JP2001291511A - Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle - Google Patents

Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle

Info

Publication number
JP2001291511A
JP2001291511A JP2000106623A JP2000106623A JP2001291511A JP 2001291511 A JP2001291511 A JP 2001291511A JP 2000106623 A JP2000106623 A JP 2000106623A JP 2000106623 A JP2000106623 A JP 2000106623A JP 2001291511 A JP2001291511 A JP 2001291511A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
group
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000106623A
Other languages
Japanese (ja)
Inventor
Masaaki Yamamoto
雅秋 山本
Hidenori Yoshida
秀紀 吉田
Takamichi Inaba
隆道 稲葉
Isao Sakai
勲 酒井
Junichi Takabayashi
純一 高林
Hideji Suzuki
秀治 鈴木
Shuichiro Irie
周一郎 入江
Kazuhiro Takeno
和太 武野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP2000106623A priority Critical patent/JP2001291511A/en
Publication of JP2001291511A publication Critical patent/JP2001291511A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode, which has a high capacity, which is superior in low-temperature discharge characteristic and which also enables the capacity to recover at an early stage after stored at a high temperature. SOLUTION: This hydrogen storage alloy contains a first hydrogen storage alloy which has a composition expressed by (RE1-xMgx)NiyAz-wAlw and a second hydrogen storage alloy which has CaCu5-type crystal structure and Al contains not less than 3 mol%. The weight ratio of the first hydrogen storage alloy to the total weight of alloy for the first and the second hydrogen storage alloy exceeds 10% and is less than 90%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マグネシウムを構
成元素として含む第1の水素吸蔵合金とAlを構成元素
として含むCaCu5型結晶構造を有する第2の水素吸
蔵合金とを含有する水素吸蔵合金電極、前記水素吸蔵合
金電極を備える二次電池に関する。この二次電池は、例
えば、携帯電子機器、ハイブリッドカーあるいは電気自
動車に搭載される。
The present invention relates to a hydrogen storage alloy containing a first hydrogen storage alloy containing magnesium as a constituent element and a second hydrogen storage alloy having a CaCu 5 type crystal structure containing Al as a constituent element. The present invention relates to an electrode and a secondary battery including the hydrogen storage alloy electrode. This secondary battery is mounted on, for example, a portable electronic device, a hybrid car, or an electric vehicle.

【0002】[0002]

【従来の技術】ニッケル水素電池用の水素吸蔵合金電極
としては、CaCu5型構造を主相とするLaNi5系合
金を含むものが実用化されている。LaNi5系合金を
含む水素吸蔵合金電極を備えるニッケル水素電池は、現
在生産されているニッケル水素電池の大部分を占め、汎
用性が高い。LaNi5系合金の水素吸蔵量は金属元素
1に対して水素原子1の割合であるとされており、この
水素吸蔵量を電気化学的な容量に換算すると約370m
Ah/gに相当する。一方、現在実用化されている電池
に含まれる水素吸蔵合金は330mAh/g程度の容量
を示しているため、LaNi5系合金を用いて電池の容
量密度を飛躍的に向上させることはほとんど期待できな
い。
2. Description of the Related Art As a hydrogen storage alloy electrode for a nickel-metal hydride battery, one containing a LaNi 5 -based alloy having a CaCu 5 type structure as a main phase has been put to practical use. Nickel-metal hydride batteries provided with a hydrogen-absorbing alloy electrode containing a LaNi 5 -based alloy occupy most of the currently produced nickel-metal hydride batteries and have high versatility. The hydrogen storage capacity of the LaNi 5 alloy is said to be the ratio of one hydrogen atom to one metal element, and this hydrogen storage capacity is approximately 370 m when converted to an electrochemical capacity.
Ah / g. On the other hand, since the hydrogen storage alloy contained in the battery currently in practical use has a capacity of about 330 mAh / g, it is hardly expected that the capacity density of the battery will be drastically improved by using a LaNi 5 -based alloy. .

【0003】ところで、下記(A)式で表わされる組成
を有する水素吸蔵合金を含む負極を備えた二次電池が提
案されている。
Meanwhile, a secondary battery provided with a negative electrode containing a hydrogen storage alloy having a composition represented by the following formula (A) has been proposed.

【0004】 (R1-x Mgx )Niy z …(A) 但し、Rは、イットリウムを含む希土類元素,Ca、Z
rおよびTiから選ばれる少なくとも1つの元素、Aは
Co,Mn,Fe,V,Cr,Nb,Al,Ga,Z
n,Sn,Cu,Si,PおよびBから選ばれる少なく
とも1つの元素、x、y、zはそれぞれ0<x<1、0
≦z≦1.5,2.5≦y+z<4.5として規定され
る。
(R 1-x Mg x ) Ni y A z (A) where R is a rare earth element containing yttrium, Ca, Z
At least one element selected from r and Ti, A is Co, Mn, Fe, V, Cr, Nb, Al, Ga, Z
At least one element selected from n, Sn, Cu, Si, P and B, x, y and z are each 0 <x <1, 0
It is defined as ≦ z ≦ 1.5, 2.5 ≦ y + z <4.5.

【0005】この水素吸蔵合金は、金属元素1に対して
水素原子1を超える吸蔵が可能であり、低温での高率放
電特性が同程度の水素平衡圧をもつCaCu5型水素吸
蔵合金に比べて優れている。しかしながら、この水素吸
蔵合金は、Al含有量が多くなると、偏析を生じやすく
なるため、製造ロットの特性が変動してやや特性の劣る
合金ロットが製造され、歩留りが低下する。
[0005] This hydrogen storage alloy can store more than one hydrogen atom for one metal element, and has a high rate discharge characteristic at a low temperature compared to a CaCu 5 type hydrogen storage alloy having the same hydrogen equilibrium pressure. Excellent. However, in the case of this hydrogen storage alloy, when the Al content increases, segregation is apt to occur, so that the characteristics of the production lot fluctuate, and an alloy lot with somewhat poor characteristics is produced, and the yield decreases.

【0006】量産時の製造条件のばらつきを見込んだ上
で製品の均質性を保証するためには、この合金中のAl
含有量を比較的少量に抑えることが望ましい。しかしな
がら、合金中のAl置換量を少なくすると、この合金を
含む電極を備えたニッケル水素電池を放電状態で高温貯
蔵した後の充電において電池の分極が大きく現れ、しか
も充電末期の電圧挙動が異常になるためにアルカリ二次
電池で一般的な電圧変化を検出して充電制御を行う手法
(例えば、−ΔV制御充電)の適用が困難になるという
問題点を生じる。電池を組み込んだ機器をしばらくの間
使用せずに高温環境下に放置することは実機使用の場合
にはしばしば発生することである。充電制御ができない
場合、一般には安全性を維持するために充電が極めて浅
い状態で停止してしまうため、使用時間が電池本来の能
力に比べて短くなるという問題を生じる。このような現
象は、浅い充放電を繰り返すうちに電極の表面状態が復
旧して解消するが、可能な限り早く復帰できるよう改善
が望まれている。
In order to ensure the homogeneity of the product in consideration of the variation in the manufacturing conditions during mass production, the Al
It is desirable to keep the content relatively low. However, when the amount of Al substitution in the alloy is reduced, the polarization of the battery appears significantly during charging after storing the nickel-metal hydride battery equipped with an electrode containing the alloy in a discharged state at a high temperature, and the voltage behavior at the end of charging is abnormal. For this reason, there is a problem that it becomes difficult to apply a method of detecting a general voltage change in an alkaline secondary battery and performing charge control (for example, -ΔV control charge). Leaving the device incorporating the battery in a high-temperature environment without using it for a while often occurs in the case of using the actual device. If the charge control cannot be performed, charging is generally stopped in an extremely shallow state to maintain safety, and thus there is a problem that the use time is shorter than the original capacity of the battery. Such a phenomenon can be resolved by restoring the surface state of the electrode while repeating shallow charge / discharge, but improvement is desired so that the electrode can be returned as soon as possible.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高容量で、
低温放電特性に優れ、かつ高温貯蔵後、早期に容量回復
させることが可能な水素吸蔵合金電極及び二次電池を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has a high capacity,
An object of the present invention is to provide a hydrogen storage alloy electrode and a secondary battery which are excellent in low-temperature discharge characteristics and capable of recovering capacity early after storage at high temperature.

【0008】また、本発明は、走行性能に優れるハイブ
リッドカー及び電気自動車を提供することを目的とす
る。
Another object of the present invention is to provide a hybrid car and an electric vehicle having excellent running performance.

【0009】[0009]

【課題を解決するための手段】本発明に係る水素吸蔵合
金電極は、下記(1)式で表わされる組成を有する第1
の水素吸蔵合金と、CaCu5型の結晶構造を有すると
共に、Alを3モル%以上含有する第2の水素吸蔵合金
とを含み、前記第1および第2の水素吸蔵合金の合計重
量に占める前記第1の水素吸蔵合金の重量比が10%を
超え、90%未満であることを特徴とするものである。
A hydrogen storage alloy electrode according to the present invention comprises a first electrode having a composition represented by the following formula (1).
And a second hydrogen storage alloy having a CaCu 5 type crystal structure and containing 3 mol% or more of Al, and occupying the total weight of the first and second hydrogen storage alloys. The weight ratio of the first hydrogen storage alloy is more than 10% and less than 90%.

【0010】 (RE1-xMgx)Niyz-wAlw …(1) 但し、REは希土類元素(希土類元素にはイットリウム
が含まれる)、Ca及びZrよりなる群から選ばれる1
種類以上の元素であり、AはCo,Mn,Fe,Cu,
Sn,Zn,Ga,Si及びBよりなる群から選ばれる
1種以上の元素であり、原子比x、y、zおよびwは
0.1≦x≦0.6、0≦z≦1.5、0≦w≦0.1
5、2.5≦y+z≦4.0を示す。
[0010] (RE 1-x Mg x) Ni y A zw Al w ... (1) where, RE is a rare earth element (the rare earth elements include yttrium), 1 selected from the group consisting of Ca and Zr
A is Co, Mn, Fe, Cu,
At least one element selected from the group consisting of Sn, Zn, Ga, Si and B, and the atomic ratios x, y, z and w are 0.1 ≦ x ≦ 0.6 and 0 ≦ z ≦ 1.5. , 0 ≦ w ≦ 0.1
5, 2.5 ≦ y + z ≦ 4.0.

【0011】本発明に係る二次電池は、正極と、負極
と、アルカリ電解液とを具備した二次電池において、前
記負極は、下記(1)式で表わされる組成を有する第1
の水素吸蔵合金と、CaCu5型の結晶構造を有すると
共に、Alを3モル%以上含有する第2の水素吸蔵合金
とを含み、前記第1および第2の水素吸蔵合金の合計重
量に占める前記第1の水素吸蔵合金の重量比が10%を
超え、90%未満であることを特徴とするものである。
A secondary battery according to the present invention is a secondary battery comprising a positive electrode, a negative electrode, and an alkaline electrolyte, wherein the negative electrode has a first composition having a composition represented by the following formula (1).
And a second hydrogen storage alloy having a CaCu 5 type crystal structure and containing 3 mol% or more of Al, and occupying the total weight of the first and second hydrogen storage alloys. The weight ratio of the first hydrogen storage alloy is more than 10% and less than 90%.

【0012】 (RE1-xMgx)Niyz-wAlw …(1) 但し、REは希土類元素(希土類元素にはイットリウム
が含まれる)、Ca及びZrよりなる群から選ばれる1
種類以上の元素であり、AはCo,Mn,Fe,Cu,
Sn,Zn,Ga,Si及びBよりなる群から選ばれる
1種以上の元素であり、原子比x、y、zおよびwは
0.1≦x≦0.6、0≦z≦1.5、0≦w≦0.1
5、2.5≦y+z≦4.0を示す。
[0012] (RE 1-x Mg x) Ni y A zw Al w ... (1) where, RE is a rare earth element (the rare earth elements include yttrium), 1 selected from the group consisting of Ca and Zr
A is Co, Mn, Fe, Cu,
At least one element selected from the group consisting of Sn, Zn, Ga, Si and B, and the atomic ratios x, y, z and w are 0.1 ≦ x ≦ 0.6 and 0 ≦ z ≦ 1.5. , 0 ≦ w ≦ 0.1
5, 2.5 ≦ y + z ≦ 4.0.

