JP2000073132A - Hydrogen storage alloy and secondary battery - Google Patents

Hydrogen storage alloy and secondary battery

Info

Publication number
JP2000073132A
JP2000073132A JP10239179A JP23917998A JP2000073132A JP 2000073132 A JP2000073132 A JP 2000073132A JP 10239179 A JP10239179 A JP 10239179A JP 23917998 A JP23917998 A JP 23917998A JP 2000073132 A JP2000073132 A JP 2000073132A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage alloy
alloy
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10239179A
Other languages
Japanese (ja)
Other versions
JP3934800B2 (en
Inventor
Ryuko Kono
龍興 河野
Isao Sakai
勲 酒井
Hidenori Yoshida
秀紀 吉田
Takamichi Inaba
隆道 稲葉
Masaaki Yamamoto
雅秋 山本
Shiro Takeno
史郎 竹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23917998A priority Critical patent/JP3934800B2/en
Publication of JP2000073132A publication Critical patent/JP2000073132A/en
Application granted granted Critical
Publication of JP3934800B2 publication Critical patent/JP3934800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy having a considerably improved desorbing property of occluded gaseous hydrogen as well as capacity to occlude the large amt. of the gaseous hydrogen and to provide a metal oxide-hydrogen secondary battery having a high capacity and excellent in a charge-discharge cycle. SOLUTION: This hydrogen storage alloy has a compsn. represented by the formula: MgaR1-a-bTb(Ni1-xMx)z (where R is at least one element selected from rare earth elements including Y, T is at least one element selected from Ca, Ti, Zr and Hf, M is at least one element selected from Co, Mn, Fe, Al, Ga, Zn, C, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, P and S, 0.2<=a<=0.35, 0<=b<=0.3, 0<=x<=0.6 and 3<=z<=3.8). In the alloy, grains contg. a parallel growth structure are present. Further, the metal oxide-hydrogen secondary battery uses the hydrogen storage alloy as a negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金およ
びこの水素吸蔵合金を負極に用いた二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and a secondary battery using the hydrogen storage alloy for a negative electrode.

【0002】[0002]

【従来の技術】水素吸蔵合金は、安全、かつ容易に水素
を吸蔵できることから、新しいエネルギー変換材料およ
びエネルギー貯蔵材料として注目されている。すなわ
ち、水素吸蔵合金は、1)水素の貯蔵・輸送、熱の貯蔵・
輸送、2)熱−機械エネルギーの変換、3)水素の分離・精
製、4)水素同位体の分離、5)水素を活物質とする電池、
6)合成化学における触媒、7)温度センサなど、機能性新
素材として広範囲に亘る応用が進められている。
2. Description of the Related Art Hydrogen storage alloys are attracting attention as new energy conversion materials and energy storage materials because they can safely and easily store hydrogen. In other words, hydrogen storage alloys are: 1) storage and transport of hydrogen, storage and transport of heat
Transport, 2) conversion of thermo-mechanical energy, 3) separation and purification of hydrogen, 4) separation of hydrogen isotopes, 5) batteries using hydrogen as active material,
6) Catalysts in synthetic chemistry, 7) Temperature sensors, etc., have been applied to a wide range of new functional materials.

【0003】たとえば、水素吸蔵合金を負極材料に使用
したニッケル水素二次電池は、 (a)高容量であること、
(b)過充電・過放電に強いこと、 (c)高率充放電が可能
であること、 (d)クリーンであること、 (e)ニッケルカ
ドミウム電池と互換性があること、などの特長を持つた
め次世代の民生用電池として注目され、また、その応用
・実用化が活発に行われている。このように、水素吸蔵
合金は、機械的、物理的、化学的に様々な応用の可能性
を秘めているので、将来の産業におけるキー材料の一つ
として挙げられる。
For example, a nickel-metal hydride secondary battery using a hydrogen storage alloy as a negative electrode material has the following requirements.
(b) It is strong against overcharge and overdischarge, (c) It can be charged and discharged at a high rate, (d) It is clean, and (e) It is compatible with nickel cadmium batteries. Therefore, it is attracting attention as a next-generation consumer battery, and its application and practical use are being actively carried out. As described above, the hydrogen storage alloy has various potentials of application mechanically, physically, and chemically, and is therefore cited as one of the key materials in the future industry.

【0004】ところで、水素を吸蔵する金属としては、
水素と安定な化合物を形成し得る金属、たとえばPd、T
i、Zr、 V、希土類金属元素、アルカリ土類元素などの
単体、あるいはこれらの金属元素と他の金属元素との合
金が挙げられる。特に、合金型の場合は、金属−水素
間の結合力を適度に弱めて、水素の吸蔵反応だけでなく
離脱反応も比較的容易に行えること、反応に必要な平
衡水素圧(プラトー圧)の大きさ、平衡領域(プラトー
領域)の広さ、水素を吸蔵する過程での平衡圧の変化
(平坦性)など、吸蔵・放出反応が改善されること、
化学的、物理的安定性が高いことなどの特長を有する。
[0004] By the way, metals that occlude hydrogen include:
Metals that can form stable compounds with hydrogen, such as Pd, T
A simple substance such as i, Zr, V, a rare earth metal element, or an alkaline earth element, or an alloy of these metal elements and another metal element can be used. In particular, in the case of the alloy type, the bonding force between the metal and hydrogen is appropriately weakened so that not only the hydrogen storage reaction but also the desorption reaction can be performed relatively easily, and the equilibrium hydrogen pressure (plateau pressure) required for the reaction is reduced. Improving occlusion and release reactions such as size, width of equilibrium region (plateau region), change in equilibrium pressure (flatness) in the process of storing hydrogen,
It has features such as high chemical and physical stability.

