度の不活性ガス雰囲気下にて5〜24時間加熱する熱処理を施し、インゴットの金属組織をCeNi型若しくはこれに類似した結晶構造にする。この後、インゴットを粉砕し、篩分けにより所望粒径に分級して、水素吸蔵合金粒子14が得られる。 First, metal raw materials are weighed and mixed so as to have a predetermined composition, and this mixture is melted in, for example, a high-frequency melting furnace to form an ingot. The obtained ingot is subjected to heat treatment in an inert gas atmosphere at a temperature of 900 to 1200 ° C. for 5 to 24 hours, so that the metal structure of the ingot has a Ce 2 Ni 7 type or a similar crystal structure. Thereafter, the ingot is pulverized and classified to a desired particle size by sieving to obtain hydrogen storage alloy particles 14.

上述した一実施形態のニッケル水素二次電池は、負極4が、Sm及びZnを必須元素として含む、一般式(I)の組成を有する希土類-Mg-Ni系水素吸蔵合金を含んでいる。この希土類-Mg-Ni系水素吸蔵合金は常温下での水素吸蔵量が多いことから、このニッケル水素二次電池は、高容量化に適している。また、この希土類-Mg-Ni系水素吸蔵合金は優れた耐食性を有することから、このニッケル水素二次電池はサイクル特性において優れている。   In the nickel hydride secondary battery according to one embodiment described above, the negative electrode 4 includes a rare earth-Mg—Ni-based hydrogen storage alloy having a composition of the general formula (I), which contains Sm and Zn as essential elements. Since this rare earth-Mg—Ni-based hydrogen storage alloy has a large amount of hydrogen storage at room temperature, this nickel-hydrogen secondary battery is suitable for increasing the capacity. Further, since this rare earth-Mg—Ni-based hydrogen storage alloy has excellent corrosion resistance, this nickel-hydrogen secondary battery is excellent in cycle characteristics.

理由は以下の通りである。
従来技術のアルカリ二次電池において使用されていた希土類−Mg−Ni系合金もCeNi型若しくはそれに類似する結晶構造を有する。しかしながら、従来技術のアルカリ二次電池では、希土類−Mg−Ni系合金の耐食性が低いために、充放電サイクルの進行に伴い、希土類−Mg−Ni系合金の結晶性が低下した。これにより、希土類−Mg−Ni系合金の水素吸蔵能が低下し、アルカリ二次電池のサイクル特性が低下していた。
The reason is as follows.
Rare earth-Mg-Ni alloys used in prior art alkaline secondary batteries also have a Ce 2 Ni 7 type or similar crystal structure. However, in the alkaline secondary battery of the prior art, the corrosion resistance of the rare earth-Mg-Ni alloy is low, and as the charge / discharge cycle progresses, the crystallinity of the rare earth-Mg-Ni alloy decreases. As a result, the hydrogen storage capacity of the rare earth-Mg-Ni alloy was lowered, and the cycle characteristics of the alkaline secondary battery were lowered.

特に、従来技術の希土類−Mg−Ni系合金が、原材料費が安価な希土類元素La及びCeを多く含有する場合、これら元素はサイクル特性の顕著な低下を招いた。
これに対し、本発明者らは、一般式(I)で示される組成の希土類−Mg−Ni系合金が、Smを含有することにより、充放電サイクルの進行に伴う結晶性の低下が抑制されることを見出した。このため、本実施形態のニッケル水素二次電池は、優れたサイクル特性を有する。
In particular, when the rare earth-Mg-Ni alloy of the prior art contains a large amount of rare earth elements La and Ce whose raw material costs are low, these elements cause a significant decrease in cycle characteristics.
On the other hand, the inventors of the present invention have suppressed the decrease in crystallinity associated with the progress of the charge / discharge cycle because the rare earth-Mg-Ni alloy having the composition represented by the general formula (I) contains Sm. I found out. For this reason, the nickel-hydrogen secondary battery of this embodiment has excellent cycle characteristics.