【0013】本発明に係るハイブリッドカーは、電気駆
動手段と、前記電気駆動手段用の電源とを具備し、前記
電源は、正極と、負極と、アルカリ電解液とを具備した
二次電池を備え、前記負極は、前記(1)式で表わされ
る組成を有する第1の水素吸蔵合金と、CaCu5型の
結晶構造を有すると共に、Alを3モル%以上含有する
第2の水素吸蔵合金とを含み、前記第1および第2の水
素吸蔵合金の合計重量に占める前記第1の水素吸蔵合金
の重量比が10%を超え、90%未満であることを特徴
とするものである。
[0013] A hybrid car according to the present invention includes an electric driving means and a power supply for the electric driving means, and the power supply includes a secondary battery including a positive electrode, a negative electrode, and an alkaline electrolyte. The negative electrode comprises a first hydrogen storage alloy having a composition represented by the formula (1) and a second hydrogen storage alloy having a CaCu 5 type crystal structure and containing 3 mol% or more of Al. Wherein the weight ratio of the first hydrogen storage alloy to the total weight of the first and second hydrogen storage alloys is more than 10% and less than 90%.

【0014】本発明に係る電気自動車は、駆動電源とし
て二次電池を具備し、前記二次電池は、正極と、負極
と、アルカリ電解液とを備え、前記負極は、前記(1)
式で表わされる組成を有する第1の水素吸蔵合金と、C
aCu5型の結晶構造を有すると共に、Alを3モル%
以上含有する第2の水素吸蔵合金とを含み、前記第1お
よび第2の水素吸蔵合金の合計重量に占める前記第1の
水素吸蔵合金の重量比が10%を超え、90%未満であ
ることを特徴とするものである。
The electric vehicle according to the present invention includes a secondary battery as a driving power source, the secondary battery includes a positive electrode, a negative electrode, and an alkaline electrolyte.
A first hydrogen storage alloy having a composition represented by the formula:
It has a Cu 5 type crystal structure and contains 3 mol% of Al.
The weight ratio of the first hydrogen storage alloy to the total weight of the first and second hydrogen storage alloys is more than 10% and less than 90%. It is characterized by the following.

【0015】[0015]

【発明の実施の形態】まず、本発明に係る水素吸蔵合金
電極について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a hydrogen storage alloy electrode according to the present invention will be described.

【0016】この水素吸蔵合金電極は、下記(1)式で
表わされる組成を有する第1の水素吸蔵合金と、CaC
5型の結晶構造を有すると共に、Alを3モル%以上
含有する第2の水素吸蔵合金とを含む。前記第1および
第2の水素吸蔵合金の合計重量に占める前記第1の水素
吸蔵合金の重量比は、10%を超え、90%未満であ
る。
The hydrogen storage alloy electrode comprises a first hydrogen storage alloy having a composition represented by the following formula (1):
and has a u 5 type crystal structure, and a second hydrogen-absorbing alloy containing Al 3 mol% or more. The weight ratio of the first hydrogen storage alloy to the total weight of the first and second hydrogen storage alloys is more than 10% and less than 90%.

【0017】 (RE1-xMgx)Niyz-wAlw …(1) 但し、REは希土類元素(希土類元素にはイットリウム
が含まれる)、Ca及びZrよりなる群から選ばれる1
種類以上の元素であり、AはCo,Mn,Fe,Cu,
Sn,Zn,Ga,Si及びBよりなる群から選ばれる
1種以上の元素であり、原子比x、y、zおよびwは
0.1≦x≦0.6、0≦z≦1.5、0≦w≦0.1
5、2.5≦y+z≦4.0を示す。
[0017] (RE 1-x Mg x) Ni y A zw Al w ... (1) where, RE is a rare earth element (the rare earth elements include yttrium), 1 selected from the group consisting of Ca and Zr
A is Co, Mn, Fe, Cu,
At least one element selected from the group consisting of Sn, Zn, Ga, Si and B, and the atomic ratios x, y, z and w are 0.1 ≦ x ≦ 0.6 and 0 ≦ z ≦ 1.5. , 0 ≦ w ≦ 0.1
5, 2.5 ≦ y + z ≦ 4.0.

【0018】(1)第1の水素吸蔵合金 前記REとしては、水素吸蔵合金電極のコストを低くす
る観点から、La、Ce、Pr、NdおよびYから選ばれる少な
くとも1種の元素を使用することが好ましい。中でも、
希土類元素の混合物であるミッシュメタルを使用するこ
とがより好ましい。
(1) First Hydrogen Storage Alloy As the RE, at least one element selected from La, Ce, Pr, Nd and Y is used from the viewpoint of reducing the cost of the hydrogen storage alloy electrode. Is preferred. Among them,
More preferably, a misch metal which is a mixture of rare earth elements is used.

【0019】前記REとして、La、Ce、Pr、Nd
およびYから選ばれる少なくとも1種の元素を使用する
際、RE中のCe量を20重量%以下にすることが望ま
しい。このような構成にすることによって、高容量な水
素吸蔵合金を安価、かつ容易に製造することができる。
As the RE, La, Ce, Pr, Nd
When at least one element selected from Y and Y is used, it is desirable that the amount of Ce in the RE be 20% by weight or less. With this configuration, a high-capacity hydrogen storage alloy can be easily manufactured at low cost.

【0020】原子比xのより好ましい範囲は、0.15
≦x≦0.35である。
A more preferred range of the atomic ratio x is 0.15
≤ x ≤ 0.35.

【0021】前記Aとしては、中でも、Co、Mnが好
ましい。原子比zのより好ましい範囲は、0≦z≦0.
6である。また、原子比yと原子比zの合計(y+z)
のさらに好ましい範囲は、2.9≦y+z≦3.6であ
る。
As A, Co and Mn are particularly preferable. A more preferable range of the atomic ratio z is 0 ≦ z ≦ 0.
6. The sum of the atomic ratio y and the atomic ratio z (y + z)
Is more preferably 2.9 ≦ y + z ≦ 3.6.

【0022】Alの原子比wを前記範囲に規定するのは
次のような理由によるものである。原子比wが0.15
を超えると、水素吸蔵合金に偏析が生じやすくなるた
め、合金ロットの特性がばらついて歩留まりが低下す
る。原子比wを0.15以下にすることによって、量産
時の水素吸蔵合金の均質性を確保することができる。原
子比wのより好ましい範囲は、0.05≦w≦0.12
である。この範囲内にすることによって、量産時の水素
吸蔵合金の均質性をさらに向上することができる。
The reason why the atomic ratio w of Al is defined in the above range is as follows. Atomic ratio w is 0.15
If the ratio exceeds 2, segregation is likely to occur in the hydrogen-absorbing alloy, so that the characteristics of the alloy lot vary and the yield decreases. By setting the atomic ratio w to 0.15 or less, the uniformity of the hydrogen storage alloy during mass production can be ensured. A more preferable range of the atomic ratio w is 0.05 ≦ w ≦ 0.12.
It is. By setting the content within this range, the uniformity of the hydrogen storage alloy during mass production can be further improved.

【0023】この第1の水素吸蔵合金は、結晶系が六方
晶である第1の相群(但し、CaCu5型構造を有する
相を除く)および結晶系が菱面体である第2の相群から
なる群より選ばれる少なくとも1種類の相を主相として
含む。
The first hydrogen storage alloy has a first phase group having a hexagonal crystal system (excluding a phase having a CaCu 5 type structure) and a second phase group having a rhombohedral crystal system. At least one phase selected from the group consisting of

【0024】前記第1の相群は、Ce2Ni7型構造を有
する相と、CeNi3型構造を有する相と、Ce2Ni7
型構造もしくはCeNi3型構造に類似する結晶構造を
有する相とからなることが望ましい。一方、前記第2の
相群は、Gd2Co7型構造を有する相と、PuNi3
構造を有する相と、Gd2Co7型構造もしくはPuNi
3型構造に類似する結晶構造を有する相とからなること
が好ましい。ここで、Ce2Ni7型構造、CeNi3
構造、Gd2Co7型構造もしくはPuNi3型構造に類
似する結晶構造を有する相(以下、類似結晶相と称す)
とは、以下に説明する(a)または(b)の条件を満足
する相を意味する。
The first phase group includes a phase having a Ce 2 Ni 7 type structure, a phase having a CeNi 3 type structure, and a phase having a Ce 2 Ni 7 type structure.
Desirably, the phase comprises a phase structure or a phase having a crystal structure similar to the CeNi 3 type structure. On the other hand, the second phase group includes a phase having a Gd 2 Co 7 type structure, a phase having a PuNi 3 type structure, and a phase having a Gd 2 Co 7 type structure or PuNi.
It preferably comprises a phase having a crystal structure similar to the type 3 structure. Here, a phase having a crystal structure similar to the Ce 2 Ni 7 type structure, CeNi 3 type structure, Gd 2 Co 7 type structure or PuNi 3 type structure (hereinafter referred to as a similar crystal phase)
Means a phase that satisfies the condition (a) or (b) described below.

【0025】(a)X線回折パターンに現れる主要なピ
ークが正規構造のX線回折パターンに現れる主要なピー
クと似ている相。このような類似結晶相としては、例え
ば、Ce2Ni7型構造、CeNi3型構造、Gd2Co7
型構造もしくはPuNi3型の面指数(ミラー指数)で
規定することが可能な結晶構造を有する相を挙げること
ができる。中でも、前記類似結晶相は、以下の(1)ま
たは(2)に説明する結晶構造を有することが好まし
い。
(A) A phase in which a main peak appearing in an X-ray diffraction pattern is similar to a main peak appearing in an X-ray diffraction pattern having a normal structure. Such a similar crystal phase includes, for example, Ce 2 Ni 7 type structure, CeNi 3 type structure, Gd 2 Co 7
Examples thereof include a phase having a crystal structure that can be defined by a type structure or a PuNi 3 type plane index (Miller index). In particular, the similar crystal phase preferably has a crystal structure described in the following (1) or (2).

【0026】(1)CuKα線を用いるX線回折において強
度が最も高いピークが2θが42.1±1゜の範囲内に
現れ、かつ下記(I)式で表される強度比が80%以下
を満たす結晶構造。
(1) In X-ray diffraction using CuKα ray, a peak having the highest intensity appears within a range of 2θ of 42.1 ± 1 °, and an intensity ratio represented by the following formula (I) is 80% or less. Crystal structure that satisfies.

【0027】I3/I4 (I) 但し、I4は、CuKα線を用いるX線回折における最も強
度が高いピークの強度であり、I3は、前記X線回折にお
ける2θが31〜34°の範囲に現れるピークの強度で
ある。なお、θはブラッグ角である。
I 3 / I 4 (I) where I 4 is the intensity of the peak having the highest intensity in X-ray diffraction using CuKα ray, and I 3 is that the 2θ in the X-ray diffraction is 31 to 34 °. Is the intensity of the peak appearing in the range. Is the Bragg angle.

【0028】(2)CuKα線を用いるX線回折における2
θが42.1±1゜の範囲内に強度が最も高いピークが
現れ、かつ2θが31〜34°の範囲に現れるピークが
複数本に割れている結晶構造。
(2) 2 in X-ray diffraction using CuKα ray
A crystal structure in which a peak having the highest intensity appears in the range of θ of 42.1 ± 1 °, and a plurality of peaks appearing in the range of 2θ of 31 to 34 ° appear.

【0029】(b)透過電子顕微鏡で撮影された電子線
回折パターンにおいて、基本格子反射点(00L)と、
原点(000)との距離|G00L|の5n等分点に規則
格子反射点が存在する相。但し、L及びnは自然数であ
る。
(B) In the electron beam diffraction pattern photographed by the transmission electron microscope, the basic lattice reflection point (00L)
A phase in which a regular lattice reflection point exists at 5n equal points of the distance | G 00L | with respect to the origin (000). Here, L and n are natural numbers.

【0030】前述した距離|G00L|は、0.385n
-1〜0.413nm-1の範囲内であることが望まし
い。最も好ましい値は、0.4nm-1である。
The aforementioned distance | G 00L | is 0.385 n
It is desirable to be within the range of m -1 to 0.413 nm -1 . The most preferred value is 0.4 nm -1 .

【0031】例えばnが1である時、基本格子反射点
(00L)と、原点(000)との距離|G00L|を5
等分する位置に規則格子反射点が存在する。
For example, when n is 1, the distance | G 00L | between the basic grid reflection point (00L) and the origin (000) is set to 5
There are regular grid reflection points at equally dividing positions.

【0032】なお、Ce2Ni7型の結晶構造か、もしく
はGd2Co7型の結晶構造を有する水素吸蔵合金は、電
子回折パターンにおいて、基本格子反射点(00L)
と、原点(000)との距離|G00L|を3等分する位
置に規則格子反射点が存在する。一方、CeNi3型の
結晶構造か、もしくはPuNi3型の結晶構造を有する
水素吸蔵合金は、電子回折パターンにおいて、基本格子
反射点(00L)と、原点(000)との距離|G00L
|を2等分する位置に規則格子反射点が存在する。
A hydrogen storage alloy having a Ce 2 Ni 7 type crystal structure or a Gd 2 Co 7 type crystal structure has a basic lattice reflection point (00 L) in the electron diffraction pattern.
A regular lattice reflection point exists at a position that equally divides the distance | G 00L | On the other hand, a hydrogen storage alloy having a CeNi 3 type crystal structure or a PuNi 3 type crystal structure has a distance | G 00L between the basic lattice reflection point (00L) and the origin (000) in the electron diffraction pattern.
A regular lattice reflection point exists at a position that bisects |.