【0005】そして、このような水素吸蔵合金として
は、下記のような水素吸蔵合金系が知られている。ま
た、一応用例である電池の電極材としては、一般的に、
LaNi5 もしくはMmNi5 などで示される希土類系合金が使
用されている。しかし、その放電容量は理論容量の80%
を超えているとはいえ、高容量化に限界がある。
[0005] As such a hydrogen storage alloy, the following hydrogen storage alloys are known. In addition, as an electrode material of a battery as one application example, generally,
Rare earth alloys such as LaNi 5 or MmNi 5 are used. However, its discharge capacity is 80% of the theoretical capacity
However, there is a limit to increasing the capacity.

【0006】(1 )希土類系(LaNi5 ,MmNi5 など)、
(2) ラーベス系( ZrV2 ,ZrMn2 など)、(3) チタン系
(TiNi,TiFeなど)、(4) マグネシウム系(Mg2 Ni,Mg
Ni2 など)、(5) その他(クラスター合金など)。
(1) Rare earths (LaNi 5 , MmNi 5 etc.),
(2) Laves type (ZrV 2 , ZrMn 2 etc.), (3) titanium type (TiNi, TiFe etc.), (4) magnesium type (Mg 2 Ni, Mg
(Ni 2 etc.), (5) Others (cluster alloy etc.).

【0007】[0007]

【発明が解決しようとする課題】マグネシウム元素でラ
ンタン元素成分の一部を置換したマグネシウム−希土類
系合金は、水素ガスを多量に吸蔵できるという特長を有
するが、たとえばLa1-xMgx Ni2 は、水素との結合の安
定性が高く水素放出速度が遅いので、水素電極としての
機能に問題がある。すなわち、マグネシウム−希土類系
合金の場合は、理論的な気相中での水素吸蔵量は多いも
のの水素放出性が劣っているため、常温時において、ア
ルカリ電解液中で電池電極としてほとんど作用しないの
で、水素負極の構成に使用できない。
The magnesium-rare-earth alloy in which a part of the lanthanum element component is substituted with the magnesium element has a feature that it can occlude a large amount of hydrogen gas. For example, La 1-x Mg x Ni 2 Has a problem in its function as a hydrogen electrode because the stability of bonding with hydrogen is high and the hydrogen release rate is low. That is, in the case of a magnesium-rare earth alloy, although the theoretical hydrogen storage capacity in the gas phase is large, the hydrogen release property is inferior, and at room temperature, it hardly acts as a battery electrode in an alkaline electrolyte. , Cannot be used for the construction of a hydrogen negative electrode.

【0008】また、最近、PuNi3 型を有するMg2 LaNi9
で表されるマグネシウム−希土類系合金も報告されてい
るが、その水素吸・脱蔵特性は著しく低いものである。
Recently, Mg 2 LaNi 9 having PuNi 3 type has been used.
Are reported, but their hydrogen absorption / desorption characteristics are extremely low.

【0009】本発明は、上記事情に対処してなされたも
ので、マグネシウム−希土類系の水素吸蔵合金におい
て、多量の水素吸蔵能力を有する一方、吸蔵した水素の
離脱性ないし放出性を大幅に改善した水素吸蔵合金の提
供を目的とする。
The present invention has been made in view of the above circumstances, and a magnesium-rare earth-based hydrogen storage alloy has a large amount of hydrogen storage capacity, and also has a greatly improved release or release of stored hydrogen. The purpose of the present invention is to provide a hydrogen storage alloy.

【0010】また、この水素吸蔵・放出性のすぐれた水
素吸蔵合金を負極に応用することにより、高容量で充放
電サイクルのすぐれた金属酸化物・水素二次電池を提供
することを目的とする。
Another object of the present invention is to provide a metal oxide / hydrogen secondary battery having a high capacity and an excellent charge / discharge cycle by applying the hydrogen storage alloy having excellent hydrogen storage / release properties to a negative electrode. .

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、一般
式 Mga 1-a-b b (Ni1-x x z (式中、Rは Yを含む希土類元素から選ばれた少なくと
も1種の元素、TはCa、Ti、ZrおよびHfから選ばれた少
なくとも1種の元素、MはCo、Mn、Fe、Al、Ga、Zn、
C、Sn、Cu、Si、 B、Nb、 W、Mo、 V、Cr、Ta、 Pおよ
び Sから選ばれた少なくとも1種の元素、 0.2≦ a≦0.
35、 0≦ b≦ 0.3、 0≦ x≦ 0.6、 3≦ z≦ 3.8)で表
される組成を有し、かつ平行連晶構造を含有する結晶粒
が存在していることを特徴とする水素吸蔵合金である。
According to the first aspect of the present invention, there is provided a compound represented by the following general formula: Mg a R 1 -abT b (Ni 1 -xM x ) z (where R is selected from rare earth elements including Y) At least one element, T is at least one element selected from Ca, Ti, Zr and Hf, M is Co, Mn, Fe, Al, Ga, Zn,
At least one element selected from C, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, P and S, 0.2 ≦ a ≦ 0.
35, 0 ≦ b ≦ 0.3, 0 ≦ x ≦ 0.6, 3 ≦ z ≦ 3.8), characterized by the presence of crystal grains containing a parallel intergrowth structure It is an occlusion alloy.

【0012】請求項2の発明は、請求項1記載の水素吸
蔵合金において、ラーベス相をA、CaCu5 型構造を
BとしするAおよびBサブセルの積み重ねによって構成
されているユニットセル層が、2種以上の周期構造間で
平行連晶構造を形成していることを特徴とする。
According to a second aspect of the present invention, in the hydrogen storage alloy according to the first aspect, the unit cell layer formed by stacking A and B subcells having the Laves phase as A and the CaCu 5 type structure as B is 2 It is characterized in that a parallel intergrowth structure is formed between more than one kind of periodic structures.

【0013】請求項3の発明は、請求項2記載の水素吸
蔵合金において、周期構造を示す積層部分が長さ 5nm〜
1μm のユニットセル層から形成されていることを特徴
とする。
According to a third aspect of the present invention, in the hydrogen storage alloy according to the second aspect, the laminated portion exhibiting a periodic structure has a length of 5 nm to
It is characterized by being formed from a 1 μm unit cell layer.