一方、従来技術の希土類-Mg-Ni系水素合金において、Alを含有することが好ましいことが知られていた。Alを含有することで希土類-Mg-Ni系水素合金の結晶構造の安定化や、耐腐食性及び耐酸化性の改善が図られるからである。
しかしながら、希土類-Mg-Ni系水素合金において、Alが母相に固溶できる量は少なく、特にMで表される元素としてLaが多量に含有されている場合は、固溶できるAlの量は更に減少する。その為、Alが母相に固溶しきれず、Alを主体とする析出物や、Mgを主体とする析出物が生じることがあった。これらの析出物は、程度によるが、希土類−Mg−Ni系合金の水素吸蔵能の低下や、耐腐食性及び耐酸化性の低下を招くため、アルカリ二次電池のサイクル特性(寿命特性)は低下する。このため、従来の希土類−Mg−Ni系合金では、Alの含有量を多くする場合、Laの含有量を減らさなければならなかった。
On the other hand, it has been known that the rare earth-Mg-Ni hydrogen alloy of the prior art preferably contains Al. This is because the inclusion of Al can stabilize the crystal structure of the rare earth-Mg-Ni-based hydrogen alloy and improve the corrosion resistance and oxidation resistance.
However, in rare earth-Mg-Ni-based hydrogen alloys, the amount of Al that can be dissolved in the matrix phase is small, especially when La is contained in a large amount as an element represented by M, the amount of Al that can be dissolved is Further decrease. For this reason, Al cannot be completely dissolved in the matrix, and precipitates mainly composed of Al and precipitates mainly composed of Mg may be generated. Depending on the degree, these precipitates cause a decrease in the hydrogen storage capacity of rare earth-Mg-Ni alloys and a decrease in corrosion resistance and oxidation resistance. Therefore, the cycle characteristics (life characteristics) of alkaline secondary batteries are descend. For this reason, in the conventional rare earth-Mg-Ni alloy, when the Al content is increased, the La content has to be reduced.

これに対し、本発明者らは、一般式(I)で示される組成の希土類−Mg−Ni系合金では、Znを含有することにより、結晶構造の安定化が図られるとともに、耐腐食性及び耐酸化性の改善が図られることを見出した。更に、Laの含有量にかかわらず、母相に固溶できるZnの量は多く、この希土類−Mg−Ni系合金は、ZnとLaを同時に多量に含むことができる。また、この希土類−Mg−Ni系合金は、結晶性を顕著に低下させるCeについても、ある程度含有することが可能である。   On the other hand, the inventors of the rare earth-Mg-Ni alloy having the composition represented by the general formula (I) can stabilize the crystal structure and contain corrosion resistance and corrosion resistance by containing Zn. It has been found that the oxidation resistance can be improved. Furthermore, regardless of the La content, the amount of Zn that can be dissolved in the matrix is large, and this rare earth-Mg-Ni alloy can contain a large amount of Zn and La simultaneously. Moreover, this rare earth-Mg-Ni alloy can also contain Ce to a certain extent that the crystallinity is remarkably lowered.

ここで、Znの含有量を示す添字δは0.1≦δ≦1.0の範囲に入っている必要がある。
δ>1.0の場合、希土類−Mg−Ni系合金の初期の水素吸蔵能が低下し、また、Znを主体とする析出物が生じ、アルカリ二次電池のサイクル特性が低下する。一方、δ<0.1の場合、上述した効果を十分得られない為、サイクル特性が低下する。好ましい添字δの範囲は、0.15≦δ≦0.60である。
Here, the subscript δ indicating the Zn content needs to be in the range of 0.1 ≦ δ ≦ 1.0.
When δ> 1.0, the initial hydrogen storage capacity of the rare earth-Mg—Ni-based alloy is decreased, and precipitates mainly composed of Zn are generated, so that the cycle characteristics of the alkaline secondary battery are deteriorated. On the other hand, when δ <0.1, the above-described effects cannot be obtained sufficiently, and the cycle characteristics are degraded. A preferable range of the subscript δ is 0.15 ≦ δ ≦ 0.60.

また、一般式(I)の組成の希土類−Mg−Ni系合金は、Mで表される元素としてSmを含有することを必須としているが、好ましくは、SmとともにLa及びCeを少なくとも含み、Mで表される元素の合計原子数に占める、LaとCeの合計原子数の割合は40%以上に設定され、且つ、Ceの原子数の割合は25%以下に設定される。この場合、La量が多いことで、希土類−Mg−Ni系合金の耐腐食性及び耐酸化性が向上し、Ceを含有することでアルカリ二次電池の放電特性が向上するからである。   Further, the rare earth-Mg-Ni alloy having the composition of the general formula (I) is required to contain Sm as an element represented by M, but preferably contains at least La and Ce together with Sm, The ratio of the total number of atoms of La and Ce to the total number of atoms represented by is set to 40% or more, and the ratio of the number of Ce atoms is set to 25% or less. In this case, because the amount of La is large, the corrosion resistance and oxidation resistance of the rare earth-Mg—Ni-based alloy is improved, and the discharge characteristics of the alkaline secondary battery are improved by containing Ce.