【0033】前記類似結晶相の中でも、前述した(a)
及び(b)の双方の条件を満足するものが好ましい。
Among the similar crystal phases, the aforementioned (a)
Those satisfying both conditions (b) and (b) are preferable.

【0034】ここで、“主相”とは、前記第1の相及び
前記第2の相からなる群より選ばれる少なくとも1つの
相が前記水素吸蔵合金中に最大の容積を占めるか、前記
水素吸蔵合金断面において最大の面積を占めることを意
味するものである。特に、前記第1の相及び前記第2の
相からなる群より選ばれる少なくとも1つの相の前記水
素吸蔵合金に占める容積比率は、50容積%以上存在す
ることが好ましい。前記容積比率のより好ましい範囲
は、60容積%以上、さらに好ましくは70容積%以上
である。
Here, the “main phase” means that at least one phase selected from the group consisting of the first phase and the second phase occupies the largest volume in the hydrogen storage alloy, or It means that it occupies the largest area in the cross section of the storage alloy. In particular, it is preferable that the volume ratio of the at least one phase selected from the group consisting of the first phase and the second phase in the hydrogen storage alloy is 50% by volume or more. A more preferred range of the volume ratio is 60% by volume or more, further preferably 70% by volume or more.

【0035】(2)第2の水素吸蔵合金 第2の合金中のAl含有量を前記範囲に規定するのは次
のような理由によるものである。Al含有量を3モル%
未満にすると、高温貯蔵時に第1の水素吸蔵合金が腐食
するのを抑制することが困難になるため、高温貯蔵後、
容量を回復させるための充放電を繰り返し行う必要が生
じ、容量回復に長時間を要するようになる。Al含有量
のより好ましい範囲は3.3モル%以上、さらに好まし
い範囲は5モル%以上である。Al含有量が多くなるほ
ど、第1の合金の腐食を抑制する効果が高くなるもの
の、第2の合金の水素吸蔵放出能が劣化する恐れがあ
る。このため、Al含有量は、第2の合金の水素吸蔵・
放出性能が損なわれないように設定される。なお、Al
含有量の許容上限値は、水素吸蔵合金の組成によって変
動する。
(2) Second hydrogen storage alloy The Al content in the second alloy is specified in the above range for the following reason. Al content of 3 mol%
If it is less than 1, since it becomes difficult to suppress corrosion of the first hydrogen storage alloy during high-temperature storage, after high-temperature storage,
It is necessary to repeatedly perform charging and discharging to recover the capacity, and it takes a long time to recover the capacity. A more preferable range of the Al content is 3.3 mol% or more, and a further preferable range is 5 mol% or more. As the Al content increases, the effect of suppressing corrosion of the first alloy increases, but the hydrogen storage / release capability of the second alloy may deteriorate. For this reason, the Al content is determined by the hydrogen storage /
The release performance is set so as not to be impaired. In addition, Al
The allowable upper limit of the content varies depending on the composition of the hydrogen storage alloy.

【0036】第2の合金は、1種類以上の希土類元素、
ニッケル及びコバルトをさらに含むことが望ましい。中
でも、下記(2)式で表わされる組成を有する水素吸蔵
合金は、サイクル特性に優れるため、好適である。
The second alloy comprises one or more rare earth elements,
It is desirable to further include nickel and cobalt. Above all, a hydrogen storage alloy having a composition represented by the following formula (2) is preferable since it has excellent cycle characteristics.

【0037】 RαNi5-x-y-zCoxAlyz …(2) 但し、Rは1種類以上の希土類元素(希土類元素にはイ
ットリウムが含まれる)であり、MはMn,Fe,C
r,Sn、Cu,B,Zr,CaおよびYよりなる群か
ら選ばれる1種以上の元素であり、原子比α、x、yお
よびzは、0.95<α<1.05、0.2<x<1.
0、0.18≦y、0≦z<1を示す。
R α Ni 5-xyz Co x Al y M z (2) where R is one or more rare earth elements (rare earth elements include yttrium), and M is Mn, Fe, C
r, Sn, Cu, B, Zr, Ca, and one or more elements selected from the group consisting of Ca and Y, and the atomic ratios α, x, y, and z are 0.95 <α <1.05, 0. 2 <x <1.
0, 0.18 ≦ y, and 0 ≦ z <1.

【0038】前記Rとしては、水素吸蔵合金電極のコス
トを低くする観点から、La、Ce、Pr、Ndおよび
Yから選ばれる少なくとも1種の元素を使用することが
好ましい。中でも、希土類元素の混合物であるミッシュ
メタルを使用することがより好ましい。前記ミッシュメ
タルとしては、Ceがリッチなミッシュメタル(M
m)、Laがリッチなミッシュメタル(Lm)を使用す
ることが可能である。
As R, it is preferable to use at least one element selected from La, Ce, Pr, Nd and Y from the viewpoint of reducing the cost of the hydrogen storage alloy electrode. Among them, it is more preferable to use misch metal which is a mixture of rare earth elements. As the misch metal, a misch metal rich in Ce (M
m), it is possible to use misch metal (Lm) rich in La.

【0039】前記(2)式で表わされる組成を有する第
2の水素吸蔵合金は、Alの原子比yが0.18以上、
つまりAl含有量が3モル%以上である。原子比yは
0.2≦yにすることがより好ましく、さらに好ましい
範囲は0.3≦yである。また、原子比yの上限は、第
2の水素吸蔵合金の水素吸蔵能および均質性を維持する
観点から1.0が望ましく、さらに望ましくは0.8で
ある。
The second hydrogen storage alloy having the composition represented by the above formula (2) has an atomic ratio y of Al of 0.18 or more,
That is, the Al content is 3 mol% or more. It is more preferable that the atomic ratio y satisfies 0.2 ≦ y, and an even more preferable range is 0.3 ≦ y. The upper limit of the atomic ratio y is preferably 1.0, and more preferably 0.8, from the viewpoint of maintaining the hydrogen storage ability and homogeneity of the second hydrogen storage alloy.

【0040】前記第1の水素吸蔵合金及び前記第2の水
素吸蔵合金の合計重量に占める前記第1の水素吸蔵合金
の重量比を前記範囲に規定するのは次のような理由によ
るものである。第1の水素吸蔵合金の重量比を10%未
満にすると、高い低温放電特性を得られなくなる。一
方、第1の水素吸蔵合金の重量比が90%を超えると、
高温貯蔵後、容量を回復させるのに必要な充放電回数が
多くなり、高い容量回復特性が得られなくなる。重量比
のより好ましい範囲は30%を超え、80%未満であ
り、さらに好ましい範囲は40%を超え、80%未満で
ある。
The reason why the weight ratio of the first hydrogen storage alloy to the total weight of the first hydrogen storage alloy and the second hydrogen storage alloy is defined in the above range is as follows. . If the weight ratio of the first hydrogen storage alloy is less than 10%, high low-temperature discharge characteristics cannot be obtained. On the other hand, when the weight ratio of the first hydrogen storage alloy exceeds 90%,
After storage at a high temperature, the number of times of charge / discharge required to recover the capacity increases, and high capacity recovery characteristics cannot be obtained. A more preferred range for the weight ratio is greater than 30% and less than 80%, and a more preferred range is greater than 40% and less than 80%.

【0041】前記第1の水素吸蔵合金及び前記第2の水
素吸蔵合金の平均粒径は、それぞれ、15〜80μmの
範囲にすることが好ましい。平均粒径を15μm未満に
すると、水素吸蔵合金の表面積が増加するため、電解液
による合金表面腐食が増大してサイクル寿命が低下する
恐れがある。一方、平均粒径が80μmを超えると、水
素吸蔵合金の表面積減少に伴う電極反応性の低下が顕著
になる恐れがある。平均粒径のさらに望ましい範囲は3
0〜60μmである。なお、第1の水素吸蔵合金と第2
の水素吸蔵合金の平均粒径は、同じでも、互いに異なっ
ていても良い。
The average particle diameter of each of the first hydrogen storage alloy and the second hydrogen storage alloy is preferably in the range of 15 to 80 μm. When the average particle size is less than 15 μm, the surface area of the hydrogen storage alloy increases, so that corrosion of the alloy surface due to the electrolyte solution may increase and the cycle life may be reduced. On the other hand, when the average particle size exceeds 80 μm, the electrode reactivity may be significantly reduced due to the decrease in the surface area of the hydrogen storage alloy. A more desirable range of the average particle size is 3
0 to 60 μm. The first hydrogen storage alloy and the second hydrogen storage alloy
May have the same or different average particle sizes.

【0042】本発明に係る水素吸蔵合金電極は、例え
ば、前述した第1及び第2の水素吸蔵合金の粉末に導電
材を添加し、結着剤および水とともに混練してペースト
を調整し、前記ペーストを導電性基板に充填し、乾燥し
た後、加圧成形することにより作製される。
In the hydrogen storage alloy electrode according to the present invention, for example, a conductive material is added to the above-mentioned first and second hydrogen storage alloy powders and kneaded with a binder and water to prepare a paste. The paste is filled in a conductive substrate, dried, and then formed by pressure molding.

【0043】前記結着剤としては、例えば、カルボキシ
メチルセルロース、メチルセルロース、ポリアクリル酸
ナトリウム、ポリテトラフルオロエチレンを挙げること
ができる。
Examples of the binder include carboxymethylcellulose, methylcellulose, sodium polyacrylate and polytetrafluoroethylene.

【0044】前記導電材としては、例えば、カーボンブ
ラック等を挙げることができる。
[0044] Examples of the conductive material include carbon black.

【0045】前記導電性基板としては、例えば、パンチ
ドメタル、エキスパンデッドメタル、ニッケルネット等
の二次元基板や、フェルト状金属多孔体や、スポンジ状
金属基板などの三次元基板を挙げることができる。
Examples of the conductive substrate include a two-dimensional substrate such as a punched metal, an expanded metal, and a nickel net, and a three-dimensional substrate such as a felt-like metal porous body and a sponge-like metal substrate. it can.

【0046】本発明に係る水素吸蔵合金電極中の第1、
第2の水素吸蔵合金の混合比、第1、第2の水素吸蔵合
金の組成並びに結晶構造は、以下に説明する方法で測定
される。
In the hydrogen storage alloy electrode according to the present invention, the first,
The mixing ratio of the second hydrogen storage alloy and the compositions and crystal structures of the first and second hydrogen storage alloys are measured by the methods described below.

【0047】(I)混合比 前記第1の水素吸蔵合金及び前記第2の水素吸蔵合金の
合計重量に占める前記第1の水素吸蔵合金の重量比は、
CuKα線を用いた粉末X線回折パターンにおいて2θ
が31〜34°の範囲に現れるピークの相対強度によっ
て把握できる。すなわち、第1の水素吸蔵合金は、Cu
Kα線を用いた粉末X線回折パターンにおいて2θが3
1〜34°の範囲にピークが現れるのに対し、第2の水
素吸蔵合金は、CuKα線を用いた粉末X線回折パター
ンにおいて2θが31〜34°の範囲にピークが現れな
い。よって、第1の合金のみについて、CuKα線を用
いた粉末X線回折パターンを測定し、2θが31〜34
°の範囲に現れるピークの強度を求め、これを第1の合
金の重量比が100%である際の強度(基準強度)とす
る。一方、水素吸蔵合金電極を分解し、水素吸蔵合金の
混合粉末を取り出す。この混合粉末について、CuKα
線を用いた粉末X線回折パターンを測定し、2θが31
〜34°の範囲に現れるピークの強度を求め、このピー
ク強度と前述した基準強度を比較することによって、電
極中の第1の合金と第2の合金の混合比を求めることが
できる。さらに正確に測定するには、水素吸蔵合金電極
を樹脂に埋め込んで研磨し、この電極に含まれる合金粒
子の断面を研磨面上に露出させ、露出した複数の合金粒
子の断面についてエネルギー分散型X線分析装置により
定量分析することにより第1の合金と第2の合金の混合
比を求めると良い。
(I) Mixing ratio The weight ratio of the first hydrogen storage alloy to the total weight of the first hydrogen storage alloy and the second hydrogen storage alloy is as follows:
In the powder X-ray diffraction pattern using CuKα ray, 2θ
Can be grasped from the relative intensity of the peak appearing in the range of 31 to 34 °. That is, the first hydrogen storage alloy is Cu
In the powder X-ray diffraction pattern using Kα ray, 2θ is 3
While a peak appears in the range of 1 to 34 °, the second hydrogen storage alloy does not show a peak in the range of 31 to 34 ° in 2θ in the powder X-ray diffraction pattern using CuKα radiation. Therefore, for only the first alloy, the powder X-ray diffraction pattern using CuKα radiation was measured, and 2θ was 31 to 34.
The intensity of the peak appearing in the range of ° is determined, and this is defined as the intensity (reference intensity) when the weight ratio of the first alloy is 100%. On the other hand, the hydrogen storage alloy electrode is disassembled, and a mixed powder of the hydrogen storage alloy is taken out. About this mixed powder, CuKα
The powder X-ray diffraction pattern using X-rays was measured, and 2θ was 31.
By obtaining the intensity of the peak appearing in the range of up to 34 ° and comparing this peak intensity with the above-mentioned reference intensity, the mixing ratio between the first alloy and the second alloy in the electrode can be obtained. For more accurate measurement, the hydrogen-absorbing alloy electrode is embedded in a resin and polished, the cross section of the alloy particles contained in the electrode is exposed on the polished surface, and the cross section of the exposed plurality of alloy particles is energy-dispersive X It is preferable that the mixing ratio of the first alloy and the second alloy is determined by quantitative analysis using a line analyzer.