【0014】請求項1ないし請求項3の発明において、
一般式 Mga 1-a-b b (Ni1-x x z で表される組成において、Mgの組成比 (a)、(Mg+R+T)と
(Ni+M)との比 (z)は、上記範囲内で選ばれる必要があ
る。すなわち、Mgの組成比 (a)、(Mg+R+T)と(Ni+M)との
比 (z)を上記範囲内に選択することにより、合金主相中
に平行連晶が形成され、この平行連晶の形成に伴って高
い水素吸蔵量を有しつつ、一方では水素を放出し易くな
り、大きな放電容量を有する金属酸化物・水素二次電池
を実現できる水素吸蔵合金が得られるからである。
In the first to third aspects of the present invention,
In the composition represented by the general formula Mg a R 1-ab T b (Ni 1-x M x ) z , the Mg composition ratio (a), (Mg + R + T)
The ratio (z) to (Ni + M) needs to be selected within the above range. That is, by selecting the Mg composition ratio (a), the ratio (z) between (Mg + R + T) and (Ni + M) within the above range, parallel intergrowths are formed in the alloy main phase. A hydrogen storage alloy that has a high hydrogen storage capacity due to the formation of the parallel intergrowth crystals, while at the same time easily releases hydrogen and can realize a metal oxide / hydrogen secondary battery having a large discharge capacity. Because.

【0015】また、Rで表される Yを含む希土類元素か
ら選ばれた少なくとも1種の元素は、水素吸蔵合金の低
コスト化を考慮すると、好ましくはLa、Ce、Pr、Ndおよ
び Yであり、より好ましくは希土類元素の混合系である
ミッシュメタルで、CeがリッチなミッシュメタルやLaが
リッチなミッシュメタルを使用することもできる。
At least one element selected from the rare earth elements containing Y represented by R is preferably La, Ce, Pr, Nd and Y in consideration of cost reduction of the hydrogen storage alloy. It is more preferable to use a misch metal which is a mixed system of rare earth elements, and a misch metal rich in Ce or a misch metal rich in La.

【0016】さらに、Tで表されるCa、Ti、ZrおよびHf
から選ばれた少なくとも1種の元素は、いわゆる置換成
分であり、この置換成分によって水素吸蔵量を低減させ
ずに、水素の放出性の改善・向上や水素の放出に伴う合
金の微細化を抑制するための必要成分である。ここで、
置換量 (b)が 0.3を超えると、水素の放出性の改善・向
上および水素の放出に伴う合金の微細化抑制が図られな
いので、 0.3以下に限定される。そして、この置換量
(b)の少ない方が、長いサイクル寿命化を得られる傾向
にあるので 0.2以下が好ましい。
Further, Ca, Ti, Zr and Hf represented by T
At least one element selected from the above is a so-called substitution component, and this substitution component does not reduce the hydrogen storage capacity, but suppresses the improvement and improvement of the hydrogen release property and the miniaturization of the alloy accompanying the release of hydrogen. It is a necessary component to perform. here,
If the substitution amount (b) exceeds 0.3, it is limited to 0.3 or less because improvement and improvement of hydrogen release property and suppression of alloy miniaturization due to hydrogen release cannot be achieved. And this replacement amount
The smaller the amount of (b), the longer the cycle life tends to be. Therefore, it is preferably 0.2 or less.

【0017】さらにまた、Mで表されるCo、Mn、Fe、A
l、Ga、Zn、 C、Sn、Cu、Si、 B、Nb、 W、Mo、 V、C
r、Ta、 Pおよび Sから選ばれた少なくとも1種の元素
も、Ni成分に対する置換成分であり、この置換成分は水
素の吸蔵・放出特性の向上に寄与する。ここで、Mで表
される置換成分による置換で、合金内に侵入する水素の
拡散や、水素の吸蔵・放出が容易になるものと推定さ
れ、二次電池の負極材に使用した場合は、飛躍的にすぐ
れた充放電サイクル特性を呈する。なお、その置換量
(x)が 0.6を超えると放電容量の低下を招来するので、
常に、 0.6以下の範囲内、好ましくは0.02〜 0.3の範囲
内で選ばれる。
Furthermore, Co, Mn, Fe, A represented by M
l, Ga, Zn, C, Sn, Cu, Si, B, Nb, W, Mo, V, C
At least one element selected from r, Ta, P, and S is also a substitution component for the Ni component, and this substitution component contributes to the improvement of hydrogen storage / release characteristics. Here, it is presumed that the substitution by the substitution component represented by M facilitates the diffusion of hydrogen invading into the alloy and the occlusion and release of hydrogen, and when used for a negative electrode material of a secondary battery, It exhibits remarkably excellent charge / discharge cycle characteristics. The replacement amount
If (x) exceeds 0.6, the discharge capacity will be reduced.
It is always selected in the range of 0.6 or less, preferably in the range of 0.02 to 0.3.

【0018】請求項1ないし請求項3の発明に係る水素
吸蔵合金は、たとえば N、 O、 Fなどの不純物を水素吸
蔵合金の特性を損なわない範囲、たとえば重量比でそれ
ぞれ1%以下の範囲で含有していてもよい。
In the hydrogen storage alloy according to the first to third aspects of the present invention, impurities such as N, O and F are added in a range that does not impair the characteristics of the hydrogen storage alloy, for example, in a range of 1% or less by weight, respectively. It may be contained.