Mgの添字βは、0.05≦β≦0.15の範囲に入るように設定される。β>0.15の場合、アルカリ二次電池のサイクル特性が低下するからである。このサイクル特性の低下は、希土類−Mg−Ni系合金の水素吸蔵能の低下と、充放電サイクルに伴う微粉化の進行による。またβ<0.05の場合、吸蔵能が著しく減少し、電池としての機能が得られなくなる。好ましい添字βの範囲は、0.08≦β≦0.12である。   The subscript β of Mg is set to fall within the range of 0.05 ≦ β ≦ 0.15. This is because when β> 0.15, the cycle characteristics of the alkaline secondary battery deteriorate. This decrease in cycle characteristics is due to a decrease in the hydrogen storage capacity of the rare earth-Mg-Ni alloy and the progress of pulverization associated with the charge / discharge cycle. On the other hand, when β <0.05, the occlusion ability is remarkably reduced, and the battery function cannot be obtained. A preferable range of the subscript β is 0.08 ≦ β ≦ 0.12.

添字γは、2.8≦γ≦4.0の範囲に入るように設定される。一般式(I)において、添字γが小さくなりすぎると、水素吸蔵合金内における水素の吸蔵安定性が高くなるため、水素放出能が劣化し、また添字γが大きくなりすぎると、今度は、水素吸蔵合金における水素の吸蔵サイトが減少して、水素吸蔵能の劣化が起こりはじめるからである。好ましいγの範囲は、3.3≦γ≦3.7である。   The subscript γ is set to fall within the range of 2.8 ≦ γ ≦ 4.0. In the general formula (I), if the subscript γ is too small, the hydrogen storage stability in the hydrogen storage alloy is increased, so that the hydrogen releasing ability is deteriorated, and if the subscript γ is too large, this time, This is because the hydrogen storage sites in the storage alloy decrease and the hydrogen storage capacity begins to deteriorate. A preferable range of γ is 3.3 ≦ γ ≦ 3.7.

Tで表される元素の添字εは、0≦ε≦0.25の範囲に入るように設定される。添字εが大きくなりすぎると、希土類−Mg−Ni系合金は、その結晶構造が変化して水素の吸蔵・放出能を喪失しはじめる。また、合金の微粉化が進行することにより、耐食性が低下する。それ故、添字εは、0≦ε≦0.25を満たすように設定される。   The subscript ε of the element represented by T is set to fall within the range of 0 ≦ ε ≦ 0.25. If the subscript ε becomes too large, the rare earth-Mg—Ni alloy begins to lose its ability to absorb and release hydrogen due to a change in its crystal structure. In addition, the corrosion resistance decreases as the alloy becomes finer. Therefore, the subscript ε is set so as to satisfy 0 ≦ ε ≦ 0.25.

1.正極の製造
水酸化ニッケル粉末として、粉末表面の全部または一部がコバルト化合物で被覆されたものを用意した。この粉末100質量部に対して、濃度が40質量%のHPCディスバージョンを5質量部混合してペーストを調製し、このペーストを正極基板としての発泡ニッケルシートに塗着・充填した。乾操後、水酸化ニッケル粉末が付着した発泡ニッケルシートはロール圧延されてから裁断され、正極が得られた。
2.希土類−Mg−Ni系合金及び負極の製造
表1に示した実施例1〜7及び比較例1〜6の各組成になるように金属原料を秤量して混合し、各混合物を高周波溶解炉で溶解してインゴットを得た。これらのインゴットを、温度1000℃のアルゴン雰囲気下にて10時間加熱し、各インゴットにおける結晶構造をCeNi型構造若しくはその類似構造にした。この後、各インゴットを不活性雰囲気中で機械的に粉砕して篩分けし、表1の組成を有する希土類-Mg-Ni系合金粒子の粉末を得た。なお、得られた粉末は、レーザ回折・散乱式粒度分布測定装置を用いて測定した重量積分50%にあたる平均粒径が50μmであった。
1. Production of Positive Electrode As the nickel hydroxide powder, a powder whose surface was entirely or partially coated with a cobalt compound was prepared. A paste was prepared by mixing 5 parts by mass of an HPC dispersion having a concentration of 40% by mass with respect to 100 parts by mass of the powder, and this paste was applied to and filled in a foamed nickel sheet as a positive electrode substrate. After the drying operation, the foamed nickel sheet to which the nickel hydroxide powder was adhered was roll-rolled and then cut to obtain a positive electrode.
2. Production of Rare Earth-Mg-Ni Alloy and Negative Electrode Metal raw materials are weighed and mixed so as to have the compositions of Examples 1 to 7 and Comparative Examples 1 to 6 shown in Table 1, and each mixture is mixed in a high frequency melting furnace. It melt | dissolved and the ingot was obtained. These ingots were heated for 10 hours in an argon atmosphere at a temperature of 1000 ° C., and the crystal structure of each ingot was changed to a Ce 2 Ni 7 type structure or a similar structure. Thereafter, each ingot was mechanically pulverized in an inert atmosphere and sieved to obtain rare earth-Mg—Ni alloy particle powders having the compositions shown in Table 1. The obtained powder had an average particle size of 50 μm corresponding to 50% weight integral measured using a laser diffraction / scattering particle size distribution analyzer.