【0048】(II)第1の水素吸蔵合金の組成及び結晶
構造 第1の水素吸蔵合金の組成は、例えば、走査電子顕微鏡
の波長分散型X線マイクロアナライザにより求められ
る。
(II) Composition and Crystal Structure of First Hydrogen Storage Alloy The composition of the first hydrogen storage alloy can be obtained by, for example, a wavelength dispersive X-ray microanalyzer of a scanning electron microscope.

【0049】また、第1の水素吸蔵合金の主相の結晶構
造は、Cu−Kα線をX線源とするX線回折パターンか
ら求めることができる。
The crystal structure of the main phase of the first hydrogen storage alloy can be determined from an X-ray diffraction pattern using Cu-Kα radiation as an X-ray source.

【0050】さらに、第1の水素吸蔵合金の主相の占有
率は、以下に説明する方法で測定される。すなわち、任
意の5視野の走査電子顕微鏡写真を撮影し、各顕微鏡写
真について視野内の合金面積に占める(この合金面積を
100%とする)主相の面積比率を求める。得られた面
積比率の平均値を算出し、これを水素吸蔵合金中の主相
の容積比率とする。但し、水素吸蔵合金を溶湯急冷で作
製すると、結晶粒度が1μm程度もしくはそれ以下と小
さくなるため、主相を走査電子顕微鏡で観察することが
困難になる場合がある。この際には、走査電子顕微鏡の
代わりに透過電子顕微鏡を使用する。
Further, the occupancy of the main phase of the first hydrogen storage alloy is measured by the method described below. That is, scanning electron micrographs of five arbitrary visual fields are taken, and for each micrograph, the area ratio of the main phase to the alloy area in the visual field (this alloy area is taken as 100%) is determined. The average value of the obtained area ratios is calculated, and this is defined as the volume ratio of the main phase in the hydrogen storage alloy. However, when the hydrogen storage alloy is produced by quenching the molten metal, the crystal grain size becomes as small as about 1 μm or less, so that it may be difficult to observe the main phase with a scanning electron microscope. In this case, a transmission electron microscope is used instead of the scanning electron microscope.

【0051】(III)第2の水素吸蔵合金の組成及び結
晶構造 第2の水素吸蔵合金の組成は、例えば、走査電子顕微鏡
の波長分散型X線マイクロアナライザにより求められ
る。
(III) Composition and Crystal Structure of Second Hydrogen Storage Alloy The composition of the second hydrogen storage alloy can be obtained, for example, by a wavelength-dispersive X-ray microanalyzer of a scanning electron microscope.

【0052】また、第2の水素吸蔵合金の主相の結晶構
造は、Cu−Kα線をX線源とするX線回折パターンか
ら求めることができる。
The crystal structure of the main phase of the second hydrogen storage alloy can be determined from an X-ray diffraction pattern using Cu-Kα radiation as an X-ray source.

【0053】なお、本発明に係る水素吸蔵合金電極に含
まれる第1の水素吸蔵合金及び第2の水素吸蔵合金の組
成は、二次電池に組み込まれる前の段階では、電極に組
み込まれる前と変わらない。一方、本発明に係る水素吸
蔵合金電極を二次電池に組み込み、初充放電を施した
後、この二次電池を分解して水素吸蔵合金電極を取り出
し、この電極に含まれる第1の水素吸蔵合金及び第2の
水素吸蔵合金の組成を測定すると、第1の水素吸蔵合金
及び第2の水素吸蔵合金いずれも合金粒子の電解液と接
する表面近傍では、電極に組み込まれる前に比べてAl
量が減少しているものの、合金粒子の中心部では初期の
Al量を維持した組成となっている。従って、初充放電
を施した後の二次電池に用いた水素吸蔵合金について組
成等を測定する場合、水素吸蔵合金電極に前述した樹脂
埋め研磨を施し、研磨面に露出した合金粒子断面の中心
部について測定を行うものとする。
The compositions of the first hydrogen storage alloy and the second hydrogen storage alloy contained in the hydrogen storage alloy electrode according to the present invention are different from those before being incorporated in the secondary battery in the stage before being incorporated in the secondary battery. does not change. On the other hand, after incorporating the hydrogen storage alloy electrode according to the present invention into a secondary battery and performing initial charge / discharge, the secondary battery is disassembled to take out the hydrogen storage alloy electrode, and the first hydrogen storage alloy electrode included in this electrode is taken out. When the compositions of the alloy and the second hydrogen storage alloy were measured, both the first hydrogen storage alloy and the second hydrogen storage alloy had a higher Al content near the surface of the alloy particles in contact with the electrolyte than before being incorporated into the electrode.
Although the amount is reduced, the composition is such that the initial amount of Al is maintained at the center of the alloy particles. Therefore, when measuring the composition and the like of the hydrogen storage alloy used for the secondary battery after the initial charge and discharge, the hydrogen storage alloy electrode is subjected to the above-described resin filling polishing, and the center of the cross section of the alloy particle exposed on the polished surface is measured. Part shall be measured.

【0054】次いで、本発明に係る水素吸蔵合金電極を
備えた二次電池について説明する。
Next, a secondary battery provided with the hydrogen storage alloy electrode according to the present invention will be described.

【0055】この二次電池は、正極と、負極として前述
した水素吸蔵合金電極と、前記正極及び前記負極の間に
介装されるセパレータとを含む電極群、及び前記電極群
に含浸されるアルカリ電解液を備える。
This secondary battery has an electrode group including a positive electrode, the above-mentioned hydrogen storage alloy electrode as a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkali impregnated in the electrode group. An electrolyte is provided.

【0056】以下、前記正極、負極、セパレータおよび
電解液について説明する。
Hereinafter, the positive electrode, the negative electrode, the separator, and the electrolyte will be described.

【0057】1) 正極 この正極は、例えば、活物質である水酸化ニッケル粉末
に導電材料を添加し、高分子結着剤および水とともに混
練してペーストを調整し、前記ペーストを導電性基板に
充填し、乾燥した後、成形することにより作製される。
1) Positive electrode This positive electrode is prepared, for example, by adding a conductive material to nickel hydroxide powder as an active material, kneading the mixture with a polymer binder and water to prepare a paste, and applying the paste to a conductive substrate. It is produced by filling, drying, and then molding.

【0058】前記水酸化ニッケル粉末は、亜鉛酸化物、
コバルト酸化物、亜鉛水酸化物及びコバルト水酸化物の
群から選択される少なくとも1つの化合物を含んでいて
も良い。
The nickel hydroxide powder comprises zinc oxide,
It may contain at least one compound selected from the group consisting of cobalt oxide, zinc hydroxide and cobalt hydroxide.

【0059】前記導電材料としては、例えば、コバルト
酸化物、コバルト水酸化物、金属コバルト、金属ニッケ
ル、炭素などを挙げることができる。
Examples of the conductive material include cobalt oxide, cobalt hydroxide, metallic cobalt, metallic nickel, and carbon.

【0060】前記高分子結着剤としては、例えば、カル
ボキシメチルセルロース、メチルセルロース、ポリアク
リル酸ナトリウム、ポリテトラフルオロエチレンを挙げ
ることができる。
Examples of the polymer binder include carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, and polytetrafluoroethylene.

【0061】前記導電性基板としては、例えばニッケ
ル、ステンレスまたはニッケルめっきが施された金属か
ら形成された網状、スポンジ状、繊維状、もしくはフェ
ルト状の金属多孔体を挙げることができる。
Examples of the conductive substrate include a mesh-like, sponge-like, fibrous, or felt-like porous metal body made of nickel, stainless steel, or nickel-plated metal.

【0062】2) セパレータ このセパレータとしては、例えば、ポリプロピレン不織
布、ナイロン不織布、ポリプロピレン繊維とナイロン繊
維を混繊した不織布のような高分子不織布等を挙げるこ
とができる。特に、表面が親水化処理されたポリプロピ
レン不織布はセパレータとして好適である。
2) Separator Examples of the separator include a polymer non-woven fabric such as a polypropylene non-woven fabric, a nylon non-woven fabric, and a non-woven fabric obtained by mixing polypropylene fibers and nylon fibers. In particular, a polypropylene nonwoven fabric whose surface has been hydrophilized is suitable as a separator.

【0063】3) アルカリ電解液 このアルカリ電解液としては、例えば、水酸化ナトリウ
ム(NaOH)の水溶液、水酸化リチウム(LiOH)の水溶
液、水酸化カリウム(KOH)の水溶液、NaOHとLiOHの混
合液、KOHとLiOHの混合液、KOHとLiOHとNaOHの混合液等
を用いることができる。
3) Alkaline Electrolyte Examples of the alkaline electrolyte include an aqueous solution of sodium hydroxide (NaOH), an aqueous solution of lithium hydroxide (LiOH), an aqueous solution of potassium hydroxide (KOH), and a mixed solution of NaOH and LiOH. , A mixed solution of KOH and LiOH, a mixed solution of KOH, LiOH and NaOH, and the like.

【0064】本発明に係る二次電池の一例である円筒形
アルカリ二次電池を図1に示す。
FIG. 1 shows a cylindrical alkaline secondary battery as an example of the secondary battery according to the present invention.

【0065】図1に示すように有底円筒状の容器1内に
は、正極2とセパレータ3と負極4とを積層してスパイ
ラル状に捲回することにより作製された電極群5が収納
されている。前記負極4は、前記電極群5の最外周に配
置されて前記容器1と電気的に接触している。アルカリ
電解液は、前記容器1内に収容されている。中央に孔6
を有する円形の封口板7は、前記容器1の上部開口部に
配置されている。リング状の絶縁性ガスケット8は、前
記封口板7の周縁と前記容器1の上部開口部内面の間に
配置され、前記上部開口部を内側に縮径するカシメ加工
により前記容器1に前記封口板7を前記ガスケット8を
介して気密に固定している。正極リード9は、一端が前
記正極2に接続、他端が前記封口板7の下面に接続され
ている。帽子形状をなす正極端子10は、前記封口板7
上に前記孔6を覆うように取り付けられている。ゴム製
の安全弁11は、前記封口板7と前記正極端子10で囲
まれた空間内に前記孔6を塞ぐように配置されている。
中央に穴を有する絶縁材料からなる円形の押え板12
は、前記正極端子10上に前記正極端子10の突起部が
その押え板12の前記穴から突出されるように配置され
ている。外装チューブ13は、前記押え板12の周縁、
前記容器1の側面及び前記容器1の底部周縁を被覆して
いる。
As shown in FIG. 1, an electrode group 5 formed by laminating a positive electrode 2, a separator 3, and a negative electrode 4 and winding them in a spiral shape is accommodated in a bottomed cylindrical container 1. ing. The negative electrode 4 is arranged at the outermost periphery of the electrode group 5 and is in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1. Hole 6 in the center
Is disposed in the upper opening of the container 1. The ring-shaped insulating gasket 8 is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the sealing plate is attached to the container 1 by caulking to reduce the diameter of the upper opening inward. 7 is hermetically fixed via the gasket 8. One end of the positive electrode lead 9 is connected to the positive electrode 2, and the other end is connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 having a hat shape is provided with the sealing plate 7.
It is attached so as to cover the hole 6 above. A rubber safety valve 11 is disposed so as to close the hole 6 in a space surrounded by the sealing plate 7 and the positive electrode terminal 10.
Circular holding plate 12 made of an insulating material having a hole in the center
Are arranged on the positive electrode terminal 10 such that the projections of the positive electrode terminal 10 protrude from the holes of the holding plate 12. The outer tube 13 is provided on the periphery of the holding plate 12,
The side surface of the container 1 and the periphery of the bottom of the container 1 are covered.