【0019】請求項1ないし請求項3の発明に係る水素
吸蔵合金は、たとえば次のようにして製造できる。すな
わち、各原料元素成分を秤量し、アルゴンガスなどの不
活性雰囲気下で、単ロール法もしくは双ロール法などの
溶湯急冷法により、所要の水素吸蔵合金を製造できる。
ここで、溶湯の急冷速度(冷却速度)は1000℃/s 未
満、好ましくは 800℃/s 未満、より好ましくは 700℃
/s 未満である。
The hydrogen storage alloy according to the first to third aspects of the present invention can be manufactured, for example, as follows. That is, each raw material element component is weighed, and a required hydrogen storage alloy can be manufactured by a molten metal quenching method such as a single roll method or a twin roll method under an inert atmosphere such as an argon gas.
Here, the quenching rate (cooling rate) of the molten metal is less than 1000 ° C / s, preferably less than 800 ° C / s, more preferably 700 ° C / s.
/ S.

【0020】なお、上記溶湯急冷法の代りに、不活性雰
囲気下で秤量した各原料元素成分を高周波誘導溶解した
後、金型などに鋳造して合金インゴットを得、これを急
冷する方式を採ってもよい。または、 RNi5 系、 R2 Ni
7 系、 RNi3 系、 RNi2 系、Ni2 Mg系、MgNi2 系などの
母合金を高周波誘導溶解にて製造した後、これらの母合
金を所要の組成となるように秤量し、再び高周波誘導溶
解後、鋳造して合金インゴットを得、これを急冷する方
式を採ってもよい。
Instead of the above-described quenching method, a method is employed in which each raw material element weighed in an inert atmosphere is subjected to high frequency induction melting, then cast into a mold or the like to obtain an alloy ingot, and quenched. You may. Or, RNi 5 series, R 2 Ni
7 system, RNi 3 system, RNi 2 system, Ni 2 Mg system, after the production of the master alloy in an induction dissolution of such MgNi 2 type were weighed these master alloys so that the required composition, again frequency After induction melting, casting may be performed to obtain an alloy ingot, and the alloy ingot may be rapidly cooled.

【0021】次いで、前記製造した合金を真空中もしく
は不活性雰囲気中、 300℃以上 850℃未満の温度、好ま
しくは 400℃以上 800℃未満の温度で、10〜1000時間,
好ましくは50〜 800時間,さらに好ましくは 200〜 600
時間の比較的長時間の熱処理を施すことにより、水素吸
蔵・放出速度などの特性がすぐれた水素吸蔵合金を得る
ことができる。なお、熱処理温度が 850℃を超えると、
水素吸蔵特性の低下を招来する恐れがある。
Next, the produced alloy is subjected to a temperature of 300 ° C. or more and less than 850 ° C., preferably 400 ° C. or more and less than 800 ° C., for 10 to 1000 hours in a vacuum or an inert atmosphere.
Preferably 50 to 800 hours, more preferably 200 to 600 hours
By performing the heat treatment for a relatively long period of time, it is possible to obtain a hydrogen storage alloy having excellent characteristics such as a hydrogen storage / release speed. If the heat treatment temperature exceeds 850 ℃,
There is a possibility that the hydrogen storage characteristics may be deteriorated.

【0022】請求項1、請求項2または請求項3の発明
において、合金中の“平行連晶”とは、六方晶のa軸の
長さがほぼ同じで、c軸の長さが異なるような2種類以
上のユニットセル層の積み重ね(積層)で形成されたも
のである。すなわち、この発明に係る水素吸蔵合金系に
おけるユニットセル層は、ラーベス相をA、CaCu5 型構
造をBとすると、AおよびBサブセルの積み重ね(Am
Bn :m ,n は1以上の整数)によって構成されてい
る。
In the first, second or third aspect of the present invention, "parallel intergrowth" in the alloy means that the length of the a-axis of the hexagonal crystal is substantially the same and the length of the c-axis is different. It is formed by stacking (stacking) two or more types of unit cell layers. That is, assuming that the Laves phase is A and the CaCu 5 type structure is B, the unit cell layer in the hydrogen storage alloy system according to the present invention is a stack of A and B subcells (Am
Bn: m and n are integers of 1 or more).

【0023】したがって、たとえばLa2 Ni7 型(ABB)の
周期構造を示す積層(ユニットセル層)部分中に、長さ
が10nm以内であるLaNi3 型(AB)もしくはLa5 Ni19(ABBB)
などのユニットセル層の積層から成る周期構造を含む平
行連晶を形成することが可能である。そして、前記平行
連晶の形成により、水素吸蔵・放出に対する合金自体の
耐久性が向上し、二次電池の電極材としたときには、サ
イクル特性が向上する。 なお、合金中の“平行連晶”
は、透過型電子顕微鏡を用いて倍率1万〜50万倍で、結
晶粒の(1,1,0)面における透過電子顕微鏡像を撮影する
ことにより観察できる。
Therefore, for example, a LaNi 3 type (AB) or La 5 Ni 19 (ABBB) having a length of 10 nm or less in a laminated (unit cell layer) portion showing a periodic structure of La 2 Ni 7 type (ABB).
It is possible to form a parallel intergrowth including a periodic structure including a stack of unit cell layers. The formation of the parallel intergrowth improves the durability of the alloy itself against occlusion and release of hydrogen, and improves the cycle characteristics when used as an electrode material for a secondary battery. The "parallel intergrowth" in the alloy
Can be observed by taking a transmission electron microscope image of the (1,1,0) plane of a crystal grain at a magnification of 10,000 to 500,000 times using a transmission electron microscope.

【0024】また、周期構造を示す積層部分の平均長さ
が 5nm〜 1μm の場合、水素の吸蔵・放出特性が改善さ
れ、放電容量の大きい金属酸化物・水素二次電池の提供
に寄与する。ここで、水素吸蔵合金の組成系によって差
異もあるが、一般的に、周期構造を示す積層部分の平均
長さは、好ましくは10nm〜 500nm、より好ましくは20nm
〜 200nmの場合、水素の吸蔵・放出特性がさらに改善さ
れ、放電容量およびサイクル特性のすぐれた金属酸化物
・水素二次電池の提供が可能になる。
When the average length of the laminated portion showing the periodic structure is 5 nm to 1 μm, the hydrogen storage / release characteristics are improved, which contributes to the provision of a metal oxide / hydrogen secondary battery having a large discharge capacity. Here, although there is a difference depending on the composition system of the hydrogen storage alloy, generally, the average length of the laminated portion showing the periodic structure is preferably 10 nm to 500 nm, more preferably 20 nm.
In the case of up to 200 nm, the storage / release characteristics of hydrogen are further improved, and a metal oxide / hydrogen secondary battery having excellent discharge capacity and cycle characteristics can be provided.

