JP4511298B2 - Nickel metal hydride storage battery - Google Patents

Nickel metal hydride storage battery Download PDF

Info

Publication number
JP4511298B2
JP4511298B2 JP2004281578A JP2004281578A JP4511298B2 JP 4511298 B2 JP4511298 B2 JP 4511298B2 JP 2004281578 A JP2004281578 A JP 2004281578A JP 2004281578 A JP2004281578 A JP 2004281578A JP 4511298 B2 JP4511298 B2 JP 4511298B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
nickel
storage alloy
powder
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004281578A
Other languages
Japanese (ja)
Other versions
JP2006100002A (en
Inventor
達也 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004281578A priority Critical patent/JP4511298B2/en
Publication of JP2006100002A publication Critical patent/JP2006100002A/en
Application granted granted Critical
Publication of JP4511298B2 publication Critical patent/JP4511298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はニッケル水素蓄電池に関する。   The present invention relates to a nickel metal hydride storage battery.

この種のニッケル水素蓄電池は、例えば特許文献1や特許文献2に開示されている。特許文献1の電池に適用されたニッケル電極は、正極活物質としての水酸化ニッケル粉末及び導電剤としてのコバルト化合物を含む。これら水酸化ニッケル粉末及びコバルト化合物は水酸化ナトリウム水溶液中で酸化処理され、ニッケル及びコバルトの平均価数がいずれも2よりも大きい。このような高次のコバルト化合物は、水酸化ニッケル粉末間に強固な導電性ネットワークを形成し、電池の過放電特性及び高率放電特性が向上するものと考えられる。   This type of nickel metal hydride storage battery is disclosed in, for example, Patent Document 1 and Patent Document 2. The nickel electrode applied to the battery of Patent Document 1 includes nickel hydroxide powder as a positive electrode active material and a cobalt compound as a conductive agent. These nickel hydroxide powder and cobalt compound are oxidized in an aqueous sodium hydroxide solution, and the average valences of nickel and cobalt are both greater than 2. Such a higher-order cobalt compound is considered to form a strong conductive network between the nickel hydroxide powders, and to improve the overdischarge characteristics and the high rate discharge characteristics of the battery.

一方、特許文献2の電池に適用された水素吸蔵合金電極は、水素を吸蔵放出可能な水素吸蔵合金粉末を負極活物質として含む。この水素吸蔵合金粉末は、その組成にMn元素を含むけれども、表面処理を施すことにより、アルカリ電解液中へのMn元素の溶出が抑制されるものと考えられる。
特開2003-173771号公報 特開平11-185797号公報
On the other hand, the hydrogen storage alloy electrode applied to the battery of Patent Document 2 includes a hydrogen storage alloy powder capable of storing and releasing hydrogen as a negative electrode active material. Although this hydrogen storage alloy powder contains Mn element in its composition, it is considered that elution of Mn element into the alkaline electrolyte is suppressed by surface treatment.
JP2003-173771 Japanese Patent Laid-Open No. 11-185797

上述した特許文献1及び2のニッケル電極及び水素吸蔵合金電極をそれぞれ正極及び負極としたニッケル水素蓄電池の場合、使用当初は水素吸蔵合金粉末からのMn溶出が防止されるものの、充放電サイクルを経るうちに水素吸蔵合金粉末の粒子に割れが生じてしまう。このように粉末の粒子が割れると、割れにより生じた活性面がアルカリ電解液に曝され、活性面からMn元素が溶出してしまう。溶出したMn元素は、正極の水酸化ニッケル粉末の表面で析出し、正極における導電性の低下、即ち電池の充放電サイクル特性の低下を引き起こす。   In the case of the nickel metal hydride storage battery using the nickel electrode and the hydrogen storage alloy electrode of Patent Documents 1 and 2 described above as the positive electrode and the negative electrode, respectively, although Mn elution from the hydrogen storage alloy powder is prevented at the beginning of use, it goes through a charge / discharge cycle. In the meantime, cracks occur in the particles of the hydrogen storage alloy powder. When the powder particles are cracked in this way, the active surface generated by the cracking is exposed to the alkaline electrolyte, and the Mn element is eluted from the active surface. The eluted Mn element is deposited on the surface of the nickel hydroxide powder of the positive electrode, causing a decrease in conductivity in the positive electrode, that is, a decrease in charge / discharge cycle characteristics of the battery.

本発明は上述の事情に基づいてなされもので、その目的とするところは、良好な放電特性及び過放電特性を有し、且つ、充放電サイクル特性の低下も防止できるニッケル水素蓄電池を提供することにある。   The present invention has been made based on the above-mentioned circumstances, and an object thereof is to provide a nickel-metal hydride storage battery that has good discharge characteristics and overdischarge characteristics and can prevent deterioration of charge / discharge cycle characteristics. It is in.

本発明者は、上記の目的を達成すべく種々検討を重ねた結果、組成が所定の範囲に制限されたAB型の水素吸蔵合金粉末に、希土類−Mg−Ni系水素吸蔵合金粉末を混合して得られた混合粉末を負極に適用すれば、AB型の水素吸蔵合金粉末からのアルカリ電解液中へのMn元素の溶出が防止されることを見出し、本発明に想到した。すなわち、本発明によれば、コバルトの平均価数が2価よりも大のコバルト化合物で表面の少なくとも一部が被覆された水酸化ニッケル粉末を主成分として含む正極と、下記の一般式(I)で示される組成を有する第1の水素吸蔵合金粉末、及び、下記の一般式(II)で示される組成を有する第2の水素吸蔵合金粉末を含んだ負極とを備え、前記一般式(I)は、
La Mm 1−p NiCoMnT1
(式中、Mmは、Ce,Pr及びNdよりなる群から選ばれる少なくとも1種の元素を表し、T1は、Alを表し、p,b,dはそれぞれ、0.6≦p,0.5≦b,0.1≦c≦0.3で示される範囲にあり、a,b,c,dは、5.0<a+b+c+d≦5.5で示される関係を満たす。)、前記一般式(II)は、
Ln1−xMg(Ni1−yT2
(式中、Lnは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる少なくとも1種の元素を表し、T2は、Co及びAlよりなる群から選ばれる少なくとも1種の元素を表し、x,y,zはそれぞれ0<x<1,0≦y≦0.5,2.5≦z≦4.5で示される範囲にある。)
で示されることを特徴とするニッケル水素蓄電池が提供される(請求項1)。
The present inventor has conducted various studies to achieve the above object, the AB 5 type hydrogen absorbing alloy powder composition is limited to a predetermined range, mixing a rare earth -Mg-Ni-based hydrogen storage alloy powder When the mixed powder obtained in this way was applied to the negative electrode, it was found that the elution of Mn element into the alkaline electrolyte from the AB 5 type hydrogen storage alloy powder was prevented, and the present invention was conceived. That is, according to the present invention, a positive electrode containing as a main component nickel hydroxide powder having at least a part of the surface coated with a cobalt compound having an average valence of cobalt greater than divalent, and the following general formula (I And a negative electrode containing a second hydrogen storage alloy powder having a composition represented by the following general formula (II), and having the general formula (I) )
La p Mm 1-p Ni a Co b Mn c T1 d
(In the formula, Mm represents at least one element selected from the group consisting of Ce, Pr, and Nd, T1 represents Al, and p, b, and d are 0.6 ≦ p, 0.5, respectively. ≦ b, 0.1 ≦ c ≦ 0.3, and a, b, c, d satisfy the relationship represented by 5.0 <a + b + c + d ≦ 5.5), the above general formula ( II)
Ln 1-x Mg x (Ni 1-y T2 y ) z
(In the formula, Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr, and Hf. T2 represents at least one element selected from the group consisting of Co and Al , and x, y, and z are 0 <x <1, 0 ≦ y, respectively. ≦ 0.5 and 2.5 ≦ z ≦ 4.5.
A nickel-metal hydride storage battery characterized by the above is provided (claim 1).