【0066】本発明に係る二次電池は、前述した図1に
示すような円筒形アルカリ二次電池の他に、正極と負極
とをセパレータを介して交互に積層した構造の電極群
と、アルカリ電解液とが有底矩形筒状の容器内に収納さ
れた構造の角形アルカリ二次電池に同様に適用すること
ができる。
The secondary battery according to the present invention includes, in addition to the cylindrical alkaline secondary battery as shown in FIG. 1 described above, an electrode group having a structure in which a positive electrode and a negative electrode are alternately stacked with a separator interposed therebetween. The present invention can be similarly applied to a rectangular alkaline secondary battery having a structure in which an electrolytic solution is contained in a bottomed rectangular cylindrical container.

【0067】次いで、本発明に係るハイブリッドカー及
び電気自動車について説明する。
Next, a hybrid car and an electric vehicle according to the present invention will be described.

【0068】本発明に係るハイブリッドカーは、外燃機
関もしくは内燃機関と、例えばモータからなる電気駆動
手段と、前記電気駆動手段用の電源とを具備する。前記
電源は、正極と、負極と、アルカリ電解液とを具備した
二次電池を具備する。前記負極には、本発明に係る水素
吸蔵合金電極が用いられる。
The hybrid car according to the present invention includes an external combustion engine or an internal combustion engine, an electric drive means such as a motor, and a power supply for the electric drive means. The power supply includes a secondary battery including a positive electrode, a negative electrode, and an alkaline electrolyte. The hydrogen storage alloy electrode according to the present invention is used for the negative electrode.

【0069】ここでいう“ハイブリッドカー”には、外
燃機関もしくは内燃機関が発電機を駆動し、発電した電
力と前記二次電池からの電力により電気駆動手段が車輪
を駆動するものと、外燃機関もしくは内燃機関ならびに
電気駆動手段の双方の駆動力を使い分けて車輪を駆動す
るものとが包含される。
The “hybrid car” referred to here includes an external combustion engine or an internal combustion engine that drives a generator, and an electric drive unit that drives wheels by electric power generated and electric power from the secondary battery. The one that drives the wheels by selectively using the driving force of both the fuel engine or the internal combustion engine and the electric driving means is included.

【0070】本発明に係る電気自動車は、駆動電源とし
て二次電池を具備する。前記二次電池は、正極と、負極
と、アルカリ電解液とを具備する。前記負極には、本発
明に係る水素吸蔵合金電極が用いられる。
The electric vehicle according to the present invention includes a secondary battery as a driving power source. The secondary battery includes a positive electrode, a negative electrode, and an alkaline electrolyte. The hydrogen storage alloy electrode according to the present invention is used for the negative electrode.

【0071】以上説明した本発明に係る水素吸蔵合金電
極は、前述した(1)式で表わされる組成を有する第1
の水素吸蔵合金と、CaCu5型の結晶構造を有すると
共に、Alを3モル%以上含有する第2の水素吸蔵合金
とを含む。また、前記第1および第2の水素吸蔵合金の
合計重量に占める前記第1の水素吸蔵合金の重量比は、
10%を超え、90%未満である。このような水素吸蔵
合金電極及びこの電極を備えた二次電池によれば、高容
量で、低温高率放電特性に優れ、高温雰囲気中に長時間
貯蔵した際の電池の分極を抑制することができ、さらに
このような貯蔵後の容量回復を容易に行うことが可能に
なる。このような効果が得られる理由は明らかではない
ものの、以下に説明する作用によるものと推測される。
The hydrogen storage alloy electrode according to the present invention described above has the first composition having the composition represented by the above formula (1).
And a second hydrogen storage alloy having a CaCu 5 type crystal structure and containing 3 mol% or more of Al. The weight ratio of the first hydrogen storage alloy to the total weight of the first and second hydrogen storage alloys is as follows:
More than 10% and less than 90%. According to such a hydrogen storage alloy electrode and a secondary battery provided with this electrode, it is possible to suppress the polarization of the battery when it is stored for a long time in a high temperature atmosphere with high capacity, excellent in low temperature and high rate discharge characteristics. The capacity can be easily recovered after such storage. Although the reason for obtaining such an effect is not clear, it is presumed to be due to the operation described below.

【0072】すなわち、前述した(1)式で表わされる
組成を有し、結晶系が六方晶である第1の相群(但し、
CaCu5型構造を有する相を除く)および結晶系が菱
面体である第2の相群からなる群より選ばれる少なくと
も1種類の相を主相として含む第1の水素吸蔵合金は、
CaCu5型の結晶構造を有する水素吸蔵合金に比べて
体積あたり重量あたりいずれも高容量をしめすものの、
この合金を含む負極を備えたアルカリ蓄電池を高温環境
下に長時間放置すると、合金表面に合金構成元素とアル
カリ電解液との反応による水酸化合物などが蓄積して厚
い酸化皮膜が形成される。この酸化皮膜は、充放電反応
を阻害する要因となり、電池の分極を増大させる。その
結果、高温貯蔵後、充電を正しく制御することが困難と
なるため、過充電を避けるために充電深度が浅くなり、
放電容量が本来の値よりも低くなる。高温貯蔵後、浅い
充放電を繰り返すことによって、水素吸蔵合金が膨張収
縮により割れを生じて新たに表面を形成し、また電解液
や気泡の移動により合金表面の堆積物が洗浄されるた
め、分極を問題のないレベルまで低くすることができ、
本来の放電容量に回復させることができる。しかしなが
ら、放電容量を回復させるまでに多数の充放電を施す必
要があり、容量回復までに長時間を要する。
That is, a first phase group having a composition represented by the above formula (1) and having a hexagonal crystal system (however,
A first hydrogen storage alloy containing as a main phase at least one phase selected from the group consisting of a second phase group having a rhombohedral crystal system except for a phase having a CaCu 5 type structure)
Although it shows a higher capacity per volume per weight than a hydrogen storage alloy having a CaCu 5 type crystal structure,
When an alkaline storage battery provided with a negative electrode containing this alloy is left for a long time in a high-temperature environment, a hydroxyl compound or the like due to the reaction between the alloy constituent elements and the alkaline electrolyte is accumulated on the alloy surface, and a thick oxide film is formed. This oxide film becomes a factor inhibiting the charge / discharge reaction and increases the polarization of the battery. As a result, it becomes difficult to control charging properly after high-temperature storage, so the charging depth becomes shallow to avoid overcharging,
The discharge capacity becomes lower than the original value. After high-temperature storage, the shallow charge / discharge cycle causes the hydrogen-absorbing alloy to crack due to expansion and contraction to form a new surface, and the deposits on the alloy surface are washed away by the movement of the electrolyte and bubbles. To a safe level,
The original discharge capacity can be restored. However, a large number of charge / discharge operations must be performed before the discharge capacity is recovered, and it takes a long time to recover the capacity.

【0073】前述した第1の水素吸蔵合金のAl原子比
wを多くすることによって、両性元素であるAlをアル
カリ電解液中にアルミン酸イオンとして多量に溶解させ
ることができ、他の合金構成元素のうち塩基性の強いア
ルカリ土類金属であるマグネシウムや希土類金属のイオ
ンと合金表面上で結合させて合金表面に不溶性の表面皮
膜を形成することができる。その結果、この表面皮膜が
保護皮膜として機能して高温貯蔵時の酸化皮膜の形成を
抑制することができるため、高温環境下で長期間保存す
ることにより分極が増加するのを抑えることができる。
By increasing the Al atomic ratio w of the above-mentioned first hydrogen storage alloy, Al, which is an amphoteric element, can be dissolved in an alkaline electrolyte in a large amount as aluminate ions. Among them, ions of magnesium or a rare earth metal, which is a strong basic alkaline earth metal, can be bonded on the alloy surface to form an insoluble surface film on the alloy surface. As a result, since this surface film functions as a protective film and can suppress the formation of an oxide film during high-temperature storage, the increase in polarization due to long-term storage in a high-temperature environment can be suppressed.

【0074】しかしながら、前記第1の水素吸蔵合金で
は、Al原子比wが0.15を超えると、偏析を生じや
すく、多数のロットを作製する等の製造条件がばらつき
やすい条件において均質性が著しく損なわれる場合があ
る。合金中に著しい偏析が存在するとその部分の水素吸
蔵能が低下したり、水素吸脱時の体積変化が不均質とな
って合金の割れを促進するなどの問題点を生じるため、
CaCu5型の水素吸蔵合金に比べて高容量という利点
が失われる場合がある。
However, in the case of the first hydrogen storage alloy, when the Al atomic ratio w exceeds 0.15, segregation is liable to occur, and the homogeneity is remarkable under the condition that manufacturing conditions are liable to vary, such as manufacturing a lot of lots. May be impaired. If there is significant segregation in the alloy, the hydrogen storage capacity of that part will be reduced, or the volume change at the time of hydrogen absorption will be inhomogeneous, causing problems such as promoting cracking of the alloy,
In some cases the benefits may be lost as higher capacity than the CaCu 5 type hydrogen storage alloy.

【0075】これに対し、CaCu5型の結晶構造を有
する第2の水素吸蔵合金では、Al含有量を比較的多く
しても偏析が生じず、表面酸化によって電解液中に適量
のアルミン酸イオンを供給しながら、水素の吸蔵・放出
を行うことができる。
On the other hand, in the second hydrogen storage alloy having a CaCu 5 type crystal structure, segregation does not occur even if the Al content is relatively large, and an appropriate amount of aluminate ion is contained in the electrolytic solution by surface oxidation. Can be stored and released while supplying hydrogen.

【0076】そこで、Alの含有量を比較的少量に抑え
て特性を安定化させた高容量の第1の水素吸蔵合金と、
Alを比較的多量に含む第2の水素吸蔵合金を混合し
て、水素吸蔵合金電極を構成すると、第2の合金から供
給されるアルミン酸イオンが第1の合金表面に作用して
安定かつ適度な厚みの保護皮膜を形成することが可能と
なる。その結果、高容量で、かつ低温高率放電特性に優
れるという第1の水素吸蔵合金の特長を維持することが
でき、しかも、高温雰囲気中に長時間貯蔵しても電池の
分極増大の程度が小さく、充放電による電池特性の回復
が容易な水素吸蔵合金電極を得ることができる。
Therefore, a high-capacity first hydrogen storage alloy in which the Al content is kept relatively small to stabilize the characteristics,
When a second hydrogen storage alloy containing a relatively large amount of Al is mixed to form a hydrogen storage alloy electrode, aluminate ions supplied from the second alloy act on the surface of the first alloy to stably and moderately react. It is possible to form a protective film having an appropriate thickness. As a result, it is possible to maintain the characteristics of the first hydrogen storage alloy, that is, high capacity and excellent low-temperature high-rate discharge characteristics, and that the degree of polarization of the battery increases even when stored in a high-temperature atmosphere for a long time. It is possible to obtain a hydrogen storage alloy electrode which is small and easily recovers battery characteristics by charge / discharge.

【0077】本発明において、第2の水素吸蔵合金の組
成を前述した(2)式で表わされるものにすることによ
って、第2の水素吸蔵合金のサイクル特性を向上するこ
とができるため、二次電池のサイクル寿命を改善するこ
とができる。
In the present invention, the cycle characteristics of the second hydrogen storage alloy can be improved by making the composition of the second hydrogen storage alloy represented by the above-mentioned formula (2). The cycle life of the battery can be improved.

【0078】本発明において、前記第1の水素吸蔵合金
及び前記第2の水素吸蔵合金の平均粒径をそれぞれ15
〜80μmの範囲内にすることによって、水素吸蔵合金
において高い反応性を維持しつつ、電解液による腐食を
さらに抑えることができるため、二次電池の低温高率放
電特性及びサイクル寿命をより向上することができる。
In the present invention, the average particle diameter of each of the first hydrogen storage alloy and the second hydrogen storage alloy is 15
By setting the thickness within the range of ~ 80 µm, corrosion by the electrolytic solution can be further suppressed while maintaining high reactivity in the hydrogen storage alloy, so that the low-temperature high-rate discharge characteristics and cycle life of the secondary battery are further improved. be able to.

【0079】また、本発明に係る水素吸蔵合金電極を負
極として備えた二次電池が搭載されたハイブリッドカー
及び電気自動車は、燃費等の走行性能を高くすることが
できる。
In addition, a hybrid car and an electric vehicle equipped with a secondary battery having the hydrogen storage alloy electrode according to the present invention as a negative electrode can improve running performance such as fuel efficiency.

【0080】[0080]

【実施例】以下、本発明の実施例を詳細に説明する。Embodiments of the present invention will be described below in detail.