【0025】なお、周期構造の積層部分の平均長さは、
透過型電子顕微鏡を用い倍率40万倍で、結晶粒の(1,1,
0)面 100nm× 100nmの透過電子顕微鏡像を計20か所撮影
し、周期構造を形成する積層部分の長の平均値である。
The average length of the laminated portion of the periodic structure is:
Using a transmission electron microscope at a magnification of 400,000 times, (1,1,
0) Plane A transmission electron microscope image of 100 nm × 100 nm is taken at a total of 20 places, and the average value of the length of the laminated portion forming the periodic structure.

【0026】請求項4の発明は、水素吸蔵合金を主成分
として成る水素負極と、正極と、水素負極および正極を
隔絶するセパレータと、アルカリ性電解液とを有する二
次電池であって、水素負極が請求項1ないし請求項3に
記載された水素吸蔵合金を含有していることを特徴とす
る二次電池である。
According to a fourth aspect of the present invention, there is provided a secondary battery including a hydrogen negative electrode having a hydrogen storage alloy as a main component, a positive electrode, a separator for separating the hydrogen negative electrode and the positive electrode, and an alkaline electrolyte. Is a secondary battery containing the hydrogen storage alloy according to any one of claims 1 to 3.

【0027】すなわち、請求項4の発明は、上記請求項
1〜3の発明に係る水素吸蔵合金が、水素吸蔵・放出特
性にすぐれていること、充放電サイクル特性も改善・向
上していることに着目したものである。そして、水素負
極の構成材に、前記水素吸蔵合金を使用することによ
り、大きな放電容量を有するとともに、サイクル特性の
すぐれた金属酸化物・水素二次電池を提供することを骨
子としている。
That is, a fourth aspect of the present invention is that the hydrogen storage alloy according to the first to third aspects of the present invention has excellent hydrogen storage / release characteristics, and also has improved and improved charge / discharge cycle characteristics. It pays attention to. The main point is to provide a metal oxide / hydrogen secondary battery having a large discharge capacity and excellent cycle characteristics by using the hydrogen storage alloy as a constituent material of the hydrogen negative electrode.

【0028】[0028]

【発明の実施の形態】以下に実施例を説明する。Embodiments of the present invention will be described below.

【0029】[0029]

【表1】 表1に示す水素吸蔵合金の組成を成すように各元素成分
をそれぞれ秤量し、アルゴンガス雰囲気下で高周波溶解
して、これを金型で鋳造することにより、20種類の合金
インゴットを作製した。次いで、各実施例に相当する合
金インゴットを、それぞれ高周波溶解法で溶融し、アル
ゴンガス雰囲気中、銅製単ロールの表面に滴下して、急
冷速度 600℃/ sで冷却して合金薄片をそれぞれ作製し
た。
[Table 1] Each elemental component was weighed so as to form the composition of the hydrogen storage alloy shown in Table 1, and was subjected to high frequency melting under an argon gas atmosphere, and then cast in a mold to produce 20 kinds of alloy ingots. Next, the alloy ingots corresponding to the respective examples were each melted by a high frequency melting method, dropped into a copper single roll surface in an argon gas atmosphere, and cooled at a rapid cooling rate of 600 ° C./s to produce alloy flakes, respectively. did.

【0030】前記各合金薄片に、アルゴンガス雰囲気下
で 700℃, 200時間それぞれ熱処理を施して、対応する
水素吸蔵合金を製造した。なお、表1中、LmはLa=90重
量%,Ce= 2重量%,Pr= 5重量%,Nd= 3重量%から
成るミッシュメタルであり、また、MmはLa=35重量%,
Ce=50.3重量%,Pr= 5.5重量%,Nd= 9重量%,Sm=
0.2重量%から成るミッシュメタルである。
Each of the alloy flakes was heat-treated at 700 ° C. for 200 hours in an argon gas atmosphere to produce a corresponding hydrogen storage alloy. In Table 1, Lm is a misch metal composed of La = 90% by weight, Ce = 2% by weight, Pr = 5% by weight, Nd = 3% by weight, and Mm is La = 35% by weight.
Ce = 50.3% by weight, Pr = 5.5% by weight, Nd = 9% by weight, Sm =
It is a misch metal consisting of 0.2% by weight.

【0031】また、比較例として、表1に示す水素吸蔵
合金の組成を成すように各元素成分をそれぞれ秤量し、
アルゴンガス雰囲気下で高周波溶解した後、1000℃/s
の急冷速度(比較例1,2)もしくは3000℃/s (比較
例3,4,5)で、それぞれ銅製単ロールの表面に滴下
・冷却して合金薄片を作製した。次いで、各合金薄片
に、アルゴンガス雰囲気下で 950℃, 3時間(比較例
1,2)もしくは 850℃,4時間(比較例3,4,5)
それぞれ熱処理を施して、対応する5種類の水素吸蔵合
金を製造した。
As a comparative example, each elemental component was weighed so as to form the composition of the hydrogen storage alloy shown in Table 1.
1000 ° C / s after high frequency melting under argon gas atmosphere
At a rapid cooling rate (Comparative Examples 1 and 2) or 3000 ° C./s (Comparative Examples 3, 4, and 5), and dropped and cooled on the surface of a copper single roll to produce alloy flakes. Then, each alloy flake was subjected to 950 ° C., 3 hours (Comparative Examples 1, 2) or 850 ° C., 4 hours (Comparative Examples 3, 4, 5) under an argon gas atmosphere.
Each of the heat treatments was performed to produce five types of corresponding hydrogen storage alloys.