得られた希土類−Mg−Ni系合金の各粉末100質量部に対し、ポリアクリル酸ナトリウム0.5質量部、カルボキシメチルセルロース0.12質量部、PTFEディスバージョン(比重1.5、固形分60質量%)1.0質量部(固形分換算)、カーボンブラック1.0質量部、および水30質量部を添加して混練し、ペーストを調製した。
このペーストを負極基板としてのパンチングニッケルシートに塗布し、乾燥させた。乾燥後、希土類−Mg−Ni系合金の粉末が付着したパンチングニッケルシートは、更にロール圧延されてから裁断され、負極が得られた。
3.ニッケル水素二次電池の製造及び初期活性化
得られた正極と負極を、両者の間にポリプロピレン繊維製不織布から成る厚み0.15mm(目付量60g/m2)のセパレータを挟んだ状態で渦巻状に巻回し、電極群を作製した。
To 100 parts by mass of each powder of the obtained rare earth-Mg-Ni alloy, 0.5 parts by mass of sodium polyacrylate, 0.12 parts by mass of carboxymethyl cellulose, 1.0 part by mass of PTFE dispersion (specific gravity 1.5, solid content 60% by mass) ( Solid equivalent), 1.0 part by mass of carbon black, and 30 parts by mass of water were added and kneaded to prepare a paste.
This paste was applied to a punched nickel sheet as a negative electrode substrate and dried. After drying, the punched nickel sheet to which the rare earth-Mg-Ni alloy powder was adhered was further rolled and then cut to obtain a negative electrode.
3. Manufacture and initial activation of nickel-metal hydride secondary battery The obtained positive electrode and negative electrode were spirally formed with a 0.15 mm thick (60 g / m 2 basis weight) separator made of polypropylene fiber nonwoven fabric sandwiched between them. It wound and produced the electrode group.

有底円筒形状の外装缶に、上記電極群を収納し、同時に、7Nの水酸化カリウム水溶液と1Nの水酸化リチウム水溶液とから成るアルカリ電解液を注液した。この後、蓋板等で外装缶の開口を塞ぎ、定格容量が3000mAhのSCサイズの密閉円筒形ニッケル水素二次電池を組み立てた。
組み立てられた各ニッケル水素二次電池について、温度25°Cにおいて、0.1Cの充電電流で15時間の充電後、0.2Cの放電電流で終止電圧1.OVまで放電させる初期活性化処理を施した。
The above electrode group was housed in a bottomed cylindrical outer can, and at the same time, an alkaline electrolyte composed of a 7N potassium hydroxide aqueous solution and a 1N lithium hydroxide aqueous solution was injected. Thereafter, the opening of the outer can was closed with a cover plate or the like, and an SC-size sealed cylindrical nickel-metal hydride secondary battery with a rated capacity of 3000 mAh was assembled.
Each assembled nickel-metal hydride secondary battery was subjected to initial activation treatment at a temperature of 25 ° C, after charging for 15 hours with a charging current of 0.1 C, and then discharging to a final voltage of 1.OV with a discharging current of 0.2 C. .