【0081】(実施例1〜7及び比較例1〜4) {負極の作製} (第1の水素吸蔵合金の作製)45%のランタン、35
%のネオジウム、4%のセリウムおよび10%のプラセ
オジムを主成分とするミッシュメタル、マグネシウム、
ニッケル、コバルト、マンガン、アルミニウムをモル比
で0.7:0.3:2.8:0.5:0.1:0.01
の割合で含有する第1の水素吸蔵合金のインゴットを誘
導溶解炉を用いて調製した。この合金をアルゴン雰囲気
中で900℃、10時間の熱処理を行い、組成がRE
0.7Mg0.3Ni2.8Co0.5Mn0.1Al0.01で表わされ
る水素吸蔵合金インゴットを得た。
(Examples 1 to 7 and Comparative Examples 1 to 4) << Preparation of Negative Electrode >> (Preparation of First Hydrogen Storage Alloy) 45% Lanthanum, 35%
Mish metal, magnesium based on% neodymium, 4% cerium and 10% praseodymium,
Nickel, cobalt, manganese, and aluminum in a molar ratio of 0.7: 0.3: 2.8: 0.5: 0.1: 0.01
Was prepared using an induction melting furnace. This alloy was heat-treated at 900 ° C. for 10 hours in an argon atmosphere, and the composition was changed to RE.
A hydrogen storage alloy ingot represented by 0.7 Mg 0.3 Ni 2.8 Co 0.5 Mn 0.1 Al 0.01 was obtained.

【0082】この水素吸蔵合金について、Cu−Kα線
をX線源とするX線回折パターンから結晶構造を観察し
たところ、主相の結晶構造はCe2Ni7型であった。
When the crystal structure of the hydrogen storage alloy was observed from an X-ray diffraction pattern using Cu-Kα radiation as an X-ray source, the crystal structure of the main phase was Ce 2 Ni 7 type.

【0083】また、この水素吸蔵合金について、任意の
5視野の走査電子顕微鏡写真を撮影した。各顕微鏡写真
について視野内の合金面積に占める主相の面積比率を求
めた。次いで、面積比率の平均値を算出することにより
水素吸蔵合金中の主相の容積比率を得たところ、容積比
率は95体積%であった。
Further, with respect to this hydrogen storage alloy, scanning electron micrographs of five arbitrary visual fields were taken. For each micrograph, the area ratio of the main phase to the alloy area in the visual field was determined. Next, the volume ratio of the main phase in the hydrogen storage alloy was obtained by calculating the average value of the area ratio, and the volume ratio was 95% by volume.

【0084】ひきつづき、この水素吸蔵合金を不活性雰
囲気中で機械的に粉砕し、篩い分けにより400メッシ
ュ〜200メッシュの間に残る合金粉末を選別した。レ
ーザ回折・散乱式粒度分布測定装置により粒度分布を測
定したところ、重量積分50%にあたる平均粒径は46
μmであった。
Subsequently, this hydrogen storage alloy was mechanically pulverized in an inert atmosphere, and the alloy powder remaining between 400 and 200 mesh was selected by sieving. When the particle size distribution was measured by a laser diffraction / scattering type particle size distribution analyzer, the average particle size corresponding to 50% by weight was 46%.
μm.

【0085】(第2の水素吸蔵合金の作製)45%のラ
ンタン、35%のネオジウム、4%のセリウムおよび1
0%のプラセオジムを主成分とするミッシュメタルと、
ニッケル、コバルト、アルミニウム、マンガンをそれぞ
れ表1のモル比で含む第2の水素吸蔵合金インゴットを
誘導溶解炉を用いて調製し、アルゴン雰囲気中で900
℃、10時間の熱処理を行った。
(Preparation of second hydrogen storage alloy) 45% lanthanum, 35% neodymium, 4% cerium and 1%
A misch metal whose main component is 0% praseodymium,
A second hydrogen storage alloy ingot containing nickel, cobalt, aluminum, and manganese in the molar ratios shown in Table 1 was prepared using an induction melting furnace, and was prepared in an argon atmosphere at 900 ppm.
A heat treatment was performed at 10 ° C. for 10 hours.

【0086】この水素吸蔵合金について、Cu−Kα線
をX線源とするX線回折パターンから結晶構造を観察し
たところ、結晶構造はCaCu5型であった。
When the crystal structure of the hydrogen storage alloy was observed from an X-ray diffraction pattern using Cu-Kα radiation as an X-ray source, the crystal structure was CaCu 5 type.

【0087】ひきつづき、不活性雰囲気中で機械的に粉
砕し、篩い分けにより400メッシュ〜200メッシュ
の間に残る合金粉末を選別した。第1の水素吸蔵合金で
説明したのと同様にして平均粒径を求めたところ、46
μmであった。
Subsequently, the powder was mechanically pulverized in an inert atmosphere, and the alloy powder remaining between 400 mesh and 200 mesh was selected by sieving. The average particle size was determined in the same manner as described for the first hydrogen storage alloy.
μm.

【0088】得られた第1の水素吸蔵合金粉末と第2の
水素吸蔵合金粉末とを、表1に示す重量比で混合して、
電極用水素吸蔵合金混合粉末を得た。この合金粉末10
0重量部に対してポリアクリル酸ナトリウム0.4重量
部、カルボキシメチルセルロース0.1重量部、ポリテ
トラフルオロエチレン分散液(分散媒:水、固形分60
重量%)2.5重量部を加えて混練し、60μm厚みの
ニッケルメッキ鉄製穴明き板からなる基板の両面に均等
に、かつ厚さが一定になるように塗布した。ひきつづ
き、乾燥し、プレスを施した後、裁断し、AAサイズ用
の負極を作製した。
The obtained first hydrogen storage alloy powder and the second hydrogen storage alloy powder were mixed at a weight ratio shown in Table 1,
A hydrogen storage alloy mixed powder for an electrode was obtained. This alloy powder 10
0.4 parts by weight of sodium polyacrylate, 0.1 parts by weight of carboxymethylcellulose, and a polytetrafluoroethylene dispersion (dispersion medium: water, solid content 60
2.5% by weight), kneaded, and applied evenly and uniformly to both surfaces of a substrate made of a nickel-plated iron perforated plate having a thickness of 60 μm. Subsequently, after drying, pressing, and cutting, a negative electrode for AA size was produced.

【0089】(電池の組み立て)この負極と公知技術に
より調製された非燒結式のニッケル正極との間にセパレ
ータを介して渦巻き状に捲回することにより電極群を作
製した。得られた電極群を電池缶に挿入し、6mol/
LのKOH、1mol/LのNaOH及び0.5mol
/LのLiOHの混合水溶液であるアルカリ電解液を注
入した後、密封することにより容量が1400mAh
で、AAサイズのニッケル水素二次電池を組み立てた。
(Assembly of Battery) An electrode group was prepared by spirally winding the negative electrode and a non-sintered nickel positive electrode prepared by a known technique via a separator. The obtained electrode group was inserted into a battery can, and 6 mol /
L KOH, 1 mol / L NaOH and 0.5 mol
/ L LiOH mixed aqueous solution was injected, and then sealed to obtain a capacity of 1400 mAh.
Thus, an AA size nickel-metal hydride secondary battery was assembled.

【0090】(実施例8〜14および比較例5〜7)第
2の水素吸蔵合金の組成を下記表2に示すものに変更
し、この第2の水素吸蔵合金と前述した第1の水素吸蔵
合金とを下記表2に示す重量比で混合すること以外は、
前述した実施例1で説明したのと同様にして負極を作製
した。次いで、この負極を用いること以外は、前述した
実施例1で説明したのと同様にしてニッケル水素二次電
池を組み立てた。
(Examples 8 to 14 and Comparative Examples 5 to 7) The composition of the second hydrogen storage alloy was changed to the composition shown in Table 2 below, and the second hydrogen storage alloy and the first hydrogen storage alloy described above were used. Except for mixing with the alloy in the weight ratio shown in Table 2 below,
A negative electrode was manufactured in the same manner as described in Example 1 described above. Next, a nickel-hydrogen secondary battery was assembled in the same manner as described in Example 1 except that this negative electrode was used.

【0091】(実施例15〜21および比較例8〜1
0)第2の水素吸蔵合金の組成を下記表3に示すものに
変更し、この第2の水素吸蔵合金と前述した第1の水素
吸蔵合金とを下記表3に示す重量比で混合すること以外
は、前述した実施例1で説明したのと同様にして負極を
作製した。次いで、この負極を用いること以外は、前述
した実施例1で説明したのと同様にしてニッケル水素二
次電池を組み立てた。
(Examples 15 to 21 and Comparative Examples 8 to 1)
0) The composition of the second hydrogen storage alloy is changed to that shown in Table 3 below, and the second hydrogen storage alloy and the first hydrogen storage alloy described above are mixed at the weight ratio shown in Table 3 below. Except for the above, a negative electrode was produced in the same manner as described in Example 1 described above. Next, a nickel-hydrogen secondary battery was assembled in the same manner as described in Example 1 except that this negative electrode was used.

【0092】(比較例11〜20)第2の水素吸蔵合金
の組成を下記表4に示すものに変更し、この第2の水素
吸蔵合金と前述した第1の水素吸蔵合金とを下記表4に
示す重量比で混合すること以外は、前述した実施例1で
説明したのと同様にして負極を作製した。次いで、この
負極を用いること以外は、前述した実施例1で説明した
のと同様にしてニッケル水素二次電池を組み立てた。
(Comparative Examples 11 to 20) The composition of the second hydrogen storage alloy was changed to that shown in Table 4 below, and this second hydrogen storage alloy and the above-described first hydrogen storage alloy were compared with each other in Table 4 below. A negative electrode was produced in the same manner as described in Example 1 except that the components were mixed at the weight ratio shown in Example 1. Next, a nickel-hydrogen secondary battery was assembled in the same manner as described in Example 1 except that this negative electrode was used.

【0093】得られた実施例1〜21及び比較例1〜2
0の二次電池について、室温において140mAの電流
で13時間充電した後、140mAの電流で電池電圧が
1.0Vに低下するまで放電する充放電サイクルを5サ
イクル施した。次いで、0℃の環境下で1400mAの
電流で充電し、電池電圧がピーク電圧から8mV低下し
た時点を充電終了点とする−dV制御充電を行った後、
1400mAの電流で電池電圧が1.0Vに低下するま
で放電する充放電を2サイクル施した。この後、放電状
態の二次電池を55℃環境下で28日間貯蔵した後、二
次電池を0℃環境下に戻し、前述した−dV制御を用い
た充放電を繰り返した。55℃貯蔵前に最後に行った充
放電時に得られた放電エネルギ(Wh)を100%とし
た際、貯蔵後の充放電における放電エネルギが貯蔵前の
95%以上にまで回復するのに要した充放電サイクル数
を下記表1〜表4に記す。
The obtained Examples 1-21 and Comparative Examples 1-2
The secondary battery of No. 0 was charged at room temperature with a current of 140 mA for 13 hours, and then subjected to five charge / discharge cycles of discharging at a current of 140 mA until the battery voltage dropped to 1.0 V. Then, the battery was charged at a current of 1400 mA in an environment of 0 ° C., and −dV control charging was performed with the time when the battery voltage dropped by 8 mV from the peak voltage as a charging end point.
Two cycles of charging and discharging were performed at a current of 1400 mA until the battery voltage dropped to 1.0 V. Thereafter, the secondary battery in the discharged state was stored in a 55 ° C environment for 28 days, and then the secondary battery was returned to a 0 ° C environment, and the charge / discharge using the −dV control described above was repeated. Assuming that the discharge energy (Wh) obtained at the last charge / discharge performed before storage at 55 ° C. was 100%, the discharge energy in charge / discharge after storage was required to recover to 95% or more before storage. The number of charge / discharge cycles is shown in Tables 1 to 4 below.

【0094】また、実施例1〜21及び比較例1〜20
の二次電池について、室温において140mAの電流で
13時間充電した後、140mAの電流で電池電圧が
1.0Vに低下するまで放電する充放電サイクルを5サ
イクル施した。次いで、140mAで13時間充電した
のち、二次電池を−10℃に冷却し、1400mAの電
流で電池電圧が1.0Vに低下するまで放電して放電時
のエネルギ(Wh)を測定した。比較例1の二次電池の
−10℃での放電エネルギを1.00として、実施例1
〜21及び比較例2〜20の二次電池の−10℃での放
電エネルギを表示した結果を下記表1〜表4示す。
Examples 1 to 21 and Comparative Examples 1 to 20
After charging the secondary battery at room temperature with a current of 140 mA for 13 hours, the battery was subjected to 5 charge / discharge cycles of discharging at a current of 140 mA until the battery voltage dropped to 1.0 V. Next, after charging at 140 mA for 13 hours, the secondary battery was cooled to −10 ° C., discharged at a current of 1400 mA until the battery voltage dropped to 1.0 V, and the energy (Wh) at the time of discharging was measured. Example 1 with the discharge energy at −10 ° C. of the secondary battery of Comparative Example 1 set to 1.00.
Tables 1 to 4 show the results of displaying the discharge energies of the secondary batteries of Comparative Examples 2 to 21 and Comparative Examples 2 to 20 at -10 ° C.