上記した本発明の電池の正極においては、水酸化ニッケル粉末の表面の少なくとも一部がコバルトの平均価数を2価よりも大としたコバルト化合物で被覆され、水酸化ニッケル粉末の粒子間にコバルト化合物からなる強固な導電性ネットワークが形成されている。
一方、上記した本発明の電池の負極は、Mn元素を含有する第1の水素吸蔵合金粉末だけでなく、Mn元素を含有しない第2の水素吸蔵合金粉末を含んでいるので、負極中のMn元素の総量が低減されている。従って、本発明の電池によれば、充放電サイクルを経たときのアルカリ電解液へのMn元素の溶出量が低減される。
In the above-described positive electrode of the battery of the present invention, at least a part of the surface of the nickel hydroxide powder is coated with a cobalt compound having an average valence of cobalt larger than divalent, and cobalt particles between the nickel hydroxide powder particles are coated with cobalt. A strong conductive network made of a compound is formed.
On the other hand, the negative electrode of the battery of the present invention described above includes not only the first hydrogen storage alloy powder containing Mn element but also the second hydrogen storage alloy powder not containing Mn element. The total amount of elements has been reduced. Therefore, according to the battery of the present invention, the elution amount of Mn element into the alkaline electrolyte when the charge / discharge cycle is performed is reduced.

また、第1の水素吸蔵合金粉末の場合、その結晶構造でみてAサイトに占めるLaのモル比が高く設定されているとともに(0.6≦p)、Aサイトを占める元素(La,Mm)に対するBサイトを占める元素(Co,Mn,T1)のモル比が高く設定され(5.0<a+b+c+d)、且つ、Co及びMnのモル比がそれぞれ制限されている(0.5≦b,0.1≦c≦0.3)。それ故、第1の水素吸蔵合金粉末はニッケル水素蓄電池に適した水素平衡圧を有し、一方、充放電サイクルを経ても、第1の水素吸蔵合金粉末の粒子割れが抑制されるので、この粒子割れにより生じた活性面がアルカリ電解液に曝されることもなく、よって、活性面からMn元素が溶出するのも抑制される。しかも、本発明の電池によれば、もともとMn元素のモル比が0.3未満に制限され、Mn含有量が少なくことからと、Mn溶出量が一層低減される。   In the case of the first hydrogen storage alloy powder, the molar ratio of La occupying the A site is set to be high in view of its crystal structure (0.6 ≦ p), and the elements occupying the A site (La, Mm) The molar ratio of the element (Co, Mn, T1) occupying the B site with respect to is set high (5.0 <a + b + c + d), and the molar ratio of Co and Mn is limited (0.5 ≦ b, 0), respectively. .1 ≦ c ≦ 0.3). Therefore, the first hydrogen storage alloy powder has a hydrogen equilibrium pressure suitable for a nickel metal hydride storage battery. On the other hand, even after a charge / discharge cycle, particle cracking of the first hydrogen storage alloy powder is suppressed. The active surface generated by the particle cracking is not exposed to the alkaline electrolyte, and thus the elution of Mn element from the active surface is suppressed. Moreover, according to the battery of the present invention, the molar ratio of the Mn element is originally limited to less than 0.3, and the Mn elution amount is further reduced because the Mn content is small.

なお、AB5型の第1の水素吸蔵合金粉末は、Mn元素を含まない場合、その水素平衡圧が大幅に増加してニッケル水素蓄電池にとって不適切なものになってしまうが、これに対し、第2の水素吸蔵合金粉末は、Mn元素を含まなくてもニッケル水素蓄電池に適した水素平衡圧を有する。ただし、第2の水素吸蔵合金粉末は、耐アルカリ性に乏しく、単独で用いると充放電サイクルを経たときの作動電圧低下が著しいばかりか、電池の寿命特性を低下させるので、第1の水素吸蔵合金粉末と一緒に用いられる。 The AB 5 type first hydrogen storage alloy powder, when it does not contain Mn element, greatly increases its hydrogen equilibrium pressure and becomes inappropriate for nickel metal hydride storage batteries. Even if the 2nd hydrogen storage alloy powder does not contain Mn element, it has a hydrogen equilibrium pressure suitable for a nickel metal hydride storage battery. However, the second hydrogen storage alloy powder is poor in alkali resistance, and when used alone, not only the operating voltage is significantly reduced when it is subjected to a charge / discharge cycle, but also the life characteristics of the battery are deteriorated. Used with powder.

好適な態様として、前記水酸化ニッケル粉末は、平均価数が2価よりも大のニッケルを含む(請求項2)。この場合、水酸化ニッケル粉末の粒子とその表面を被覆するコバルト化合物の被覆層との間の化学的強度が増大し、強固な導電性ネットワークが安定して存在できる。
好適な態様として、前記第1の水素吸蔵合金粉末は、温度40℃において水素吸蔵量H/Mが0.5のときに、0.08〜0.20MPaの範囲の水素平衡圧を示す(請求項3)。この場合、電池の放電性が確保されるとともに、安全弁を有する電池の場合、内圧上昇に起因してアルカリ電解液が電池外への漏れるのも防止される。
As a preferred embodiment, the nickel hydroxide powder contains nickel having an average valence of more than 2 (claim 2). In this case, the chemical strength between the nickel hydroxide powder particles and the coating layer of the cobalt compound covering the surface thereof increases, and a strong conductive network can exist stably.
As a preferred embodiment, the first hydrogen storage alloy powder exhibits a hydrogen equilibrium pressure in the range of 0.08 to 0.20 MPa when the hydrogen storage amount H / M is 0.5 at a temperature of 40 ° C. Item 3). In this case, the discharge performance of the battery is ensured, and in the case of a battery having a safety valve, the alkaline electrolyte is prevented from leaking out of the battery due to an increase in internal pressure.

好適な態様として、前記負極はカーボン粉末を更に含み、前記第1及び第2の水素吸蔵合金粉末の総質量に対する前記カーボン粉末の質量比が0.1〜1.0%の範囲にある(請求項4)。この場合、カーボン粉末の存在により負極におけるアルカリ電解液の保液性が向上し、充放電サイクルを経たときの第1及び第2の水素吸蔵合金粉末の酸化が抑制される。   In a preferred aspect, the negative electrode further includes carbon powder, and a mass ratio of the carbon powder to a total mass of the first and second hydrogen storage alloy powders is in a range of 0.1 to 1.0% (invoice). Item 4). In this case, the presence of the carbon powder improves the liquid retention of the alkaline electrolyte in the negative electrode, and the oxidation of the first and second hydrogen storage alloy powders during the charge / discharge cycle is suppressed.

請求項1〜4の発明のニッケル水素蓄電池は、正極に強固な導電性ネットワークが形成され、良好な放電特性及び過放電特性を有する。一方、発明の電池は、充放電サイクルを経ても、負極からアルカリ電解液中へのMn元素の溶出が抑制されるため、正極の水酸化ニッケル粉末表面への溶出したMn元素の析出をも抑制される。この結果、正極の導電性ネットワークが維持されるので、充放電サイクル特性の低下が抑制される。   The nickel metal hydride storage battery according to the first to fourth aspects of the present invention has a strong conductive network formed on the positive electrode, and has good discharge characteristics and overdischarge characteristics. On the other hand, since the battery of the invention suppresses the elution of Mn element from the negative electrode into the alkaline electrolyte even after the charge / discharge cycle, it also suppresses the precipitation of the eluted Mn element on the surface of the nickel hydroxide powder of the positive electrode Is done. As a result, since the conductive network of the positive electrode is maintained, deterioration of charge / discharge cycle characteristics is suppressed.