4.希土類−Mg−Ni系合金及びニッケル水素二次電池の評価方法
(1)希土類−Mg−Ni系合金の水素吸蔵量
粉砕直後の希土類−Mg−Ni系合金の粉末を取り分けておき、この合金粉末のPCT特性を測定した。測定結果として、80℃雰囲気下で1.OMPa時の水素吸蔵量を表1に示す。
(2)サイクル特性
初期活性化処理が施された各ニッケル水素二次電池について、温度40℃において、10mAでのdV制御の充電、休止60分、3Cでの終止電圧0.8Vまでの放電を1サイクルとする充放電サイクルを300サイクル行った。このとき、1サイクル目及び300サイクル目の放電容量を測定し、1サイクル目の放電容量に対する300サイクル目の放電容量の比を求めた。この結果をサイクル特性として百分率にて表1に示す。この値が大きい電池ほどサイクル特性に優れている。
4). Method for evaluating rare earth-Mg-Ni alloy and nickel-metal hydride secondary battery (1) Hydrogen storage capacity of rare earth-Mg-Ni alloy The PCT characteristics of were measured. As a measurement result, Table 1 shows the amount of hydrogen occlusion at 1.OMPa in an 80 ° C. atmosphere.
(2) Cycle characteristics Each nickel metal hydride secondary battery that has been subjected to initial activation treatment is charged with dV control at 10 mA at a temperature of 40 ° C, 60 minutes of rest, and discharge to a final voltage of 0.8 V at 3C. 300 charge / discharge cycles were performed. At this time, the discharge capacities of the first cycle and the 300th cycle were measured, and the ratio of the discharge capacity of the 300th cycle to the discharge capacity of the first cycle was determined. The results are shown in Table 1 in terms of percentage as cycle characteristics. A battery having a larger value has better cycle characteristics.

(3)X線回折測定(合金劣化)
合金の劣化を調査するため、初期活性化処理直後の電池、及び、上記300サイクル後の電池よりそれぞれ取り出した合金のXRD測定が行われた。測定には株式会社リガク製(平行ビームX線回折装置)の装置が用られ、X線源:CuKα、管電圧:50kV、管電流:300mA、スキャンスピード:1°/min、試料の回転速度:60rpmの条件で測定が行われた。得られたプロファイルより、評価前後の変化が大きい33°付近の回折ピークについて、半値幅比(300サイクル後の半値幅/初期活性化処理直後の半値幅)を一例として表1に示す。この半値幅比が1に近いほど、結晶構造の安定性が高いことを示す。
(4)飽和磁化測定(合金劣化)
X線回折測定と同様、上記300サイクル後の電池から取り出した水素吸蔵合金について、VSM(試料振動型磁力計:理研電子社製、BHV-30H)を用いて、飽和磁化を測定した。この結果を合金の腐食量の指標として表1に示す。
(3) X-ray diffraction measurement (alloy degradation)
In order to investigate the deterioration of the alloy, XRD measurement was performed on the alloy taken out from the battery immediately after the initial activation treatment and the battery after 300 cycles. For measurement, a device manufactured by Rigaku Corporation (parallel beam X-ray diffractometer) is used. X-ray source: CuKα, tube voltage: 50 kV, tube current: 300 mA, scan speed: 1 ° / min, sample rotation speed: Measurements were made at 60 rpm. Table 1 shows an example of the half-width ratio (half-width after 300 cycles / half-width immediately after the initial activation process) for a diffraction peak near 33 ° where the change before and after the evaluation is large from the obtained profile. The closer the half-value width ratio is to 1, the higher the stability of the crystal structure.
(4) Saturation magnetization measurement (alloy degradation)
Similar to the X-ray diffraction measurement, the saturation magnetization of the hydrogen storage alloy taken out from the battery after 300 cycles was measured using a VSM (sample vibration type magnetometer: BHV-30H manufactured by Riken Denshi Co., Ltd.). The results are shown in Table 1 as an index of the corrosion amount of the alloy.