【0095】[0095]

【表1】 [Table 1]

【0096】[0096]

【表2】 [Table 2]

【0097】[0097]

【表3】 [Table 3]

【0098】[0098]

【表4】 [Table 4]

【0099】表1から明らかなように、前述した(1)
式で表わされる組成を有する第1の水素吸蔵合金とCa
Cu5型構造を有し、Alを3モル%以上含有する第2
の水素吸蔵合金とを含み、第1の合金の重量比が10%
を超え、90%未満である水素吸蔵合金電極を備えた実
施例1〜7の二次電池は、容量回復までのサイクル数が
3回以下となり、−10℃での放電エネルギが比較例1
(第1の合金のみ)の81%以上を確保することがで
き、低温放電特性を高く保持したまま貯蔵後の容量回復
特性を大きく改善できることがわかる。
As is clear from Table 1, the above (1)
A first hydrogen storage alloy having a composition represented by the following formula:
A second type having a Cu5 type structure and containing 3 mol% or more of Al
And a hydrogen storage alloy, wherein the weight ratio of the first alloy is 10%
The secondary batteries of Examples 1 to 7 provided with a hydrogen storage alloy electrode having a hydrogen storage alloy electrode that exceeded 90% and less than 90% had a cycle number until capacity recovery was 3 times or less, and the discharge energy at −10 ° C. was lower than that of Comparative Example 1.
It can be seen that 81% or more of (only the first alloy) can be secured, and the capacity recovery characteristics after storage can be greatly improved while keeping the low-temperature discharge characteristics high.

【0100】これに対し、第1の水素吸蔵合金のみを含
む比較例1の二次電池と、第1の水素吸蔵合金の重量比
が90%である比較例2の二次電池は、低温放電時のエ
ネルギが高いものの、容量回復に要するサイクル数が多
いことがわかる。また、第1の水素吸蔵合金の重量比が
10%である比較例3の二次電池と、第2の水素吸蔵合
金のみを含む比較例4の二次電池は、容量回復に要する
サイクル数が少ないものの、低温放電時のエネルギが低
いことがわかる。
On the other hand, the secondary battery of Comparative Example 1 containing only the first hydrogen storage alloy and the secondary battery of Comparative Example 2 in which the weight ratio of the first hydrogen storage alloy was 90% were low-temperature discharge. It can be seen that although the energy at the time is high, the number of cycles required for capacity recovery is large. The secondary battery of Comparative Example 3 in which the weight ratio of the first hydrogen storage alloy was 10% and the secondary battery of Comparative Example 4 including only the second hydrogen storage alloy had the number of cycles required for capacity recovery. Although it is small, it can be seen that the energy at the time of low-temperature discharge is low.

【0101】また、表2及び表3から、第2の水素吸蔵
合金中のAl含有量を6.7モル%、3.3モル%に変
更した際にも、第1の合金の重量比を10%より多く、
90%未満にすると、高い低温放電特性が得られ、かつ
容量回復に要するサイクル数を少なくできることがわか
る。
Also, from Tables 2 and 3, when the Al content in the second hydrogen storage alloy was changed to 6.7 mol% and 3.3 mol%, the weight ratio of the first alloy was changed. More than 10%,
It is understood that when the content is less than 90%, high low-temperature discharge characteristics can be obtained, and the number of cycles required for capacity recovery can be reduced.

【0102】さらに、表4から、第2の水素吸蔵合金中
のAl含有量を3モル%未満にすると、第1の合金の重
量比を10%より多く、90%未満にしても容量回復に
要するサイクル数を低減できないことがわかる。
Further, from Table 4, when the Al content in the second hydrogen storage alloy is set to less than 3 mol%, the capacity recovery can be achieved even if the weight ratio of the first alloy is more than 10% and less than 90%. It can be seen that the number of required cycles cannot be reduced.

【0103】[0103]

【発明の効果】以上詳述したように本発明に係る水素吸
蔵合金電極及び二次電池によれば、低温での高率放電が
可能で、しかも高温貯蔵後の放電エネルギ回復に要する
充放電サイクル数を低減することができる等の顕著な効
果を奏する。また、本発明に係るハイブリッドカー及び
電気自動車によれば、燃費等の走行性能を向上すること
ができる等の顕著な効果を奏する。
As described above in detail, according to the hydrogen storage alloy electrode and the secondary battery according to the present invention, a high rate discharge at a low temperature is possible, and a charge / discharge cycle required for recovery of discharge energy after storage at a high temperature. A remarkable effect such as the number can be reduced is exhibited. Further, according to the hybrid car and the electric vehicle according to the present invention, remarkable effects such as improvement in running performance such as fuel efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る二次電池の一例である円筒形アル
カリ二次電池を示す部分切欠斜視図。
FIG. 1 is a partially cutaway perspective view showing a cylindrical alkaline secondary battery as an example of a secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…容器、 2…正極、 3…セパレータ、 4…負極、 5…電極群、 7…封口板、 8…絶縁ガスケット。 DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode, 5 ... Electrode group, 7 ... Sealing plate, 8 ... Insulating gasket.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B60K 6/02 B60K 9/00 C (72)発明者 吉田 秀紀 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 稲葉 隆道 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 酒井 勲 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 高林 純一 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 鈴木 秀治 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 入江 周一郎 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 (72)発明者 武野 和太 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 Fターム(参考) 3D035 AA00 5H028 CC12 EE01 EE05 EE08 HH01 HH05 5H050 AA02 AA08 AA10 BA14 CA03 CB16 CB17 FA05 FA19 HA01 HA02 HA05 5H115 PA12 PA15 PC06 PG04 PI16 PI22 PI29 PU25 PU26 UI40──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B60K 6/02 B60K 9/00 C (72) Inventor Hideki Yoshida 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Address Co., Ltd.Toshiba Yokohama Office (72) Inventor Takamichi Inaba 8th Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Co., Ltd. Inside Toshiba Yokohama Office (72) Inventor Junichi Takabayashi 8-8 Shinsugitacho, Isogo-ku, Yokohama, Kanagawa Prefecture Inside Toshiba Yokohama Office (72) Inventor Hideharu Suzuki 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (72) Inventor Shuichiro Irie 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (72) Inventor Take Wada 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo F-term in Toshiba Battery Corporation (reference) 3D035 AA00 5H028 CC12 EE01 EE05 EE08 HH01 HH05 5H050 AA02 AA08 AA10 BA14 CA03 CB16 CB17 FA05 FA19 HA01 HA02 HA05 5H115 PA12 PA15 PG04 PI16 PI22 PI29 PU25 PU26 UI40

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 下記(1)式で表わされる組成を有する
第1の水素吸蔵合金と、CaCu5型の結晶構造を有す
ると共に、Alを3モル%以上含有する第2の水素吸蔵
合金とを含み、前記第1および第2の水素吸蔵合金の合
計重量に占める前記第1の水素吸蔵合金の重量比が10
%を超え、90%未満であることを特徴とする水素吸蔵
合金電極。 (RE1-xMgx)Niyz-wAlw …(1) 但し、REは希土類元素(希土類元素にはイットリウム
が含まれる)、Ca及びZrよりなる群から選ばれる1
種類以上の元素であり、AはCo,Mn,Fe,Cu,
Sn,Zn,Ga,Si及びBよりなる群から選ばれる
1種以上の元素であり、原子比x、y、zおよびwは
0.1≦x≦0.6、0≦z≦1.5、0≦w≦0.1
5、2.5≦y+z≦4.0を示す。
1. A first hydrogen storage alloy having a composition represented by the following formula (1) and a second hydrogen storage alloy having a CaCu 5 type crystal structure and containing at least 3 mol% of Al. Wherein the weight ratio of the first hydrogen storage alloy to the total weight of the first and second hydrogen storage alloys is 10%.
% And less than 90%. (RE 1-x Mg x) Ni y A zw Al w ... (1) where, RE is a rare earth element (the rare earth elements include yttrium), 1 selected from the group consisting of Ca and Zr
A is Co, Mn, Fe, Cu,
At least one element selected from the group consisting of Sn, Zn, Ga, Si and B, and the atomic ratios x, y, z and w are 0.1 ≦ x ≦ 0.6 and 0 ≦ z ≦ 1.5. , 0 ≦ w ≦ 0.1
5, 2.5 ≦ y + z ≦ 4.0.
【請求項2】 前記第1の水素吸蔵合金は、結晶系が六
方晶である第1の相群(但し、CaCu5型構造を有す
る相を除く)および結晶系が菱面体である第2の相群か
らなる群より選ばれる少なくとも1種類の相を主相とし
て含むことを特徴とする請求項1記載の水素吸蔵合金電
極。
2. The first hydrogen-absorbing alloy has a first phase group having a hexagonal crystal system (excluding a phase having a CaCu 5 type structure) and a second phase group having a rhombohedral crystal system. 2. The hydrogen storage alloy electrode according to claim 1, comprising at least one type of phase selected from the group consisting of phase groups as a main phase.
【請求項3】 前記第2の水素吸蔵合金は、1種類以上
の希土類元素、ニッケル及びコバルトをさらに含有する
ことを特徴とする請求項1記載の水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 1, wherein the second hydrogen storage alloy further contains one or more rare earth elements, nickel and cobalt.
【請求項4】 前記第2の水素吸蔵合金は、下記(2)
式で表わされる組成を有することを特徴とする請求項1
記載の水素吸蔵合金電極。 RαNi5-x-y-zCoxAlyz …(2) 但し、Rは1種類以上の希土類元素であり、MはMn,
Fe,Cr,Sn、Cu,B,Zr,CaおよびYより
なる群から選ばれる1種以上の元素であり、原子比α、
x、yおよびzは、0.95<α<1.05、0.2<
x<1.0、0.18≦y、0≦z<1を示す。
4. The second hydrogen storage alloy according to the following (2):
The composition according to claim 1, wherein the composition has a composition represented by the following formula:
The hydrogen storage alloy electrode as described in the above. R α Ni 5-xyz Co x Al y M z (2) where R is at least one kind of rare earth element, and M is Mn,
One or more elements selected from the group consisting of Fe, Cr, Sn, Cu, B, Zr, Ca, and Y;
x, y and z are 0.95 <α <1.05, 0.2 <
x <1.0, 0.18 ≦ y, and 0 ≦ z <1.
【請求項5】 前記第1の水素吸蔵合金及び前記第2の
水素吸蔵合金の平均粒径は、それぞれ、15〜80μm
の範囲内であることを特徴とする請求項1記載の水素吸
蔵合金電極。
5. The average particle diameter of each of the first hydrogen storage alloy and the second hydrogen storage alloy is 15 to 80 μm.
2. The hydrogen-absorbing alloy electrode according to claim 1, wherein
【請求項6】 正極と、負極と、アルカリ電解液とを具
備した二次電池において、 前記負極は、下記(1)式で表わされる組成を有する第
1の水素吸蔵合金と、CaCu5型の結晶構造を有する
と共に、Alを3モル%以上含有する第2の水素吸蔵合
金とを含み、前記第1および第2の水素吸蔵合金の合計
重量に占める前記第1の水素吸蔵合金の重量比が10%
を超え、90%未満であることを特徴とする二次電池。 (RE1-xMgx)Niyz-wAlw …(1) 但し、REは希土類元素(希土類元素にはイットリウム
が含まれる)、Ca及びZrよりなる群から選ばれる1
種類以上の元素であり、AはCo,Mn,Fe,Cu,
Sn,Zn,Ga,Si及びBよりなる群から選ばれる
1種以上の元素であり、原子比x、y、zおよびwは
0.1≦x≦0.6、0≦z≦1.5、0≦w≦0.1
5、2.5≦y+z≦4.0を示す。
6. A positive electrode, a negative electrode, the secondary battery having an alkaline electrolyte, said negative electrode, the following (1) and the first hydrogen-absorbing alloy having a composition represented by the formula, the CaCu 5 type A second hydrogen storage alloy having a crystal structure and containing 3 mol% or more of Al, wherein the weight ratio of the first hydrogen storage alloy to the total weight of the first and second hydrogen storage alloys is 10%
, And less than 90%. (RE 1-x Mg x) Ni y A zw Al w ... (1) where, RE is a rare earth element (the rare earth elements include yttrium), 1 selected from the group consisting of Ca and Zr
A is Co, Mn, Fe, Cu,
At least one element selected from the group consisting of Sn, Zn, Ga, Si and B, and the atomic ratios x, y, z and w are 0.1 ≦ x ≦ 0.6 and 0 ≦ z ≦ 1.5. , 0 ≦ w ≦ 0.1
5, 2.5 ≦ y + z ≦ 4.0.
【請求項7】 前記第1の水素吸蔵合金は、結晶系が六
方晶である第1の相群(但し、CaCu5型構造を有す
る相を除く)および結晶系が菱面体である第2の相群か
らなる群より選ばれる少なくとも1種類の相を主相とし
て含むことを特徴とする請求項6記載の二次電池。
7. The first hydrogen-absorbing alloy has a first phase group having a hexagonal crystal system (excluding a phase having a CaCu 5 type structure) and a second phase group having a rhombohedral crystal system. 7. The secondary battery according to claim 6, wherein at least one type of phase selected from the group consisting of phase groups is included as a main phase.
【請求項8】 前記第2の水素吸蔵合金は、1種類以上
の希土類元素、ニッケル及びコバルトをさらに含有する
ことを特徴とする請求項6記載の二次電池。
8. The secondary battery according to claim 6, wherein the second hydrogen storage alloy further contains one or more rare earth elements, nickel and cobalt.
【請求項9】 前記第2の水素吸蔵合金は、下記(2)
式で表わされる組成を有することを特徴とする請求項6
記載の二次電池。 RαNi5-x-y-zCoxAlyz …(2) 但し、Rは1種類以上の希土類元素であり、MはMn,
Fe,Cr,Sn、Cu,B,Zr,CaおよびYより
なる群から選ばれる1種以上の元素であり、原子比α、
x、yおよびzは、0.95<α<1.05、0.2<
x<1.0、0.18≦y、0≦z<1を示す。
9. The second hydrogen storage alloy according to the following (2):
7. The composition according to claim 6, having a composition represented by the formula:
The secondary battery according to any one of the preceding claims. R α Ni 5-xyz Co x Al y M z (2) where R is at least one kind of rare earth element, and M is Mn,
One or more elements selected from the group consisting of Fe, Cr, Sn, Cu, B, Zr, Ca, and Y;
x, y and z are 0.95 <α <1.05, 0.2 <
x <1.0, 0.18 ≦ y, and 0 ≦ z <1.
【請求項10】 前記第1の水素吸蔵合金及び前記第2
の水素吸蔵合金の平均粒径は、それぞれ、15〜80μ
mの範囲内であることを特徴とする請求項6記載の二次
電池。
10. The first hydrogen storage alloy and the second hydrogen storage alloy
The average particle size of the hydrogen storage alloy is 15 to 80 μm, respectively.
The secondary battery according to claim 6, wherein m is within a range of m.
【請求項11】 電気駆動手段と、前記電気駆動手段用
の電源とを具備したハイブリッドカーにおいて、 前記電源は、正極と、負極と、アルカリ電解液とを具備
した二次電池を備え、 前記負極は、下記(1)式で表わされる組成を有する第
1の水素吸蔵合金と、CaCu5型の結晶構造を有する
と共に、Alを3モル%以上含有する第2の水素吸蔵合
金とを含み、前記第1および第2の水素吸蔵合金の合計
重量に占める前記第1の水素吸蔵合金の重量比が10%
を超え、90%未満であることを特徴とするハイブリッ
ドカー。 (RE1-xMgx)Niyz-wAlw …(1) 但し、REは希土類元素(希土類元素にはイットリウム
が含まれる)、Ca及びZrよりなる群から選ばれる1
種類以上の元素であり、AはCo,Mn,Fe,Cu,
Sn,Zn,Ga,Si及びBよりなる群から選ばれる
1種以上の元素であり、原子比x、y、zおよびwは
0.1≦x≦0.6、0≦z≦1.5、0≦w≦0.1
5、2.5≦y+z≦4.0を示す。
11. A hybrid car comprising an electric drive means and a power supply for the electric drive means, wherein the power supply comprises a secondary battery comprising a positive electrode, a negative electrode, and an alkaline electrolyte, Comprises a first hydrogen storage alloy having a composition represented by the following formula (1) and a second hydrogen storage alloy having a CaCu 5 type crystal structure and containing at least 3 mol% of Al. The weight ratio of the first hydrogen storage alloy to the total weight of the first and second hydrogen storage alloys is 10%
The hybrid car is characterized by exceeding 90% and less than 90%. (RE 1-x Mg x) Ni y A zw Al w ... (1) where, RE is a rare earth element (the rare earth elements include yttrium), 1 selected from the group consisting of Ca and Zr
A is Co, Mn, Fe, Cu,
At least one element selected from the group consisting of Sn, Zn, Ga, Si and B, and the atomic ratios x, y, z and w are 0.1 ≦ x ≦ 0.6 and 0 ≦ z ≦ 1.5. , 0 ≦ w ≦ 0.1
5, 2.5 ≦ y + z ≦ 4.0.
【請求項12】 駆動電源として二次電池を具備した電
気自動車において、 前記二次電池は、正極と、負極と、アルカリ電解液とを
備え、 前記負極は、下記(1)式で表わされる組成を有する第
1の水素吸蔵合金と、CaCu5型の結晶構造を有する
と共に、Alを3モル%以上含有する第2の水素吸蔵合
金とを含み、前記第1および第2の水素吸蔵合金の合計
重量に占める前記第1の水素吸蔵合金の重量比が10%
を超え、90%未満であることを特徴とする電気自動
車。 (RE1-xMgx)Niyz-wAlw …(1) 但し、REは希土類元素(希土類元素にはイットリウム
が含まれる)、Ca及びZrよりなる群から選ばれる1
種類以上の元素であり、AはCo,Mn,Fe,Cu,
Sn,Zn,Ga,Si及びBよりなる群から選ばれる
1種以上の元素であり、原子比x、y、zおよびwは
0.1≦x≦0.6、0≦z≦1.5、0≦w≦0.1
5、2.5≦y+z≦4.0を示す。
12. An electric vehicle including a secondary battery as a driving power source, wherein the secondary battery includes a positive electrode, a negative electrode, and an alkaline electrolyte, wherein the negative electrode has a composition represented by the following formula (1). And a second hydrogen storage alloy having a CaCu 5 type crystal structure and containing 3 mol% or more of Al, and wherein the total of the first and second hydrogen storage alloys is The weight ratio of the first hydrogen storage alloy to the weight is 10%
An electric vehicle characterized by exceeding 90% and less than 90%. (RE 1-x Mg x) Ni y A zw Al w ... (1) where, RE is a rare earth element (the rare earth elements include yttrium), 1 selected from the group consisting of Ca and Zr
A is Co, Mn, Fe, Cu,
At least one element selected from the group consisting of Sn, Zn, Ga, Si and B, and the atomic ratios x, y, z and w are 0.1 ≦ x ≦ 0.6 and 0 ≦ z ≦ 1.5. , 0 ≦ w ≦ 0.1
5, 2.5 ≦ y + z ≦ 4.0.
JP2000106623A 2000-04-07 2000-04-07 Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle Pending JP2001291511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106623A JP2001291511A (en) 2000-04-07 2000-04-07 Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106623A JP2001291511A (en) 2000-04-07 2000-04-07 Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle

Publications (1)

Publication Number Publication Date
JP2001291511A true JP2001291511A (en) 2001-10-19

Family

ID=18619760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106623A Pending JP2001291511A (en) 2000-04-07 2000-04-07 Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle

Country Status (1)

Country Link
JP (1) JP2001291511A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP2006040847A (en) * 2004-07-30 2006-02-09 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and secondary battery using this electrode
JP2006093093A (en) * 2004-08-25 2006-04-06 Sanyo Electric Co Ltd Hydrogen storing alloy electrode and alkaline storage battery
JP2006100002A (en) * 2004-09-28 2006-04-13 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2008084668A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Hydrogen storage alloy and sealed alkaline storage battery using the same
JP5252920B2 (en) * 2005-09-21 2013-07-31 三洋電機株式会社 Alkaline storage battery
JP2013164991A (en) * 2012-02-10 2013-08-22 Gs Yuasa Corp Nickel-metal hydride secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164070A (en) * 1984-09-06 1986-04-02 Matsushita Electric Ind Co Ltd Hydrogen-absorbing electrode
JPH04162355A (en) * 1990-10-25 1992-06-05 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode for battery
JPH0773880A (en) * 1993-09-03 1995-03-17 Toshiba Battery Co Ltd Metal oxide-hydrogen secondary battery
JPH07286225A (en) * 1994-02-28 1995-10-31 Matsushita Electric Ind Co Ltd Hydrogen storage alloy and nickel-hydrogen storage battery using the same
JPH09245783A (en) * 1996-03-08 1997-09-19 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy for battery
JPH113705A (en) * 1997-06-11 1999-01-06 Toyota Autom Loom Works Ltd Hydrogen storage alloy electrode and its manufacture
JPH11162463A (en) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2000073132A (en) * 1998-08-25 2000-03-07 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2000149933A (en) * 1998-11-16 2000-05-30 Hitachi Maxell Ltd Nickel hydrogen storage battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164070A (en) * 1984-09-06 1986-04-02 Matsushita Electric Ind Co Ltd Hydrogen-absorbing electrode
JPH04162355A (en) * 1990-10-25 1992-06-05 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode for battery
JPH0773880A (en) * 1993-09-03 1995-03-17 Toshiba Battery Co Ltd Metal oxide-hydrogen secondary battery
JPH07286225A (en) * 1994-02-28 1995-10-31 Matsushita Electric Ind Co Ltd Hydrogen storage alloy and nickel-hydrogen storage battery using the same
JPH09245783A (en) * 1996-03-08 1997-09-19 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy for battery
JPH113705A (en) * 1997-06-11 1999-01-06 Toyota Autom Loom Works Ltd Hydrogen storage alloy electrode and its manufacture
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JPH11162463A (en) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
JP2000073132A (en) * 1998-08-25 2000-03-07 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2000149933A (en) * 1998-11-16 2000-05-30 Hitachi Maxell Ltd Nickel hydrogen storage battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP2006040847A (en) * 2004-07-30 2006-02-09 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and secondary battery using this electrode
US7338632B2 (en) 2004-07-30 2008-03-04 Sanyo Electric Co., Ltd. Hydrogen-storing alloy electrode and secondary cell using the same
JP4587734B2 (en) * 2004-07-30 2010-11-24 三洋電機株式会社 Hydrogen storage alloy electrode and secondary battery using the electrode
JP2006093093A (en) * 2004-08-25 2006-04-06 Sanyo Electric Co Ltd Hydrogen storing alloy electrode and alkaline storage battery
US7544442B2 (en) 2004-08-25 2009-06-09 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode and alkaline storage battery
JP2006100002A (en) * 2004-09-28 2006-04-13 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP4511298B2 (en) * 2004-09-28 2010-07-28 三洋電機株式会社 Nickel metal hydride storage battery
JP5252920B2 (en) * 2005-09-21 2013-07-31 三洋電機株式会社 Alkaline storage battery
JP2008084668A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Hydrogen storage alloy and sealed alkaline storage battery using the same
JP2013164991A (en) * 2012-02-10 2013-08-22 Gs Yuasa Corp Nickel-metal hydride secondary battery

Similar Documents

Publication Publication Date Title
JP4567935B2 (en) Hydrogen storage alloy, secondary battery, hybrid car and electric vehicle
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2002164045A (en) Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JP2008071687A (en) Hydrogen storage alloy for battery, negative electrode using it, and nickel hydrogen secondary battery
JPH11162505A (en) Nickel-hydrogen battery
US20050175896A1 (en) Hydrogen-absorbing alloy for alkaline storage batteries, alkaline storage battery, and method of manufacturing alkaline storage battery
JP5535684B2 (en) Hydrogen storage alloy for alkaline storage battery and hydrogen storage alloy electrode for alkaline storage battery using the same
JP4642967B2 (en) Method for producing hydrogen storage alloy electrode, method for producing alkaline secondary battery, hybrid car and electric vehicle
US6703164B2 (en) Hydrogen-absorbing alloy, secondary battery, hybrid car and electromobile
JP4958411B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP4342186B2 (en) Alkaline storage battery
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP2965475B2 (en) Hydrogen storage alloy
JP4420767B2 (en) Nickel / hydrogen storage battery
JP7251864B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2002083593A (en) Nickel hydrogen secondary battery, hybrid car and electric vehicle
JP5703468B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode and nickel metal hydride secondary battery
WO2020195542A1 (en) Hydrogen-intercalated alloy for alkaline battery, alkaline battery using same as negative electrode, and vehicle
JPH11162459A (en) Nickel-hydrogen secondary battery
JP2001307720A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car, and electric vehicle
JP2007063597A (en) Hydrogen storage alloy for alkaline storage battery, manufacturing method of the hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2013147753A (en) Method for manufacturing hydrogen storing alloy for battery
JPH10251782A (en) Hydrogen storage alloy and alkaline secondary battery
JP4573609B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207