請求項2のニッケル水素蓄電池によれば、導電性ネットワークがより強固になることで、放電特性、過飽和放電特性及び充放電サイクル特性がそれぞれ更に向上する。
請求項3のニッケル水素蓄電池によれば、負極の放電性が確保されるとともに、アルカリ電解液の減少が防止されるので、放電性及び充放電サイクル特性が更に向上する。
請求項4のニッケル水素蓄電池によれば、第1及び第2の水素吸蔵合金粉末の酸化が抑制されるので、充放電サイクル特性が更に向上する。
According to the nickel metal hydride storage battery of claim 2, since the conductive network becomes stronger, the discharge characteristics, the supersaturated discharge characteristics, and the charge / discharge cycle characteristics are further improved.
According to the nickel metal hydride storage battery of the third aspect, the discharge performance of the negative electrode is ensured and the decrease of the alkaline electrolyte is prevented, so that the discharge performance and the charge / discharge cycle characteristics are further improved.
According to the nickel-metal hydride storage battery of claim 4, since the oxidation of the first and second hydrogen storage alloy powders is suppressed, the charge / discharge cycle characteristics are further improved.

図1は、本発明の一実施形態のニッケル水素蓄電池を示す。
この電池は例えば円筒形電池であり、上端が開口した有底円筒状の外装缶10を備え、外装缶10はその底壁が導電性を有した負極端子として機能する。外装缶10の開口内には、リング状の絶縁パッキン12を介して導電性を有する段付き円板形状の蓋板14が配置され、これら蓋板14及び絶縁パッキン12は外装缶10の開口縁をかしめ加工することにより外装缶10の開口縁に固定されている。
FIG. 1 shows a nickel metal hydride storage battery according to an embodiment of the present invention.
This battery is, for example, a cylindrical battery, and includes a bottomed cylindrical outer can 10 having an open upper end, and the outer can 10 functions as a negative electrode terminal whose bottom wall has conductivity. In the opening of the outer can 10, a stepped disk-shaped lid plate 14 having conductivity is disposed via a ring-shaped insulating packing 12, and the lid plate 14 and the insulating packing 12 are arranged at the opening edge of the outer can 10. The outer can 10 is fixed to the opening edge by caulking.

蓋板14は中央にガス抜き孔16を有し、蓋板14の外面上にはガス抜き孔16を塞いで円盤状の弁体18が配置され、弁体18上には同じく円盤状のばね座20が重ね合わされている。更に、蓋板14の外面上には、弁体18及びばね座20を囲むようにフランジ付き円筒形状の正極端子22が固定され、ばね座20と正極端子22との間には、ばね座20を介して弁体18を蓋板14に押圧するコイルスプリング24が配置されている。従って、通常時、外装缶10は絶縁パッキン12及び弁体18を介して蓋板14により気密に閉塞されている。一方、外装缶10内でガスが発生し、その内圧が高まった場合にはコイルスプリング24が圧縮され、ガス抜き孔16を通して外装缶10からガスが放出される。つまり、蓋板14、弁体18、ばね座20、正極端子22及びコイルスプリング24は、安全弁を形成している。なお、図示しないけれども、電池は、その外面が蓋板14の周縁から外装缶10の底壁周縁に亘り、外装チューブで被覆されている。   The cover plate 14 has a gas vent hole 16 in the center, and a disc-shaped valve element 18 is disposed on the outer surface of the cover plate 14 so as to close the gas vent hole 16. The seat 20 is overlapped. Further, a flanged cylindrical positive terminal 22 is fixed on the outer surface of the cover plate 14 so as to surround the valve body 18 and the spring seat 20, and the spring seat 20 is interposed between the spring seat 20 and the positive terminal 22. A coil spring 24 that presses the valve body 18 against the cover plate 14 is arranged. Accordingly, at the normal time, the outer can 10 is airtightly closed by the cover plate 14 via the insulating packing 12 and the valve body 18. On the other hand, when gas is generated in the outer can 10 and its internal pressure increases, the coil spring 24 is compressed and gas is released from the outer can 10 through the gas vent hole 16. That is, the cover plate 14, the valve body 18, the spring seat 20, the positive terminal 22 and the coil spring 24 form a safety valve. Although not shown, the outer surface of the battery extends from the periphery of the cover plate 14 to the periphery of the bottom wall of the outer can 10 and is covered with an outer tube.

外装缶10内には、アルカリ電解液(図示せず)とともに略円柱状の電極群26が収容されている。より詳しくは、電極群26は、それぞれ帯状の正極28及び負極30を、セパレータ32を介して巻回して形成され、正極28及び負極30はセパレータ32を間に挟んだ状態で互いに重ね合わされている。電極群26の正極28と蓋板14との間は正極リード34を介して電気的に接続される一方、負極30と外装缶10の内底壁との間は、円盤状の集電板36を介して電気的に接続されている。   In the outer can 10, a substantially cylindrical electrode group 26 is accommodated together with an alkaline electrolyte (not shown). More specifically, the electrode group 26 is formed by winding a belt-like positive electrode 28 and a negative electrode 30 with a separator 32 interposed therebetween, and the positive electrode 28 and the negative electrode 30 are overlapped with each other with the separator 32 interposed therebetween. . The positive electrode 28 and the lid plate 14 of the electrode group 26 are electrically connected via a positive electrode lead 34, while the disc-shaped current collector plate 36 is connected between the negative electrode 30 and the inner bottom wall of the outer can 10. It is electrically connected via.

以下、正極28及び負極30について詳述する。
<正極>
正極28は、導電性の正極基板と、正極基板に保持された正極合剤とからなる。正極基板としては、例えば、3次元的な多孔質構造を有する板状のニッケル材を用いることができる。正極合剤は、正極活物質としての水酸化ニッケル粉末と、Co化合物からなる導電剤と、これら水酸化ニッケル粉末及び導電剤を正極基板に接着する結着剤とを含む。より詳しくは、水酸化ニッケル粉末は、図1の円内に模式的に示したように、各粒子40の表面の一部又は全部が導電剤としてのCo化合物からなる被覆層42で覆われた状態で、結着剤44により結着されている。水酸化ニッケル粉末のニッケル及び被覆層42のCo化合物のCoは、いずれも平均価数が2価よりも大きい。なお、水酸化ニッケル粒子粉末は、亜鉛やコバルトを固溶していてもよい。
Hereinafter, the positive electrode 28 and the negative electrode 30 will be described in detail.
<Positive electrode>
The positive electrode 28 includes a conductive positive electrode substrate and a positive electrode mixture held on the positive electrode substrate. As the positive electrode substrate, for example, a plate-like nickel material having a three-dimensional porous structure can be used. The positive electrode mixture includes nickel hydroxide powder as a positive electrode active material, a conductive agent made of a Co compound, and a binder that adheres the nickel hydroxide powder and the conductive agent to the positive electrode substrate. More specifically, as schematically shown in the circle of FIG. 1, the nickel hydroxide powder was partially or entirely covered with a coating layer 42 made of a Co compound as a conductive agent. In the state, it is bound by the binder 44. Both nickel of the nickel hydroxide powder and Co of the Co compound of the coating layer 42 have an average valence greater than two. In addition, the nickel hydroxide particle powder may be dissolved in zinc or cobalt.