Figure 2010080171
Figure 2010080171

5.評価結果
表1から次のことが明らかである。
(1)実施例1についてみると、一般式(I)の組成を有する希土類−Mg−Ni系合金は、全体を通じて水素吸蔵量が多く、これを用いた電池はサイクル特性に優れている。また、実施例1では、全体を通じて半値幅の変化が最も小さく、300回の充放電サイクルを経ても、希土類−Mg−Ni系合金の結晶構造の変化が抑制されていることがわかる。
(2)実施例1と比べて、Mで表される元素の合計原子数に占める、LaとCeの合計原子数の割合が50%である希土類−Mg−Ni系合金を用いた実施例2では飽和磁化が小さく、合金の耐食性が向上している。
(3)Tで表される元素として所定量のAl、Mn、Cu又はSnを含む希土類−Mg−Ni系合金を用いた実施例3〜6でも、実施例1と同様に、電池が優れたサイクル特性を有し、また半値幅比もそれほど大きくなく、合金の結晶構造の変化が抑制されている。
(4)実施例1に比べてSmを多く含有する合金を用いた実施例7及びLaを多く含有する合金を用いた実施例8においても、実施例1と同様に、電池が優れたサイクル特性を有し、また半値幅比もそれほど大きくなく、合金の結晶構造の変化が抑制されている。
5). Evaluation results Table 1 clearly shows the following.
(1) As for Example 1, the rare earth-Mg-Ni alloy having the composition of the general formula (I) has a large amount of hydrogen storage throughout, and a battery using this rare earth has excellent cycle characteristics. Moreover, in Example 1, the change of a half value width is the smallest throughout, and it turns out that the change of the crystal structure of a rare earth-Mg-Ni type alloy is suppressed even after 300 charge / discharge cycles.
(2) Example 2 using a rare earth-Mg-Ni alloy in which the ratio of the total number of atoms of La and Ce in the total number of atoms of the element represented by M is 50% as compared with Example 1 The saturation magnetization is small and the corrosion resistance of the alloy is improved.
(3) In Examples 3 to 6 using rare earth-Mg-Ni alloys containing a predetermined amount of Al, Mn, Cu, or Sn as the element represented by T, the batteries were excellent as in Example 1. It has cycle characteristics and the half-width ratio is not so large, and changes in the crystal structure of the alloy are suppressed.
(4) In Example 7 using an alloy containing a large amount of Sm compared to Example 1 and Example 8 using an alloy containing a large amount of La, as in Example 1, the cycle characteristics of the battery were excellent. The half-width ratio is not so large, and the change in the crystal structure of the alloy is suppressed.

(5)一方、添字βが0.24でMg量が一般式(I)の組成よりも多い合金を用いた比較例1では、サイクル特性が大きく低下している。比較例1では、飽和磁化が大きいことから、合金の微粉化が進行し、耐食性が低下したと考えられる。なお、比較例1については、300サイクル後の合金粒度を実際に測定し、小粒径になっていることを確認した。
(6)添字βが0.03でMg量が一般式(I)の組成よりも少ない比較例2では、充放電サイクルの途中で、安全弁が作動してアルカリ電解液が漏出した。このため、比較例2については、充放電サイクルを中止した。アルカリ電解液が漏出したのは、合金の水素吸蔵能が喪失したためである。
(5) On the other hand, in Comparative Example 1 using an alloy with a subscript β of 0.24 and an Mg amount larger than the composition of the general formula (I), the cycle characteristics are greatly deteriorated. In Comparative Example 1, since the saturation magnetization is large, it is considered that the pulverization of the alloy has progressed and the corrosion resistance has decreased. In Comparative Example 1, the alloy particle size after 300 cycles was actually measured, and it was confirmed that the particle size was small.
(6) In Comparative Example 2 where the subscript β is 0.03 and the Mg amount is less than the composition of the general formula (I), the safety valve was activated during the charge / discharge cycle, and the alkaline electrolyte leaked out. For this reason, the charge / discharge cycle was stopped for Comparative Example 2. The alkaline electrolyte leaked because the hydrogen storage capacity of the alloy was lost.

(7)添字δが0.03でZn量が一般式(I)の組成よりも少ない比較例3では、初期の水素吸蔵能が低下し、且つ、サイクル特性が低下している。これは以下の理由による。
比較例3では、他の実施例及び比較例に比べて、300サイクル後の半値幅比が特に大きく、サイクル進行に伴い結晶構造の変化が顕著に生じていると考えられる。また、比較例3では、飽和磁化も大きいことから、合金の微粉化が進行して耐食性が低下し、腐食量が多くなったためと考えられる。
つまり、比較例3からは、Zn量が少ないことにより、サイクル進行に伴い結晶構造変化が顕著に生じ、合金の微粉化が進行して耐食性も顕著に低下することがわかる。
(8)添字δが1.50でZn量が一般式(I)の組成よりも多い比較例4でも、初期の水素吸蔵能が低下し、また、耐食性も低下している。これは、Zn量が多いことにより、Zn主体の析出物が生じているためである。比較例4については、粉砕直後の合金についてEPMA(電子線プローブマイクロアナライザ)により元素分布を分析し、Zn主体の析出物が生じていることを確認した。
(7) In Comparative Example 3 where the subscript δ is 0.03 and the Zn content is smaller than the composition of the general formula (I), the initial hydrogen storage capacity is lowered and the cycle characteristics are also lowered. This is due to the following reason.
In Comparative Example 3, the half-width ratio after 300 cycles is particularly large compared to the other Examples and Comparative Examples, and it is considered that the crystal structure changes significantly as the cycle progresses. Further, in Comparative Example 3, since the saturation magnetization is also large, it is considered that the pulverization of the alloy has progressed, the corrosion resistance is reduced, and the corrosion amount is increased.
That is, it can be seen from Comparative Example 3 that when the amount of Zn is small, the crystal structure changes significantly as the cycle progresses, and the pulverization of the alloy progresses, and the corrosion resistance is significantly reduced.
(8) Even in Comparative Example 4 where the subscript δ is 1.50 and the Zn content is larger than the composition of the general formula (I), the initial hydrogen storage capacity is lowered and the corrosion resistance is also lowered. This is because precipitates mainly composed of Zn are generated due to a large amount of Zn. For Comparative Example 4, the element distribution of the alloy immediately after pulverization was analyzed by EPMA (electron probe microanalyzer), and it was confirmed that Zn-based precipitates were generated.