【0032】上記水素吸蔵合金について、透過型電子顕
微鏡を用い40万倍の倍率で、結晶粒の (1,0,0)面の透過
型電子顕微鏡像を20か所撮像し、周期構造を有する積層
部分の長さの平均値、すなわち、La2 Ni7 型を有する領
域の厚さを平均した値を表1に併せて示す。
Using a transmission electron microscope, the above hydrogen storage alloy was imaged at a magnification of 400,000 times at 20 transmission electron microscope images of the (1,0,0) plane of the crystal grains to have a periodic structure. Table 1 also shows the average value of the length of the laminated portion, that is, the average value of the thickness of the region having the La 2 Ni 7 type.

【0033】上記で得た実施例および比較例に係る各水
素吸蔵合金をそれぞれ粉砕し、粒度100μm 以下の水素
吸蔵合金粉末を作製した。これら各水素吸蔵合金粉末と
電解銅粉とを重量比 1: 2の割合でそれぞれ混合し、こ
の混合体 1 gを10 ton/cm2の圧力で 5分間加圧して、
直径10mmのペレットをそれぞれ作製した。これらペレッ
トをニッケルメッシュでそれぞれ挟み込み、周縁部をス
ポット溶接して圧接し、さらに、ニッケルリード線をス
ポット溶接して、水素吸蔵合金電極(負極)をそれぞれ
作製した。
Each of the hydrogen storage alloys according to the examples and the comparative examples obtained above was pulverized to produce hydrogen storage alloy powder having a particle size of 100 μm or less. Each of these hydrogen storage alloy powder and electrolytic copper powder were mixed at a weight ratio of 1: 2, and 1 g of this mixture was pressed at a pressure of 10 ton / cm 2 for 5 minutes,
Pellets each having a diameter of 10 mm were produced. These pellets were sandwiched between nickel meshes, and the peripheral edges were spot-welded and pressed against each other. Further, nickel lead wires were spot-welded to produce hydrogen storage alloy electrodes (negative electrodes).

【0034】上記作製した負極を焼結式ニッケル電極
(正極)とともに、それぞれ濃度 8規定の水酸化カリウ
ム水溶液に浸漬・配置し、35℃の温度下で充放電サイク
ル試験を行った。すなわち、負極中の水素吸蔵合金 1 g
当たり 100mAの電流で 5時間充電した後、10分間休止、
負極中の水素吸蔵合金 1 g当たり 100mAの電流で酸化水
銀電極に対して−0.75 Vに成るまで放電を行うサイクル
を繰り返し、最大放電容量およびサイクル寿命(放電容
量が最大放電容量の80%まで低下したときのサイクル
数)をそれぞれ測定した。この測定結果を表2にそれぞ
れ示す。
The negative electrode prepared above was immersed and arranged in an 8 N aqueous potassium hydroxide solution together with a sintered nickel electrode (positive electrode), and a charge / discharge cycle test was performed at a temperature of 35 ° C. That is, 1 g of the hydrogen storage alloy in the negative electrode
After charging for 5 hours at a current of 100 mA per hour, rest for 10 minutes,
Repeat the cycle of discharging to -0.75 V against the mercury oxide electrode at a current of 100 mA per 1 g of the hydrogen storage alloy in the negative electrode, and the maximum discharge capacity and cycle life (discharge capacity is reduced to 80% of the maximum discharge capacity) Cycle number). Table 2 shows the measurement results.

【0035】[0035]

【表2】 上記表2から分かるように、Mga R 1-a-b T b (Ni1-x
M x z で表され、合金結晶粒中の平行連晶を含有する
合金を含む負極を備えた金属酸化物・水素二次電池(実
施例1〜20)は、Mga R 1-a-b T b (Ni1-x M x z
表され、合金結晶粒中の平行連晶を含有する合金を含ま
ない負極を備えた金属酸化物・水素二次電池(比較例1
〜5)に比べて、放電容量およびサイクル寿命の双方が
すぐれており、本発明に係る水素吸蔵合金は、有効水素
吸蔵量も大きいことが分かる。
[Table 2] As can be seen from Table 2 above, Mg a R 1-ab T b (Ni 1-x
Represented by M x) z, a metal oxide-hydrogen secondary battery (Examples 1 to 20 comprising a negative electrode containing an alloy containing parallel intergrowth in the alloy grain) is, Mg a R 1-ab T b (Ni 1-x M x ) A metal oxide / hydrogen secondary battery having a negative electrode represented by z and containing no alloy containing parallel intergrowth in alloy crystal grains (Comparative Example 1
Compared with the above (5), both the discharge capacity and the cycle life are excellent, and it can be seen that the hydrogen storage alloy according to the present invention has a large effective hydrogen storage amount.

【0036】[0036]

【発明の効果】請求項1〜3の発明によれば、従来のマ
グネシウム−希土類系水素吸蔵合金に比べて、高い水素
吸蔵容量性を損なわずに、吸蔵・放出特性の向上された
マグネシウム−希土類系水素吸蔵合金を提供できる。し
たがって、たとえば水素の貯蔵・輸送、熱の貯蔵・輸
送、熱−機械エネルギーの変換、水素の分離・精製、水
素同位体の分離、水素を活物質とする電池、合成化学に
おける触媒、温度センサなど、水素吸蔵合金の応用分野
の拡充、さらには、新規な応用分野の開拓も図られる。
According to the first to third aspects of the present invention, a magnesium-rare earth element having improved storage / release characteristics without impairing a high hydrogen storage capacity as compared with a conventional magnesium-rare earth hydrogen storage alloy. Based hydrogen storage alloy can be provided. Therefore, for example, storage and transport of hydrogen, storage and transport of heat, conversion of thermo-mechanical energy, separation and purification of hydrogen, separation of hydrogen isotopes, batteries using hydrogen as an active material, catalysts in synthetic chemistry, temperature sensors, etc. In addition, the application fields of hydrogen storage alloys will be expanded, and new application fields will be developed.