以下では、ニッケルの価数が2よりも大の水酸化ニッケルを高次水酸化ニッケルと、コバルトの価数が2よりも大のコバルト化合物を高次コバルト化合物と、そして、高次コバルト化合物で被覆された高次水酸化ニッケル粉末を高次Co被覆水酸化ニッケル粉末という。
上記した正極28は、例えば次のようにして作製される。
In the following, nickel hydroxide having a nickel valence greater than 2 is referred to as high-order nickel hydroxide, cobalt compound having a cobalt valence greater than 2 is referred to as a higher-order cobalt compound, and higher-order cobalt compound. The coated high-order nickel hydroxide powder is referred to as high-order Co-coated nickel hydroxide powder.
The positive electrode 28 described above is produced, for example, as follows.

まず、水酸化ニッケル粉末とコバルト化合物粉末を、酸素を含む雰囲気下で加熱すると同時にアルカリ水溶液を添加しながら混合した後、乾燥させ、高次Co被覆水酸化ニッケル粉末を得る。この後、高次Co被覆水酸化ニッケル粉末、結着剤及び水からなるスラリを調製し、このスラリを正極基板に充填する。そして、スラリが充填された正極基板を、乾燥を経て圧延・裁断し、正極28が作製される。
<負極>
負極30は、導電性の負極基板と、この負極基板に保持された負極合剤とからなり、負極基板としては、例えば、パンチングメタルを用いることができる。負極合剤は、負極活物質である水素をそれぞれ吸蔵・放出可能な第1の水素吸蔵合金粉末及び第2の水素吸蔵合金粉末と結着剤からなる。即ち、図1の円内に模式的に示したように、第1の水素吸蔵合金粉末の粒子46と、第2の水素吸蔵合金粉末の粒子48とが結着剤50で互いに結着されている。
First, the nickel hydroxide powder and the cobalt compound powder are heated and mixed in an atmosphere containing oxygen while simultaneously adding an alkaline aqueous solution, and then dried to obtain a high-order Co-coated nickel hydroxide powder. Thereafter, a slurry made of high-order Co-coated nickel hydroxide powder, a binder and water is prepared, and this positive electrode substrate is filled with this slurry. Then, the positive electrode substrate filled with the slurry is rolled and cut after drying, and the positive electrode 28 is produced.
<Negative electrode>
The negative electrode 30 includes a conductive negative electrode substrate and a negative electrode mixture held on the negative electrode substrate. As the negative electrode substrate, for example, a punching metal can be used. The negative electrode mixture is composed of a first hydrogen storage alloy powder, a second hydrogen storage alloy powder, and a binder, each of which can store and release hydrogen as a negative electrode active material. That is, as schematically shown in the circle of FIG. 1, the first hydrogen storage alloy powder particles 46 and the second hydrogen storage alloy powder particles 48 are bound together by the binder 50. Yes.

第1の水素吸蔵合金粉末は、結晶構造がAB型(CaCu型)の水素吸蔵合金(以下、AB型合金という)からなり、その組成が一般式(I):
La Mm 1−p NiCoMnT1
(式中、Mmは、Ce,Pr及びNdよりなる群から選ばれる少なくとも1種の元素を表し、T1は、Alを表し、p,b,dはそれぞれ、0.6≦p,0.5≦b,0.1≦c≦0.3で示される範囲にあり、a,b,c,dは、5.0<a+b+c+d≦5.5で示される関係を満たす。)
で示される。
The first hydrogen storage alloy powder is composed of a hydrogen storage alloy having a crystal structure of AB 5 type (CaCu 5 type) (hereinafter referred to as AB 5 type alloy), and its composition is represented by the general formula (I):
La p Mm 1-p Ni a Co b Mn c T1 d
(In the formula, Mm represents at least one element selected from the group consisting of Ce, Pr, and Nd, T1 represents Al, and p, b, and d are 0.6 ≦ p, 0.5, respectively. ≦ b, 0.1 ≦ c ≦ 0.3, and a, b, c, d satisfy the relationship represented by 5.0 <a + b + c + d ≦ 5.5.)
Indicated by

また、第2の水素吸蔵合金粉末は、結晶構造がAB型及びAB型の超格子構造の水素吸蔵合金(以下、超格子合金という)からなり、その組成が一般式(II):
Ln1−xMg(Ni1−yT2
(式中、Lnは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる少なくとも1種の元素を表し、T2は、Co及びAlよりなる群から選ばれる少なくとも1種の元素を表し、x,y,zはそれぞれ0<x<1,0≦y≦0.5,2.5≦z≦4.5で示される範囲にある。)
で示される。なお、この組成に因み、超格子合金は希土類−Mg−Ni系水素吸蔵合金とも称される。
The second hydrogen-absorbing alloy powder, the hydrogen storage alloy of the super lattice structure of the crystal structure is AB 5 type and AB 2 type (hereinafter referred to as the superlattice alloy) consists, the composition of the general formula (II):
Ln 1-x Mg x (Ni 1-y T2 y ) z
(In the formula, Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr, and Hf. T2 represents at least one element selected from the group consisting of Co and Al , and x, y, and z are 0 <x <1, 0 ≦ y, respectively. ≦ 0.5 and 2.5 ≦ z ≦ 4.5.
Indicated by Due to this composition, the superlattice alloy is also referred to as a rare earth-Mg—Ni-based hydrogen storage alloy.

負極合剤における上述した第1及び第2の水素吸蔵合金粉末の比率については、上述した理由により、第1の水素吸蔵合金粉末の総質量を1としたときに、第2の水素吸蔵合金粉末の総質量が0.1〜1の範囲にあるのが好ましい。また、負極合剤は、所定量のカーボン粉末を更に含むのが好ましい。
上記した負極30は、第1及び第2の水素吸蔵合金粉末、結着剤、水及び必要に応じてカーボン粉末からなるスラリ調整し、このスラリが塗着された負極基板を、乾燥を経てから圧延・裁断して作製される。
About the ratio of the 1st and 2nd hydrogen storage alloy powder mentioned above in a negative electrode mixture, when the total mass of 1st hydrogen storage alloy powder is set to 1 for the reason mentioned above, 2nd hydrogen storage alloy powder The total mass of is preferably in the range of 0.1-1. The negative electrode mixture preferably further contains a predetermined amount of carbon powder.
The negative electrode 30 is prepared by adjusting a slurry made of the first and second hydrogen storage alloy powders, a binder, water and, if necessary, carbon powder, and drying the negative electrode substrate coated with the slurry. It is produced by rolling and cutting.

また、第2の水素吸蔵合金粉末は、次のようにして作製される。
まず、一般式(II)に示した組成となるよう金属原料を秤量して混合し、この混合物を例えば高周波溶解炉で溶解してインゴットにする。得られたインゴットに、900〜1200℃の温度の不活性ガス雰囲気下にて5〜24時間加熱する熱処理を施し、インゴットにおける結晶構造をAB5型構造及びAB2型構造の超格子構造にする。この後、インゴットを粉砕し、篩分けにより所望粒径に分級して第2の水素吸蔵合金粉末が作製される。
Further, the second hydrogen storage alloy powder is produced as follows.
First, metal raw materials are weighed and mixed so as to have the composition shown in the general formula (II), and this mixture is melted in, for example, a high-frequency melting furnace to form an ingot. The obtained ingot is subjected to heat treatment in an inert gas atmosphere at a temperature of 900 to 1200 ° C. for 5 to 24 hours, so that the crystal structure of the ingot becomes a superlattice structure of AB 5 type structure and AB 2 type structure. . Thereafter, the ingot is pulverized and classified to a desired particle size by sieving to produce a second hydrogen storage alloy powder.