(9)添字εが0.40でTとしてのAl量が一般式(I)の組成よりも多い比較例5では、電池のサイクル寿命が低下している。これは、固溶しきれないAlが析出することにより、合金の耐食性が低下するとともに、充放電サイクルの進行に伴い合金の微粉化が進行したためと考えられる。
(10)添字εが0.30でTとしてのFe量が一般式(I)の組成よりも多い比較例6でも、比較例5と同様に、電池のサイクル特性が大きく低下している。
(9) In Comparative Example 5 where the subscript ε is 0.40 and the amount of Al as T is larger than the composition of the general formula (I), the cycle life of the battery is reduced. This is presumably because the precipitation of Al that cannot be completely dissolved causes the corrosion resistance of the alloy to decrease, and the pulverization of the alloy proceeds with the progress of the charge / discharge cycle.
(10) In Comparative Example 6 in which the subscript ε is 0.30 and the amount of Fe as T is larger than the composition of the general formula (I), the cycle characteristics of the battery are greatly deteriorated as in Comparative Example 5.

本発明は上記した一実施形態及び実施例に限定されることはなく、種々変形が可能である。例えば、一実施形態では、アルカリ二次電池としてニッケル水素二次電池について説明したが、一般式(I)の組成の希土類−Mg−Ni系合金を用いていれば、ニッケル水素二次電池に限定されることはない。
また、アルカリ二次電池は、角形電池であってもよく、機械的な構造は格別限定されることはない。
The present invention is not limited to the above-described embodiment and examples, and various modifications can be made. For example, in one embodiment, a nickel hydride secondary battery has been described as an alkaline secondary battery. However, as long as a rare earth-Mg—Ni alloy having a composition of the general formula (I) is used, the battery is limited to a nickel hydride secondary battery. It will never be done.
The alkaline secondary battery may be a prismatic battery, and the mechanical structure is not particularly limited.

本発明の一実施形態に係るニッケル水素二次電池を示す部分切欠斜視図であり、円内に負極の一部を拡大して概略的に示した。1 is a partially cutaway perspective view showing a nickel metal hydride secondary battery according to an embodiment of the present invention, and schematically shows an enlarged part of a negative electrode in a circle.

符号の説明Explanation of symbols

4 負極
14 水素吸蔵合金粒子
4 Negative electrode 14 Hydrogen storage alloy particles

Claims (2)

正極と、水素吸蔵合金を含む負極と、アルカリ電解液とを備えたアルカリ二次電池において、
前記水素吸蔵合金の組成は、
一般式:
M1−βMgβNiγ−δ−εZnδTε
(ただし、式中、Mは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる1種又は2種以上の元素であって、少なくともSmを含む1種又は2種以上の元素を表し、Tは、Al,V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、添字β,γ,δ,εは、それぞれ0.05≦β≦0.15,2.8≦γ≦4.0,0.1≦δ≦1.0,0≦ε≦0.25を満たす数を表す。)
にて表される
ことを特徴とするアルカリ二次電池。
In an alkaline secondary battery comprising a positive electrode, a negative electrode containing a hydrogen storage alloy, and an alkaline electrolyte,
The composition of the hydrogen storage alloy is:
General formula:
M 1-β Mg β Ni γ-δ-ε Zn δ T ε
(Wherein, M is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr And one or more elements selected from the group consisting of Hf and at least one element including Sm, and T is Al, V, Nb, Ta, Cr, Mo, Represents at least one element selected from the group consisting of Mn, Fe, Co, Ga, Sn, In, Cu, Si, P and B, and the subscripts β, γ, δ and ε are 0.05 ≦ β ≦ 0.15, 2.8 ≦ γ ≦ 4.0, 0.1 ≦ δ ≦ 1.0, 0 ≦ ε ≦ 0.25.
An alkaline secondary battery represented by:
前記水素吸蔵合金は、前記Mとして、SmとともにLa及びCeを少なくとも含み、
前記Mで表される元素の合計原子数に占める、LaとCeの合計原子数の割合が40%以上であり且つCeの原子数の割合が25%以下である
ことを特徴とする請求項1に記載のアルカリ二次電池。
The hydrogen storage alloy includes, as M, at least La and Ce together with Sm,
The ratio of the total number of atoms of La and Ce in the total number of atoms of the element represented by M is 40% or more, and the ratio of the number of Ce atoms is 25% or less. The alkaline secondary battery described in 1.
JP2008245552A 2008-09-25 2008-09-25 Alkaline secondary battery Pending JP2010080171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245552A JP2010080171A (en) 2008-09-25 2008-09-25 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245552A JP2010080171A (en) 2008-09-25 2008-09-25 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JP2010080171A true JP2010080171A (en) 2010-04-08