【0037】請求項4の発明によれば、高い水素吸蔵容
量性および吸蔵・放出特性を兼ね備えた水素吸蔵合金を
利用(応用)したことにより、放電容量が大きくてサイ
クル特性もすぐれた金属酸化物・水素二次電池が提供さ
れる。
According to the fourth aspect of the present invention, a metal oxide having a large discharge capacity and excellent cycle characteristics is obtained by utilizing (applying) a hydrogen storage alloy having both high hydrogen storage capacity and storage / release characteristics. -A hydrogen secondary battery is provided.

【0038】[0038]

フロントページの続き (72)発明者 吉田 秀紀 神奈川県川崎市幸区堀川町72 株式会社東 芝川崎事業所内 (72)発明者 稲葉 隆道 神奈川県川崎市幸区堀川町72 株式会社東 芝川崎事業所内 (72)発明者 山本 雅秋 神奈川県川崎市幸区堀川町72 株式会社東 芝川崎事業所内 (72)発明者 竹野 史郎 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 5H003 AA02 AA04 BB02 BC06 BD00 BD02 5H016 AA02 EE01 HH00 HH13 5H028 AA05 EE01 FF02 FF04 HH00 HH05 Continued on the front page (72) Inventor Hideki Yoshida 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Higashi-shiba Kawasaki Plant (72) Inventor Takamichi Inaba 72 Horikawa-cho, Sachi-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Higashi-Shibakawasaki Plant (72) Inventor Masaaki Yamamoto 72, Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Higashishiba Kawasaki Office (72) Inventor Shiro Takeno 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture F-term (Toshiba Yokohama Office) Reference) 5H003 AA02 AA04 BB02 BC06 BD00 BD02 5H016 AA02 EE01 HH00 HH13 5H028 AA05 EE01 FF02 FF04 HH00 HH05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式 Mga 1-a-b b (Ni1-x x z (式中、Rは Yを含む希土類元素から選ばれた少なくと
も1種の元素、TはCa、Ti、ZrおよびHfから選ばれた少
なくとも1種の元素、MはCo、Mn、Fe、Al、Ga、Zn、
C、Sn、Cu、Si、 B、Nb、 W、Mo、 V、Cr、Ta、 Pおよ
び Sから選ばれた少なくとも1種の元素、 0.2≦ a≦0.
35、 0≦ b≦ 0.3、 0≦ x≦ 0.6、 3≦ z≦ 3.8)で表
される組成を有し、かつ平行連晶構造を含有する結晶粒
が存在していることを特徴とする水素吸蔵合金。
1. General formula Mg a R 1 -ab T b (Ni 1 -x M x ) z (wherein R is at least one element selected from rare earth elements including Y, and T is Ca, Ti , Zr and Hf, at least one element selected from the group consisting of Co, Mn, Fe, Al, Ga, Zn,
At least one element selected from C, Sn, Cu, Si, B, Nb, W, Mo, V, Cr, Ta, P and S, 0.2 ≦ a ≦ 0.
35, 0 ≦ b ≦ 0.3, 0 ≦ x ≦ 0.6, 3 ≦ z ≦ 3.8), characterized by the presence of crystal grains containing a parallel intergrowth structure Storage alloy.
【請求項2】 ラーベス相をA、CaCu5 型構造をB
とするAおよびBサブセルの積み重ねによって構成され
ているユニットセル層が、2種以上の周期構造間で平行
連晶構造を形成していることを特徴とする請求項1記載
の水素吸蔵合金。
2. The Laves phase is A and the CaCu 5 type structure is B.
The hydrogen storage alloy according to claim 1, wherein the unit cell layer formed by stacking the A and B subcells forms a parallel intergrowth structure between two or more periodic structures.
【請求項3】 周期構造を示す積層部分が長さ 5nm〜 1
μm のユニット層から形成されていることを特徴とする
請求項2記載の水素吸蔵合金。
3. The laminated portion exhibiting a periodic structure has a length of 5 nm to 1 nm.
3. The hydrogen storage alloy according to claim 2, wherein the hydrogen storage alloy is formed from a unit layer of μm.
【請求項4】 水素吸蔵合金を主成分として成る水素負
極と、正極と、水素負極および正極を隔絶するセパレー
タと、アルカリ性電解液とを有する二次電池であって、
水素負極が請求項1、請求項2もしくは請求項3に記載
された水素吸蔵合金を含有していることを特徴とする二
次電池。
4. A secondary battery comprising a hydrogen negative electrode comprising a hydrogen storage alloy as a main component, a positive electrode, a separator for separating the hydrogen negative electrode and the positive electrode, and an alkaline electrolyte.
A secondary battery, wherein the hydrogen negative electrode contains the hydrogen storage alloy according to claim 1, 2 or 3.
JP23917998A 1998-08-25 1998-08-25 Hydrogen storage alloy and secondary battery Expired - Lifetime JP3934800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23917998A JP3934800B2 (en) 1998-08-25 1998-08-25 Hydrogen storage alloy and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23917998A JP3934800B2 (en) 1998-08-25 1998-08-25 Hydrogen storage alloy and secondary battery

Publications (2)

Publication Number Publication Date
JP2000073132A true JP2000073132A (en) 2000-03-07
JP3934800B2 JP3934800B2 (en) 2007-06-20

Family

ID=17040907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23917998A Expired - Lifetime JP3934800B2 (en) 1998-08-25 1998-08-25 Hydrogen storage alloy and secondary battery

Country Status (1)