上述したニッケル水素蓄電池の正極28においては、水酸化ニッケル粉末の各粒子40における表面の少なくとも一部が、高次コバルト化合物で被覆され、水酸化ニッケル粉末の粒子40間にコバルト化合物からなる強固な導電性ネットワークが形成されている。
一方、この電池の負極30は、Mn元素を含有する第1の水素吸蔵合金粉末だけでなく、Mn元素を含有しない第2の水素吸蔵合金粉末を含んでいるので、負極30中のMn元素の総量が低減されている。従って、この負極30からは、充放電サイクルを経たときのアルカリ電解液へのMn元素の溶出量が低減される。
In the above-described positive electrode 28 of the nickel-metal hydride storage battery, at least a part of the surface of each particle 40 of the nickel hydroxide powder is coated with a high-order cobalt compound, and the nickel hydroxide powder particles 40 are made of a strong cobalt compound. A conductive network is formed.
On the other hand, the negative electrode 30 of this battery contains not only the first hydrogen storage alloy powder containing Mn element but also the second hydrogen storage alloy powder not containing Mn element. The total amount has been reduced. Therefore, from this negative electrode 30, the elution amount of the Mn element to the alkaline electrolyte when the charge / discharge cycle is performed is reduced.

また、第1の水素吸蔵合金粉末は、その結晶構造でみて、Aサイトに占めるLaのモル比が高く設定され(0.6≦p)、Aサイトを占める元素(La,Mm)に対するBサイトを占める元素(Co,Mn,T1)のモル比が高く設定され(5.0<a+b+c+d)、且つ、Co及びMnのモル比をそれぞれ制限したことにより(0.5≦b,0.1≦c≦0.3)、ニッケル水素蓄電池に適した水素平衡圧を有しながら、充放電サイクルを経たときの粉末の粒子46の割れが抑制される。つまり、第1の水素吸蔵合金粉末の粒子46において、その割れにより生じた活性面がアルカリ電解液に曝され、活性面からMn元素が溶出するのが抑制される。従って、この電池では、もともとMn元素のモル比が0.3未満に制限され、Mn含有量が少ないこともあり、Mn溶出量が一層低減される。   Further, the first hydrogen storage alloy powder has a high molar ratio of La occupying the A site (0.6 ≦ p) in view of its crystal structure, and the B site for the elements (La, Mm) occupying the A site. Is set high (5.0 <a + b + c + d), and the molar ratio of Co and Mn is limited (0.5 ≦ b, 0.1 ≦), respectively. c ≦ 0.3), cracking of the powder particles 46 during the charge / discharge cycle is suppressed while having a hydrogen equilibrium pressure suitable for a nickel metal hydride storage battery. That is, in the particles 46 of the first hydrogen storage alloy powder, the active surface caused by the cracking is exposed to the alkaline electrolyte, and the elution of Mn element from the active surface is suppressed. Therefore, in this battery, the molar ratio of the Mn element is originally limited to less than 0.3, the Mn content may be small, and the Mn elution amount is further reduced.

なお、AB5型の第1の水素吸蔵合金粉末は、Mn元素を含まない場合、その水素平衡圧が大幅に増加してニッケル水素蓄電池に不適当になってしまうのに対し、第2の水素吸蔵合金粉末は、Mn元素を含まなくてもニッケル水素蓄電池に適した水素平衡圧を有する。ただし、第2の水素吸蔵合金粉末は、耐アルカリ性に乏しく、単独で用いると充放電サイクルを経たときの作動電圧低下が顕著になるばかりか、電池の寿命特性が低下するので、第1の水素吸蔵合金粉末とともに用いられる。 The AB 5 type first hydrogen storage alloy powder, when not containing Mn element, greatly increases its hydrogen equilibrium pressure and becomes unsuitable for nickel metal hydride storage batteries, whereas the second hydrogen storage alloy powder The occlusion alloy powder has a hydrogen equilibrium pressure suitable for a nickel metal hydride storage battery even if it does not contain Mn element. However, the second hydrogen storage alloy powder has poor alkali resistance, and when used alone, not only will the operating voltage decrease significantly after a charge / discharge cycle, but also the life characteristics of the battery will decrease. Used with storage alloy powder.

以上の説明から明らかなように、上述のニッケル水素蓄電池は、正極28に強固な導電性ネットワークが形成され、良好な放電特性及び過放電特性を有する。一方、この電池は、充放電サイクルを経ても、負極30からアルカリ電解液中へMn元素が溶出するのが抑制されるため、溶出したMn元素が正極28の水酸化ニッケル粉末表面に析出するのも抑制される。この結果、正極28の導電性ネットワークが維持されるので、電池における充放電サイクル特性の低下が抑制される。   As is clear from the above description, the above-described nickel-metal hydride storage battery has a strong conductive network formed on the positive electrode 28 and has good discharge characteristics and overdischarge characteristics. On the other hand, in this battery, since the elution of Mn element from the negative electrode 30 into the alkaline electrolyte is suppressed even after the charge / discharge cycle, the eluted Mn element is deposited on the surface of the nickel hydroxide powder of the positive electrode 28. Is also suppressed. As a result, since the conductive network of the positive electrode 28 is maintained, deterioration of charge / discharge cycle characteristics in the battery is suppressed.

本発明は上記した一実施形態に限定されることはなく、種々変形が可能であり、例えば、水酸化ニッケル粉末は、ニッケルの平均価数が2価であってもよい。ただし、ニッケルの平均価数が2価よりも大の場合、水酸化ニッケル粉末の各粒子40とその表面を被覆するコバルト化合物の被覆層42との間の化学的強度が増大し、導電性ネットワークがより強固になり、放電特性、過飽和放電特性及び充放電サイクル特性がそれぞれ更に向上する。   The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the nickel hydroxide powder may have an average valence of nickel of two. However, when the average valence of nickel is larger than 2, the chemical strength between each particle 40 of the nickel hydroxide powder and the coating layer 42 of the cobalt compound covering the surface increases, and the conductive network Becomes stronger, and the discharge characteristics, the supersaturated discharge characteristics, and the charge / discharge cycle characteristics are further improved.

一実施形態では、電池は円筒形であったが、角形であってもよく、電池の機械的構造も格別限定されることはない。   In one embodiment, the battery has a cylindrical shape, but may have a rectangular shape, and the mechanical structure of the battery is not particularly limited.

実施例1
1.正極の作製
硫酸ニッケル水溶液、硫酸亜鉛水溶液、および硫酸コバルト水溶液の所定濃度の混合水溶液を撹拌しながら、ここに水酸化ナトリウム水溶液を徐々に添加し、析出した沈殿物を洗浄・脱水してから乾燥させ、亜鉛固溶量が3質量%、コバルト固溶量が1質量%である水酸化ニッケル粉末を得た。
Example 1
1. Preparation of positive electrode While stirring a mixed aqueous solution of nickel sulfate aqueous solution, zinc sulfate aqueous solution, and cobalt sulfate aqueous solution at a predetermined concentration, sodium hydroxide aqueous solution is gradually added thereto, and the deposited precipitate is washed and dehydrated and then dried. Thus, a nickel hydroxide powder having a zinc solid solution amount of 3% by mass and a cobalt solid solution amount of 1% by mass was obtained.