Family

ID=42210377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245552A Pending JP2010080171A (en) 2008-09-25 2008-09-25 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2010080171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021241A (en) * 2009-07-16 2011-02-03 Sanyo Electric Co Ltd Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
CN102664242A (en) * 2012-05-17 2012-09-12 吉林卓尔科技股份有限公司 Nickel-zinc secondary seal cylindrical alkaline battery with shell as cathode and manufacturing method for nickel-zinc secondary seal cylindrical alkaline battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP2007169724A (en) * 2005-12-22 2007-07-05 Sanyo Electric Co Ltd Hydrogen occlusion alloy and alkaline secondary battery using the hydrogen occlusion alloy
JP2008071687A (en) * 2006-09-15 2008-03-27 Toshiba Corp Hydrogen storage alloy for battery, negative electrode using it, and nickel hydrogen secondary battery
JP2009059598A (en) * 2007-08-31 2009-03-19 Sanyo Electric Co Ltd Alkaline accumulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP2007169724A (en) * 2005-12-22 2007-07-05 Sanyo Electric Co Ltd Hydrogen occlusion alloy and alkaline secondary battery using the hydrogen occlusion alloy
JP2008071687A (en) * 2006-09-15 2008-03-27 Toshiba Corp Hydrogen storage alloy for battery, negative electrode using it, and nickel hydrogen secondary battery
JP2009059598A (en) * 2007-08-31 2009-03-19 Sanyo Electric Co Ltd Alkaline accumulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021241A (en) * 2009-07-16 2011-02-03 Sanyo Electric Co Ltd Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
CN102664242A (en) * 2012-05-17 2012-09-12 吉林卓尔科技股份有限公司 Nickel-zinc secondary seal cylindrical alkaline battery with shell as cathode and manufacturing method for nickel-zinc secondary seal cylindrical alkaline battery

Similar Documents

Publication Publication Date Title
JP4566025B2 (en) Alkaline storage battery
JP5196953B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP5512080B2 (en) Alkaline storage battery
JP5334426B2 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP4873914B2 (en) Alkaline storage battery
JP2007169724A (en) Hydrogen occlusion alloy and alkaline secondary battery using the hydrogen occlusion alloy
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JP4911561B2 (en) Alkaline storage battery
JP5121499B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
US20070071633A1 (en) Hydrogen storage alloy
US20090061317A1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP2009228096A (en) Hydrogen storage alloy
JP5436825B2 (en) Hydrogen storage alloy powder for alkaline storage battery, its production method and alkaline storage battery
JP5196805B2 (en) Alkaline storage battery
JP4849852B2 (en) Method for producing alkaline storage battery
JP2010080171A (en) Alkaline secondary battery
JP2005226084A (en) Hydrogen storage alloy for alkaline storage battery, alkali storage battery, and method for manufacturing alkali storage battery
JP2010231940A (en) Alkaline secondary battery
JP2007092115A (en) Hydrogen storage alloy, and nickel-hydrogen storage battery using this alloy
JP2017021896A (en) Method for producing hydrogen storage alloy powder and nickel hydrogen secondary battery
JP5183077B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP4511298B2 (en) Nickel metal hydride storage battery
JP2020167030A (en) Negative electrode for nickel-hydrogen secondary battery, manufacturing method of the negative electrode, and nickel-hydrogen secondary battery and hydrogen storage alloy powder using the negative electrode
JP2012074299A (en) Nickel-hydrogen secondary battery
JP4121438B2 (en) Negative electrode for nickel-metal hydride secondary battery and sealed nickel-metal hydride secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131211