Country Link
JP (1) JP3934800B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048841A1 (en) * 1999-12-27 2001-07-05 Kabushiki Kaisha Toshiba Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
JP2001291511A (en) * 2000-04-07 2001-10-19 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP2001307720A (en) * 2000-04-21 2001-11-02 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car, and electric vehicle
JP2004319429A (en) * 2003-03-31 2004-11-11 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2006278189A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and nickel hydrogen battery
JP2007254782A (en) * 2006-03-22 2007-10-04 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
WO2008018494A1 (en) * 2006-08-09 2008-02-14 Gs Yuasa Corporation Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
US7338632B2 (en) 2004-07-30 2008-03-04 Sanyo Electric Co., Ltd. Hydrogen-storing alloy electrode and secondary cell using the same
JP2008218070A (en) * 2007-03-01 2008-09-18 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2009272091A (en) * 2008-05-02 2009-11-19 Gs Yuasa Corporation Nickel hydride storage battery
US7740983B2 (en) 2005-02-28 2010-06-22 Sanyo Electric Co., Ltd. Alkaline storage cell
CN102104145A (en) * 2009-12-17 2011-06-22 三洋电机株式会社 Hydrogen-absorbing alloy, fabrication method thereof and alkaline storage battery
WO2015175640A1 (en) * 2014-05-14 2015-11-19 Basf Corporation Hydrogen storage multi-phase alloys
CN105220015A (en) * 2015-09-16 2016-01-06 江西稀有稀土金属钨业集团有限公司 A kind of heavy body is containing magnesium rare earth hydrogen storage alloy and preparation method thereof
CN114672740A (en) * 2022-03-31 2022-06-28 包头稀土研究院 Yttrium-iron-based hydrogen storage alloy, battery and preparation method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048841A1 (en) * 1999-12-27 2001-07-05 Kabushiki Kaisha Toshiba Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
US7501207B2 (en) 1999-12-27 2009-03-10 Kabushiki Kaisha Toshiba Hydrogen absorbing alloy and secondary battery
US7300720B2 (en) 1999-12-27 2007-11-27 Kabushiki Kaisha Toshiba Hydrogen absorbing alloy and secondary battery
US7005212B2 (en) 1999-12-27 2006-02-28 Kabushiki Kaisha Toshiba Hydrogen absorbing alloy and secondary battery
JP2001291511A (en) * 2000-04-07 2001-10-19 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP2001307720A (en) * 2000-04-21 2001-11-02 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car, and electric vehicle
JP2004319429A (en) * 2003-03-31 2004-11-11 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
US7338632B2 (en) 2004-07-30 2008-03-04 Sanyo Electric Co., Ltd. Hydrogen-storing alloy electrode and secondary cell using the same
US7740983B2 (en) 2005-02-28 2010-06-22 Sanyo Electric Co., Ltd. Alkaline storage cell
JP2006278189A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and nickel hydrogen battery
JP2007254782A (en) * 2006-03-22 2007-10-04 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
WO2008018494A1 (en) * 2006-08-09 2008-02-14 Gs Yuasa Corporation Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
US8343660B2 (en) 2006-08-09 2013-01-01 Gs Yuasa International Ltd. Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
US9496550B2 (en) 2006-08-09 2016-11-15 Gs Yuasa International Ltd. Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP2015165052A (en) * 2006-08-09 2015-09-17 株式会社Gsユアサ Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP2008218070A (en) * 2007-03-01 2008-09-18 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2009272091A (en) * 2008-05-02 2009-11-19 Gs Yuasa Corporation Nickel hydride storage battery
JP2011127177A (en) * 2009-12-17 2011-06-30 Sanyo Electric Co Ltd Hydrogen storage alloy, method for producing the same, and alkali storage battery
CN102104145A (en) * 2009-12-17 2011-06-22 三洋电机株式会社 Hydrogen-absorbing alloy, fabrication method thereof and alkaline storage battery
WO2015175640A1 (en) * 2014-05-14 2015-11-19 Basf Corporation Hydrogen storage multi-phase alloys
CN106460103A (en) * 2014-05-14 2017-02-22 巴斯夫公司 Hydrogen storage multi-phase alloys
CN105220015A (en) * 2015-09-16 2016-01-06 江西稀有稀土金属钨业集团有限公司 A kind of heavy body is containing magnesium rare earth hydrogen storage alloy and preparation method thereof
CN114672740A (en) * 2022-03-31 2022-06-28 包头稀土研究院 Yttrium-iron-based hydrogen storage alloy, battery and preparation method
CN114672740B (en) * 2022-03-31 2023-06-02 包头稀土研究院 Yttrium-iron-based hydrogen storage alloy, battery and preparation method

Also Published As

Publication number Publication date
JP3934800B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP6061354B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP5146934B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
EP1253654B1 (en) Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
JP3934800B2 (en) Hydrogen storage alloy and secondary battery
JP5718006B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery
KR19990007186A (en) Hydrogen Storage Alloys and Secondary Batteries
JP2007291474A (en) Hydrogen storage alloy and nickel-hydride secondary battery
JPH0790435A (en) Hydrogen storage alloy, its manufacture and electrode using this alloy
JPH0821379B2 (en) Hydrogen storage electrode
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JPH11310844A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
EP1030392B1 (en) Hydrogene storage alloy electrode and method for manufacturing the same
JPS62271349A (en) Hydrogen occlusion electrode
JP2962814B2 (en) Hydrogen storage alloy electrode
US5460898A (en) Hydridable material for the negative electrode of a nickel-hydride storage cell, and a method of preparing the material
JP2009163986A (en) Nickel-hydrogen storage battery
JPH08319529A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2680620B2 (en) Method of manufacturing alkaline storage battery and hydrogen storage alloy for alkaline storage battery
CN117940595A (en) Hydrogen storage alloy for alkaline storage battery
JP2000243388A (en) Hydrogen storage alloy electrode, manufacture of electrode and alkaline storage battery
JP2000265228A (en) Hydrogen storage alloy and secondary battery
JPH03219036A (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2001192758A (en) Hydrogen storage alloy, producing method therefor and hydrogen storage alloy electrode made of same alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

EXPY Cancellation because of completion of term