この水酸化ニッケル粉末に、水酸化コバルト粉末を加えたものを、酸素を含む雰囲気下で加熱すると同時に、アルカリ水溶液を添加しながら混合した後、乾燥させ、高次Co被覆水酸化ニッケル粉末を得た。この後、高次Co被覆水酸化ニッケル粉末に、40質量%のHPC(ヒドロキシプロピルセルロース)ディスパージョン溶液を添加して撹拌し、得られたスラリを多孔質構造のニッケル材に充填した。そして、スラリが充填されたニッケル材を、乾燥を経て圧延・裁断し、SCサイズのニッケル水素蓄電池用の正極28を作製した。
2.負極の作製
表1に示した組成となるよう金属原料を秤量して混合し、この混合物を高周波溶解炉で溶解してインゴットを得た。このインゴットを、温度1000℃のアルゴン雰囲気下にて10時間加熱し、インゴットにおける結晶構造をAB5型にした。この後、インゴットを粉砕して篩分けし、第1の水素吸蔵合金粉末を作製した。
This nickel hydroxide powder plus cobalt hydroxide powder is heated in an oxygen-containing atmosphere and mixed while adding an alkaline aqueous solution, followed by drying to obtain a high-order Co-coated nickel hydroxide powder. It was. Thereafter, a 40 mass% HPC (hydroxypropylcellulose) dispersion solution was added to the high-order Co-coated nickel hydroxide powder and stirred, and the resulting slurry was filled into a nickel material having a porous structure. Then, the nickel material filled with the slurry was rolled and cut after drying, and a positive electrode 28 for an SC size nickel-metal hydride storage battery was produced.
2. Production of Negative Electrode Metal raw materials were weighed and mixed so as to have the composition shown in Table 1, and this mixture was melted in a high-frequency melting furnace to obtain an ingot. This ingot was heated for 10 hours in an argon atmosphere at a temperature of 1000 ° C., and the crystal structure of the ingot was changed to the AB 5 type. Thereafter, the ingot was pulverized and sieved to produce a first hydrogen storage alloy powder.

一方、組成が(La0.25Ce0.05Pr0.35Nd0.350.7Mg0.3Ni2.5Co0.5Al0.2となるよう、金属原料を秤量して混合し、この混合物を高周波溶解炉で溶解してインゴットを得た。このインゴットを、温度1000℃のアルゴン雰囲気下にて10時間加熱し、インゴットにおける結晶構造をAB5型及びAB2型の超格子構造にした。この後、インゴットを粉砕して篩分けし、第2の水素吸蔵合金粉末を作製した。 On the other hand, metal raw materials were weighed and mixed so that the composition was (La 0.25 Ce 0.05 Pr 0.35 Nd 0.35 ) 0.7 Mg 0.3 Ni 2.5 Co 0.5 Al 0.2, and this mixture was melted in a high-frequency melting furnace to obtain an ingot. . This ingot was heated for 10 hours in an argon atmosphere at a temperature of 1000 ° C., and the crystal structure of the ingot was changed to an AB 5 type and AB 2 type superlattice structure. Thereafter, the ingot was pulverized and sieved to produce a second hydrogen storage alloy powder.

かくして得られた第1及び第2の水素吸蔵合金粉末を、第1の水素吸蔵合金粉末の総質量:第2の水素吸蔵合金粉末の総質量=9:1となるように秤量して混合した。得られた混合粉末に、混合粉末の総質量に対する質量比で、ポリアクリル酸ナトリウム0.4%、カルボキシメチルセルロース0.1%、ポリテトラフルオロエチレン分散液(分散媒:水、固形分60質量%)2.5%、及びカーボン粉末0.5%を加えて混練し、スラリを得た。このスラリをパンチングメタルの両面に一定厚みにて塗着した後、スラリの乾燥を経てパンチングメタルを圧延・裁断し、SCサイズのニッケル水素蓄電池用の負極30を作製した。
3.ニッケル水素蓄電池の組立て
上記のようにして作製した正極28と負極30を、ポリプロピレン及びポリエチレンを主成分とするポリオレフィン系の不織布からなるセパレータ32を介して巻回し、得られた電極群26を外装缶10内に収納して所定の取付工程を行った。この後、外装缶10内に、水酸化カリウムを主成分とする7Nのアルカリ水溶液を電解液として注入してから、外装缶10の開口を蓋板14等により密封し、SCサイズのニッケル水素蓄電池(公称容量3.0Ah)を組立てた。
実施例2〜9及び比較例1〜4
第1の水素吸蔵合金粉末が、それぞれ表1に示した組成を有すること以外は上述した実施例1の場合と同様にして、実施例2〜9及び比較例1〜4のニッケル水素蓄電池を組立てた。
The first and second hydrogen storage alloy powders thus obtained were weighed and mixed so that the total mass of the first hydrogen storage alloy powder: the total mass of the second hydrogen storage alloy powder = 9: 1. . In the obtained mixed powder, sodium polyacrylate 0.4%, carboxymethylcellulose 0.1%, polytetrafluoroethylene dispersion (dispersion medium: water, solid content 60% by mass) with respect to the total mass of the mixed powder. ) 2.5% and carbon powder 0.5% were added and kneaded to obtain a slurry. After applying this slurry to both sides of the punching metal at a constant thickness, the punching metal was rolled and cut after drying the slurry, and the negative electrode 30 for the SC-size nickel metal hydride storage battery was produced.
3. Assembling the Nickel Metal Hydride Battery The positive electrode 28 and the negative electrode 30 produced as described above are wound through a separator 32 made of a polyolefin-based non-woven fabric mainly composed of polypropylene and polyethylene, and the obtained electrode group 26 is packaged in an outer can. 10 and was subjected to a predetermined attachment process. Thereafter, a 7N alkaline aqueous solution containing potassium hydroxide as a main component is injected into the outer can 10 as an electrolytic solution, and then the opening of the outer can 10 is sealed with a cover plate 14 or the like, so that an SC size nickel-metal hydride storage battery is obtained. (Nominal capacity 3.0 Ah) was assembled.
Examples 2-9 and Comparative Examples 1-4
The nickel hydrogen storage batteries of Examples 2 to 9 and Comparative Examples 1 to 4 are assembled in the same manner as in Example 1 described above except that the first hydrogen storage alloy powder has the composition shown in Table 1. It was.

実施例10〜13
負極において、第1及び第2の水素吸蔵合金粉末の総質量に対するカーボン粉末の総質量の比が、それぞれ表2に示した値となるようカーボン粉末を添加したこと以外は上述した実施例5の場合と同様にして、実施例10〜13のニッケル水素蓄電池を組立てた。
4.水素吸蔵合金及び電池の評価試験
(1)実施例1〜13及び比較例1〜4の第1の水素吸蔵合金粉末の夫々について、温度40℃の雰囲気下で、水素吸蔵量(H/M)が0.5のときの水素の平衡圧を測定し、この結果を表1及び2に示した。なお、水素の平衡圧は、JIS H7201(1991)「水素吸蔵合金の圧力−組成等温線(PTC線)の測定方法」に基づき測定した。また、測定温度は、一般的な使用環境において電池が示す実使用温度の平均値である40℃とした。
(2)充放電サイクル特性
実施例1〜13及び比較例1〜4のニッケル水素蓄電池の夫々について、電流値3Aでの1.2時間の充電と電流値15Aでの終止電圧1.0Vまでの放電を1サイクルとする充放電を繰り返し行い、放電容量が1サイクル目の80%になるまでのサイクル数を数えた。これらの結果を、比較例1の結果を100とした指数で表1及び表2に示した。
(3)過放電特性
実施例1〜13及び比較例1〜4のニッケル水素蓄電池の夫々を、正負極間を0.5Ωの電気抵抗を介して接続した状態で、温度60℃の雰囲気下に2週間放置した。この後、各電池に電流値3Aでの1.2時間の充電と、電流値15Aでの終止電圧1.0Vまでの放電を1サイクルとする充放電を繰り返し行い、5サイクル目の放電容量を測定した。これらの結果を、比較例1の結果を100とした指数で表1及び表2に示した。
Examples 10-13
In the negative electrode, the carbon powder was added in such a manner that the ratio of the total mass of the carbon powder to the total mass of the first and second hydrogen storage alloy powders was the value shown in Table 2, respectively. The nickel metal hydride storage batteries of Examples 10 to 13 were assembled in the same manner as in the case.
4). Hydrogen storage alloy and battery evaluation test (1) For each of the first hydrogen storage alloy powders of Examples 1 to 13 and Comparative Examples 1 to 4, the hydrogen storage amount (H / M) in an atmosphere at a temperature of 40 ° C. The equilibrium pressure of hydrogen was measured when N was 0.5, and the results are shown in Tables 1 and 2. In addition, the equilibrium pressure of hydrogen was measured based on JIS H7201 (1991) “Measurement Method of Pressure-Composition Isotherm (PTC Line) of Hydrogen Storage Alloy”. The measurement temperature was 40 ° C., which is an average value of the actual use temperature exhibited by the battery in a general use environment.
(2) Charging / discharging cycle characteristics For each of the nickel-metal hydride storage batteries of Examples 1 to 13 and Comparative Examples 1 to 4, charging for 1.2 hours at a current value of 3A and a final voltage of 1.0V at a current value of 15A Charging / discharging with one discharge cycle was repeated, and the number of cycles until the discharge capacity reached 80% in the first cycle was counted. These results are shown in Tables 1 and 2 as indexes with the result of Comparative Example 1 as 100.
(3) Overdischarge characteristics Each of the nickel-metal hydride storage batteries of Examples 1 to 13 and Comparative Examples 1 to 4 is connected to the positive and negative electrodes through an electric resistance of 0.5Ω in an atmosphere at a temperature of 60 ° C. Left for 2 weeks. After that, each battery was repeatedly charged and discharged with one cycle of charging for 1.2 hours at a current value of 3A and discharging to a final voltage of 1.0V at a current value of 15A. It was measured. These results are shown in Tables 1 and 2 as indexes with the result of Comparative Example 1 as 100.

Figure 0004511298
Figure 0004511298

Figure 0004511298
Figure 0004511298

5.試験結果
表1及び2からは次のことが明らかである。
(1)Laのモル比が0.6以上の実施例1乃至3は、同比が0.5の比較例1よりも充放電サイクル特性及び過放電特性が優れている。
(2)Coのモル比が0.5以上の実施例3は、同比が0.4の比較例2よりも充放電サイクル特性及び過放電特性が優れている。
(3)Mnのモル比が0.1以上0.3以下の実施例6及び7は、同比が0.4の比較例4よりも充放電サイクル特性及び過放電特性が優れている。
5). Test results From Tables 1 and 2, the following is clear.
(1) Examples 1 to 3 having a La molar ratio of 0.6 or more have better charge / discharge cycle characteristics and overdischarge characteristics than Comparative Example 1 having the same ratio of 0.5.
(2) In Example 3 in which the molar ratio of Co is 0.5 or more, charge / discharge cycle characteristics and overdischarge characteristics are superior to Comparative Example 2 in which the ratio is 0.4.
(3) Examples 6 and 7 having a molar ratio of Mn of 0.1 or more and 0.3 or less are superior in charge / discharge cycle characteristics and overdischarge characteristics than Comparative Example 4 having the same ratio of 0.4.

(4)水素平衡圧が0.20MPa以下の範囲にある実施例5及び6は、同圧が0.26の実施例9よりも充放電サイクル特性が優れている。これは、実施例9では、平衡圧が高くなったことにより、充放電サイクル中、内圧上昇により安全弁が頻繁に作動し、アルカリ電解液の電池外の噴出、つまりアルカリ電解液の減少がもたらされ、この結果、電池の内部抵抗が増大したためと考えられる。これより、温度40℃において水素吸蔵量H/Mが0.5のときに、水素平衡圧が0.20MPa以下である水素吸蔵合金粉末を第1の水素吸蔵合金粉末として用いるのが好ましい。なお、放電性を確保するためには、温度40℃において水素吸蔵量H/Mが0.5のときに、水素平衡圧が0.08MPa以上の水素吸蔵合金粉末を第1の水素吸蔵合金粉末として用いるのが好ましい。 (4) Examples 5 and 6 in which the hydrogen equilibrium pressure is in the range of 0.20 MPa or less have better charge / discharge cycle characteristics than Example 9 in which the same pressure is 0.26. This is because in Example 9, because the equilibrium pressure was increased, the safety valve frequently operated due to an increase in internal pressure during the charge / discharge cycle, resulting in the ejection of alkaline electrolyte from the battery, that is, reduction of alkaline electrolyte. As a result, it is considered that the internal resistance of the battery has increased. Accordingly, it is preferable to use a hydrogen storage alloy powder having a hydrogen equilibrium pressure of 0.20 MPa or less as the first hydrogen storage alloy powder when the hydrogen storage amount H / M is 0.5 at a temperature of 40 ° C. In order to ensure discharge performance, when the hydrogen storage amount H / M is 0.5 at a temperature of 40 ° C., the hydrogen storage alloy powder having a hydrogen equilibrium pressure of 0.08 MPa or more is used as the first hydrogen storage alloy powder. It is preferable to use as.

(5)第1及び第2の水素吸蔵合金粉末の総質量に対するカーボン粉末の質量比が0.1〜1.0%の範囲にある実施例5,11及び12は、カーボン粉末無添加の実施例10及び同比2.0%の実施例13よりも、充放電サイクル特性が優れている。これは、実施例5,11及び12では、カーボン粉末の存在により負極におけるアルカリ電解液の保液性が適度に向上し、充放電サイクルを経たときの第1及び第2の水素吸蔵合金粉末の酸化が抑制されたためと考えられる。一方、実施例13では、カーボン粉末の質量比が2.0%と大きいため、保液性が高くなり過ぎ、充放電サイクル特性が低下したと考えられる。すなわち、実施例13では、負極において保液性が高くなリ過ぎたことにより酸素ガス吸収性が低下し、充放電サイクル中、電池内圧上昇により安全弁が頻繁に作動し、アルカリ電解液の減少による内部抵抗増大がもたらされたものと考えられる。これより、カーボン粉末の質量比は0.1〜1.0%の範囲にあるのが好ましい。 (5) Examples 5, 11 and 12 in which the mass ratio of the carbon powder to the total mass of the first and second hydrogen storage alloy powders is in the range of 0.1 to 1.0% Charge / discharge cycle characteristics are superior to Example 10 and Example 13 having the same ratio of 2.0%. This is because, in Examples 5, 11 and 12, the liquid retention of the alkaline electrolyte in the negative electrode is moderately improved by the presence of the carbon powder, and the first and second hydrogen storage alloy powders after the charge / discharge cycle are obtained. This is probably because oxidation was suppressed. On the other hand, in Example 13, since the mass ratio of the carbon powder is as large as 2.0%, it is considered that the liquid retention is too high and the charge / discharge cycle characteristics are deteriorated. That is, in Example 13, the oxygen gas absorbability is lowered due to excessively high liquid retention in the negative electrode, and the safety valve frequently operates due to an increase in the internal pressure of the battery during the charge / discharge cycle. It is thought that the increase in internal resistance was brought about. Thus, the mass ratio of the carbon powder is preferably in the range of 0.1 to 1.0%.

本発明の一実施形態のニッケル水素蓄電池を示す部分切欠斜視図であり、図中円内は正極合剤又は負極合剤を模式的に拡大して示した断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view showing a nickel-metal hydride storage battery according to an embodiment of the present invention, and the inside of the circle is a cross-sectional view schematically showing a positive electrode mixture or a negative electrode mixture.

符号の説明Explanation of symbols

10 外装缶
28 正極
30 負極
32 セパレータ
40 水酸化ニッケル粉末の粒子
42 被覆層
46 第1の水素吸蔵合金粉末の粒子
48 第2の水素吸蔵合金粉末の粒子
DESCRIPTION OF SYMBOLS 10 Exterior can 28 Positive electrode 30 Negative electrode 32 Separator 40 Nickel hydroxide powder particle 42 Coating layer 46 First hydrogen storage alloy powder particle 48 Second hydrogen storage alloy powder particle

Claims (4)

コバルトの平均価数が2価よりも大のコバルト化合物で表面の少なくとも一部が被覆された水酸化ニッケル粉末を主成分として含む正極と、
下記の一般式(I)で示される組成を有する第1の水素吸蔵合金粉末、及び、下記の一般式(II)で示される組成を有する第2の水素吸蔵合金粉末を含んだ負極と
を備え、
前記一般式(I)は、
La Mm 1−p NiCoMnT1
(式中、Mmは、Ce,Pr及びNdよりなる群から選ばれる少なくとも1種の元素を表し、T1は、Alを表し、p,b,dはそれぞれ、0.6≦p,0.5≦b,0.1≦c≦0.3で示される範囲にあり、a,b,c,dは、5.0<a+b+c+d≦5.5で示される関係を満たす。)、
前記一般式 (II)は、
Ln1−xMg(Ni1−yT2
(式中、Lnは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる少なくとも1種の元素を表し、T2は、Co及びAlよりなる群から選ばれる少なくとも1種の元素を表し、x,y,zはそれぞれ0<x<1,0≦y≦0.5,2.5≦z≦4.5で示される範囲にある。)
で示されることを特徴とするニッケル水素蓄電池。
A positive electrode comprising, as a main component, nickel hydroxide powder having at least a part of the surface coated with a cobalt compound having an average valence of cobalt greater than divalent;
A first hydrogen storage alloy powder having a composition represented by the following general formula (I), and a negative electrode comprising a second hydrogen storage alloy powder having a composition represented by the following general formula (II): ,
The general formula (I) is
La p Mm 1-p Ni a Co b Mn c T1 d
(In the formula, Mm represents at least one element selected from the group consisting of Ce, Pr, and Nd, T1 represents Al, and p, b, and d are 0.6 ≦ p, 0.5, respectively. ≦ b, 0.1 ≦ c ≦ 0.3, and a, b, c, d satisfy the relationship represented by 5.0 <a + b + c + d ≦ 5.5).
The general formula (II) is
Ln 1-x Mg x (Ni 1-y T2 y ) z
(In the formula, Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr, and Hf. T2 represents at least one element selected from the group consisting of Co and Al , and x, y, and z are 0 <x <1, 0 ≦ y, respectively. ≦ 0.5 and 2.5 ≦ z ≦ 4.5.
A nickel metal hydride storage battery characterized by the following.
前記水酸化ニッケル粉末は、平均価数が2価よりも大のニッケルを含むことを特徴とする請求項1記載のニッケル水素蓄電池。   The nickel hydride storage battery according to claim 1, wherein the nickel hydroxide powder contains nickel having an average valence of more than two. 前記第1の水素吸蔵合金粉末は、温度40℃において、その水素吸蔵量H/Mが0.5のときに、0.08〜0.20MPaの範囲の水素平衡圧を示すことを特徴とする請求項1又は2記載のニッケル水素蓄電池。   The first hydrogen storage alloy powder has a hydrogen equilibrium pressure in the range of 0.08 to 0.20 MPa when the hydrogen storage amount H / M is 0.5 at a temperature of 40 ° C. The nickel metal hydride storage battery according to claim 1 or 2. 前記負極はカーボン粉末を更に含み、
前記第1及び第2の水素吸蔵合金粉末の総質量に対する前記カーボン粉末の質量比が0.1〜1.0%の範囲にあることを特徴とする請求項1乃至3の何れかに記載のニッケル水素蓄電池。
The negative electrode further includes carbon powder,
The mass ratio of the carbon powder to the total mass of the first and second hydrogen storage alloy powders is in the range of 0.1 to 1.0%. Nickel metal hydride storage battery.
JP2004281578A 2004-09-28 2004-09-28 Nickel metal hydride storage battery Expired - Fee Related JP4511298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004281578A JP4511298B2 (en) 2004-09-28 2004-09-28 Nickel metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004281578A JP4511298B2 (en) 2004-09-28 2004-09-28 Nickel metal hydride storage battery

Publications (2)

Publication Number Publication Date
JP2006100002A JP2006100002A (en) 2006-04-13
JP4511298B2 true JP4511298B2 (en) 2010-07-28

Family

ID=36239604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281578A Expired - Fee Related JP4511298B2 (en) 2004-09-28 2004-09-28 Nickel metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP4511298B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105766B2 (en) * 2006-04-25 2012-12-26 三洋電機株式会社 Alkaline storage battery, method for manufacturing the same, and assembled battery device
JP5425433B2 (en) * 2007-12-27 2014-02-26 三洋電機株式会社 Hydrogen storage alloy and alkaline storage battery using hydrogen storage alloy as negative electrode active material
JP5769028B2 (en) * 2012-02-10 2015-08-26 株式会社Gsユアサ Nickel metal hydride storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291511A (en) * 2000-04-07 2001-10-19 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291511A (en) * 2000-04-07 2001-10-19 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle

Also Published As

Publication number Publication date
JP2006100002A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4873947B2 (en) Hydrogen storage alloy and alkaline secondary battery using the hydrogen storage alloy
JP4566025B2 (en) Alkaline storage battery
JP5196953B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP5512080B2 (en) Alkaline storage battery
US20070065721A1 (en) Alkaline storage cell and hydrogen storage alloy for negative electrode or alkaline storage cell
US7678502B2 (en) Alkaline storage cell and hydrogen storage alloy for negative electrode of alkaline storage cell
JP5121499B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
EP2690690B1 (en) Nickel-metal hydride secondary cell and negative electrode therefor
US20050175896A1 (en) Hydrogen-absorbing alloy for alkaline storage batteries, alkaline storage battery, and method of manufacturing alkaline storage battery
JP4587734B2 (en) Hydrogen storage alloy electrode and secondary battery using the electrode
JP2009228096A (en) Hydrogen storage alloy
JP5171123B2 (en) Alkaline secondary battery
JP4511298B2 (en) Nickel metal hydride storage battery
JP5436825B2 (en) Hydrogen storage alloy powder for alkaline storage battery, its production method and alkaline storage battery
JP4849852B2 (en) Method for producing alkaline storage battery
JP5196932B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the hydrogen storage alloy, and nickel-hydrogen secondary battery
JP5196805B2 (en) Alkaline storage battery
JP5183077B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP4159501B2 (en) Rare earth-magnesium hydrogen storage alloy, hydrogen storage alloy particles, and secondary battery
JP2010231940A (en) Alkaline secondary battery
JP2007092115A (en) Hydrogen storage alloy, and nickel-hydrogen storage battery using this alloy
JP2010080171A (en) Alkaline secondary battery
JP2012074299A (en) Nickel-hydrogen secondary battery
JP2006236692A (en) Nickel hydrogen storage battery
JP2006100115A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4511298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees