JP2008084668A - Hydrogen storage alloy and sealed alkaline storage battery using the same - Google Patents

Hydrogen storage alloy and sealed alkaline storage battery using the same Download PDF

Info

Publication number
JP2008084668A
JP2008084668A JP2006262543A JP2006262543A JP2008084668A JP 2008084668 A JP2008084668 A JP 2008084668A JP 2006262543 A JP2006262543 A JP 2006262543A JP 2006262543 A JP2006262543 A JP 2006262543A JP 2008084668 A JP2008084668 A JP 2008084668A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
storage alloy
rare earth
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006262543A
Other languages
Japanese (ja)
Other versions
JP5142503B2 (en
Inventor
Masaru Kihara
勝 木原
Takahiro Endo
賢大 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006262543A priority Critical patent/JP5142503B2/en
Publication of JP2008084668A publication Critical patent/JP2008084668A/en
Application granted granted Critical
Publication of JP5142503B2 publication Critical patent/JP5142503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth-Mg-Ni system hydrogen storage alloy having high alkali resistance and a low price; and to provide a sealed alkaline storage battery having high capacity and high cycle characteristics, of a low price. <P>SOLUTION: The sealed alkaline storage battery contains hydrogen storage alloy particles 36 in a negative electrode plate 26, and the hydrogen storage alloy has a composition represented by general formula: (Ce<SB>a</SB>Pr<SB>b</SB>Nd<SB>c</SB>Y<SB>d</SB>A<SB>e</SB>)<SB>1-w</SB>Mg<SB>w</SB>Ni<SB>x</SB>Al<SB>y</SB>T<SB>z</SB>. In the formula, A represents at least one element selected from the group comprising Pm, Sm or the like, T represents at leans one element selected from the group comprising V, Nb or the like, a, b, c, d, e each satisfies the relation of a>0, b≥0, c≥0, d≥0, e≥0, a+b+c+d+e=1, and w, x, y, z each is in a range specified by 0.08≤w≤0.13, 3.2≤x+y+z≤4.2, 0.15≤y≤0.25, 0≤z≤0.1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素吸蔵合金及び該水素吸蔵合金を含む負極を用いた密閉型アルカリ蓄電池に関する。   The present invention relates to a hydrogen storage alloy and a sealed alkaline storage battery using a negative electrode including the hydrogen storage alloy.

水素吸蔵合金は、安全且つ容易に水素を吸蔵できることから、エネルギー変換材料及びエネルギー貯蔵材料として注目されている。また、水素吸蔵合金を負極に使用したアルカリ蓄電池、特にニッケル水素二次電池は、高容量であることやクリーンであるなどの特徴を有することから民生用電池として大きな需要がある。
ニッケル水素二次電池の負極用の水素吸蔵合金としては、従来、LaNi等のAB型合金が用いられているが、電池の高容量化のため、AB型合金における希土類元素の一部をMg元素で置換した希土類−Mg−Ni系合金が開発されている。
Hydrogen storage alloys are attracting attention as energy conversion materials and energy storage materials because they can store hydrogen safely and easily. In addition, alkaline storage batteries using a hydrogen storage alloy as a negative electrode, particularly nickel hydride secondary batteries, have features such as high capacity and cleanliness, and thus have a great demand as consumer batteries.
As the hydrogen storage alloy for the negative electrode of the nickel-hydrogen secondary battery, conventionally, AB 5 type alloy such as LaNi 5 has been used, because of the high capacity of the battery, a portion of the rare earth elements in AB 5 type alloys Rare earth-Mg-Ni alloys have been developed in which is substituted with Mg element.

希土類−Mg−Ni系合金は、AB型合金に比べ、常温付近で水素ガスを多量に吸蔵できるという特徴を有する。しかしながら、開発初期の希土類−Mg−Ni系合金は耐アルカリ性が低く、この合金を適用した密閉型アルカリ蓄電池では、電池のサイクル寿命が短くなるという問題があった。
そこで、特許文献1は、耐アルカリ性に優れた希土類−Mg−Ni系合金及び該合金を負極に用いた二次電池を開示している。特許文献1の希土類−Mg−Ni系合金によれば、希土類成分のうち、La及びCeの含有量が制限されることで合金の耐アルカリ性が向上し、二次電池のサイクル寿命が向上する。
Rare earth-Mg-Ni alloys have a feature that they can occlude a large amount of hydrogen gas at around room temperature, compared to AB 5 type alloys. However, rare earth-Mg-Ni alloys in the early stages of development have low alkali resistance, and the sealed alkaline storage battery to which this alloy is applied has a problem that the cycle life of the battery is shortened.
Therefore, Patent Document 1 discloses a rare earth-Mg-Ni alloy having excellent alkali resistance and a secondary battery using the alloy as a negative electrode. According to the rare earth-Mg-Ni alloy of Patent Document 1, the alkali resistance of the alloy is improved by limiting the contents of La and Ce among the rare earth components, and the cycle life of the secondary battery is improved.

また、特許文献2は、希土類−Mg−Ni系合金とAB型合金を用いた二次電池を開示し、希土類−Mg−Ni系合金では、希土類成分のうちCeの含有量が制限されることで耐アルカリ性が向上している。
更に、特許文献3は、La及びCeを含まない希土類−Mg−Ni系合金を開示し、この合金も優れた耐アルカリ性を有する。
Further, Patent Document 2 discloses a secondary battery using a rare earth -Mg-Ni based alloy and AB 5 type alloys, the rare earth -Mg-Ni based alloy, it is limited the content of Ce of the rare earth component As a result, alkali resistance is improved.
Furthermore, Patent Document 3 discloses a rare earth-Mg-Ni alloy that does not contain La and Ce, and this alloy also has excellent alkali resistance.

これら特許文献1乃至3からわかるように、耐アルカリ性に優れた希土類−Mg−Ni系合金の研究開発の流れは、La及びCeの含有量を更に制限する方向にある。
特開2005-290473号公報 特開2006-040847号公報 特開2004-263213号公報
As can be seen from these Patent Documents 1 to 3, the flow of research and development of rare earth-Mg-Ni alloys excellent in alkali resistance is in the direction of further limiting the contents of La and Ce.
JP 2005-290473 A JP 2006-040847 JP JP 2004-263213 A

従来のAB型合金を作製する場合、希土類成分の主原材料としてMm(ミッシュメタル)が使用されていた。Mmは、La,Ce,Pr,Ndの混合物であるため安価であり、電池の原材料に適していた。
これに対し、上記した研究開発の流れに従って希土類−Mg−Ni系合金を作製する場合、La及びCeの含有量を更に制限する必要があるため、希土類成分の主原材料として、各希土類元素の単体金属を使用しなければならない。希土類元素の単体金属、特にLa、Pr及びNdの単体金属はミッシュメタルに比べて高価であるため、その使用は、希土類−Mg−Ni系合金ひいては該合金を用いた電池の価格上昇を招いてしまう。
When producing a conventional AB type 5 alloy, Mm (Misch metal) has been used as the main raw material of the rare earth component. Since Mm is a mixture of La, Ce, Pr, and Nd, it is inexpensive and suitable as a battery raw material.
On the other hand, when producing a rare earth-Mg-Ni alloy according to the above-described research and development flow, it is necessary to further limit the contents of La and Ce. Metal must be used. Since rare earth elemental metals, especially La, Pr, and Nd elemental metals are more expensive than mischmetals, their use leads to an increase in the price of rare earth-Mg-Ni alloys, and hence batteries using these alloys. End up.

本発明は上述の事情に基づいてなされたものであって、その目的とするところは、耐アルカリ性に優れた安価な希土類−Mg−Ni系の水素吸蔵合金を提供することにある。
また、本発明の目的は、高容量でサイクル特性に優れた密閉型アルカリ蓄電池を安価にて提供することにある。
The present invention has been made based on the above-described circumstances, and an object of the present invention is to provide an inexpensive rare earth-Mg-Ni-based hydrogen storage alloy excellent in alkali resistance.
Another object of the present invention is to provide a sealed alkaline storage battery having a high capacity and excellent cycle characteristics at a low cost.

上記した目的を達成すべく、本発明者等は、Ceの含有量を制限するという流れに逆らい、La、Pr及びNd等の単体金属に比べて安価であるCeの単体金属を含ませながら、希土類−Mg−Ni系合金の耐アルカリ性を確保する手段を鋭意検討した。この結果、希土類成分としてのLaを実質的に含まず、Ceを含む希土類−Mg−Ni系合金であっても、Ce、Pr、Nd及びYを主体として含み、且つ、Mg含有量、Al含有量及び化学量論比をそれぞれ適切な範囲に設定すれば、耐アルカリ性が向上することを見出し、本発明に想到した。   In order to achieve the above-mentioned object, the present inventors are opposed to the flow of limiting the content of Ce, and include a single metal of Ce, which is cheaper than single metals such as La, Pr and Nd, Means for ensuring the alkali resistance of rare earth-Mg-Ni alloys have been intensively studied. As a result, even if it is a rare earth-Mg-Ni alloy containing Ce substantially without containing La as a rare earth component, it mainly contains Ce, Pr, Nd and Y, and contains Mg content and Al content. The inventors have found that alkali resistance is improved by setting the amounts and stoichiometric ratios in appropriate ranges, and have arrived at the present invention.

すなわち本発明によれば、一般式:
(CePrNdYA1−wMgNiAlT
(ただし、式中、Aは、Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sr,Sc,Zr,Hf,Ca及びTiよりなる群から選ばれる少なくとも1種の元素を表し、Tは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、a,b,c,d,eは、a>0,b≧0,c≧0,d≧0,e≧0,a+b+c+d+e=1で示される関係を満たし、w,x,y,zはそれぞれ0.08≦w≦0.13,3.2≦x+y+z≦4.2,0.15≦y≦0.25,0≦z≦0.1で示される範囲にある。)にて表される組成を有する水素吸蔵合金が提供される(請求項1)。
That is, according to the present invention, the general formula:
(Ce a Pr b Nd c Y d A e) 1-w Mg w Ni x Al y T z
(Wherein, A is at least one selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Sc, Zr, Hf, Ca and Ti. T represents at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, and B A, b, c, d, and e satisfy the relationship represented by a> 0, b ≧ 0, c ≧ 0, d ≧ 0, e ≧ 0, a + b + c + d + e = 1, and w, x, y , Z are in the ranges represented by 0.08 ≦ w ≦ 0.13, 3.2 ≦ x + y + z ≦ 4.2, 0.15 ≦ y ≦ 0.25, and 0 ≦ z ≦ 0.1), respectively. (Claim 1).

好ましくは、前記一般式中のeは0.1以下である(請求項2)。
好ましくは、前記一般式中のaとcとの和(a+c)は0.8以上である(請求項3)。
好ましくは、前記一般式中のbは0.2以下であり、且つ、cをbで除した商が3.0以上である(請求項4)。
また、上記した目的を達成すべく、本発明によれば、請求項1乃至4の何れか1項に記載の水素吸蔵合金を含む負極を備えたことを特徴とする密閉型アルカリ蓄電池が提供される(請求項5)。
Preferably, e in the general formula is 0.1 or less (claim 2).
Preferably, the sum (a + c) of a and c in the general formula is 0.8 or more (Claim 3).
Preferably, b in the general formula is 0.2 or less, and a quotient obtained by dividing c by b is 3.0 or more (Claim 4).
In order to achieve the above object, according to the present invention, there is provided a sealed alkaline storage battery comprising a negative electrode containing the hydrogen storage alloy according to any one of claims 1 to 4. (Claim 5).

本発明の請求項1の水素吸蔵合金は、実質的にLaを含まない希土類−Mg−Ni系合金である。この水素吸蔵合金は、必須の希土類成分としてCeを含み、付加的な希土類成分としてPr、Nd及びYを含み、且つ、Mg含有量、Al含有量及び化学量論比が適切な範囲に設定されている。この結果として、この水素吸蔵合金は優れた耐アルカリ性を有する。この理由は、Ce、Pr、Nd及びYの原子半径は互いにほぼ同一(1.83〜1.82Å)であり、合金結晶の格子長が合金全体で同一になるためと推測される。これに対し、希土類成分がLaを含む場合、Laの原子半径(1.88Å)はCe、Pr、Nd及びYの原子半径よりもやや大きいため、Laを含む部分だけ結晶の格子長が変化し、耐アルカリ性の低い不均一な部分が生じると推測される。   The hydrogen storage alloy according to claim 1 of the present invention is a rare earth-Mg-Ni alloy that does not substantially contain La. This hydrogen storage alloy contains Ce as an essential rare earth component, Pr, Nd and Y as additional rare earth components, and Mg content, Al content and stoichiometric ratio are set in appropriate ranges. ing. As a result, this hydrogen storage alloy has excellent alkali resistance. This is presumably because the atomic radii of Ce, Pr, Nd, and Y are almost the same (1.83 to 1.82 mm), and the lattice length of the alloy crystal is the same throughout the alloy. On the other hand, when the rare earth component contains La, the atomic radius of La (1.88 や) is slightly larger than the atomic radius of Ce, Pr, Nd and Y, so the lattice length of the crystal changes only in the portion containing La, It is estimated that a non-uniform part with low alkali resistance is generated.

そして、この水素吸蔵合金は、単体金属の値段が低いCeを含むため、Ceを含まない水素吸蔵合金に比べて安価である。
請求項2の水素吸蔵合金は、eが0.1以下であることにより、更に優れた耐アルカリ性を有する。
請求項3の水素吸蔵合金は、aとcとの和(a+c)が0.8以上であるため、更に優れた耐アルカリ性を有する。
And since this hydrogen storage alloy contains Ce with a low price of a single metal, it is less expensive than a hydrogen storage alloy not containing Ce.
The hydrogen storage alloy according to claim 2 has a further excellent alkali resistance when e is 0.1 or less.
Since the sum of a and c (a + c) is 0.8 or more, the hydrogen storage alloy according to claim 3 has further excellent alkali resistance.

請求項4の水素吸蔵合金は、bが0.2以下であり、且つ、cをbで除した商が3.0以上であるため、原材料としてジジムを用いることができる。ジジムは、PrとNdの混合物であり、Pr及びNdの単体金属に比べて廉価である。このため、この水素吸合金は更に安価である。
請求項5の密閉型アルカリ蓄電池は、負極が耐アルカリ性に優れ且つ安価な水素吸蔵合金を含むため、サイクル特性に優れ且つ安価である。
Since the hydrogen storage alloy of claim 4 has b of 0.2 or less and the quotient obtained by dividing c by b is 3.0 or more, didymium can be used as a raw material. Didymium is a mixture of Pr and Nd and is cheaper than the simple metals Pr and Nd. For this reason, this hydrogen absorbing alloy is further inexpensive.
The sealed alkaline storage battery according to claim 5 is excellent in cycle characteristics and inexpensive because the negative electrode includes a hydrogen storage alloy having excellent alkali resistance and low cost.

以下、本発明の一実施形態の密閉型アルカリ蓄電池としてニッケル水素二次電池を詳細に説明する。
この電池はAAサイズの円筒型電池であり、図1に示したように、上端が開口した有底円筒形状をなす外装缶10を備えている。外装缶10の底壁は導電性を有し、負極端子として機能する。外装缶10の開口内には、リング状の絶縁パッキン12を介して導電性を有する円板形状の蓋板14が配置され、これら蓋板14及び絶縁パッキン12は外装缶10の開口縁をかしめ加工することにより外装缶10の開口縁に固定されている。
Hereinafter, a nickel metal hydride secondary battery will be described in detail as a sealed alkaline storage battery according to an embodiment of the present invention.
This battery is an AA size cylindrical battery, and includes an outer can 10 having a bottomed cylindrical shape with an open upper end as shown in FIG. The bottom wall of the outer can 10 has conductivity and functions as a negative electrode terminal. Inside the opening of the outer can 10, a disc-shaped cover plate 14 having conductivity is arranged via a ring-shaped insulating packing 12, and the cover plate 14 and the insulating packing 12 caulk the opening edge of the outer can 10. It is fixed to the opening edge of the outer can 10 by processing.

蓋板14は中央にガス抜き孔16を有し、蓋板14の外面上にはガス抜き孔16を塞いでゴム製の弁体18が配置されている。更に、蓋板14の外面上には、弁体18を覆うフランジ付き円筒形状の正極端子20が固定され、正極端子20は弁体18を蓋板14に押圧している。従って、通常時、外装缶10は絶縁パッキン12及び弁体18を介して蓋板14により気密に閉塞されている。一方、外装缶10内でガスが発生し、その内圧が高まった場合には弁体18が圧縮され、ガス抜き孔16を通して外装缶10からガスが放出される。つまり、蓋板14、弁体18及び正極端子20は、安全弁を形成している。   The lid plate 14 has a gas vent hole 16 in the center, and a rubber valve element 18 is disposed on the outer surface of the lid plate 14 so as to close the gas vent hole 16. Furthermore, a flanged cylindrical positive electrode terminal 20 covering the valve body 18 is fixed on the outer surface of the lid plate 14, and the positive electrode terminal 20 presses the valve body 18 against the lid plate 14. Therefore, the outer can 10 is normally airtightly closed by the lid plate 14 via the insulating packing 12 and the valve body 18. On the other hand, when gas is generated in the outer can 10 and the internal pressure increases, the valve body 18 is compressed, and the gas is released from the outer can 10 through the gas vent hole 16. That is, the cover plate 14, the valve body 18, and the positive electrode terminal 20 form a safety valve.

外装缶10には、電極群22が収容されている。電極群22は、それぞれ帯状の正極板24、負極板26及びセパレータ28からなり、渦巻状に巻回された正極板24と負極板26の間にセパレータが挟まれている。即ち、セパレータ28を介して正極板24及び負極板26が互い重ね合わされている。電極群22の最外周は負極板26の一部(最外周部)により形成され、負極板26の最外周部が外装缶10の内周壁と接触することで、負極板26と外装缶10とは互いに電気的に接続されている。なお、正極板24、負極板26及びセパレータ28については後述する。   An electrode group 22 is accommodated in the outer can 10. The electrode group 22 includes a strip-like positive electrode plate 24, a negative electrode plate 26, and a separator 28, and the separator is sandwiched between the positive electrode plate 24 and the negative electrode plate 26 wound in a spiral shape. That is, the positive electrode plate 24 and the negative electrode plate 26 are overlapped with each other via the separator 28. The outermost periphery of the electrode group 22 is formed by a part of the negative electrode plate 26 (outermost peripheral portion), and the outermost peripheral portion of the negative electrode plate 26 is in contact with the inner peripheral wall of the outer can 10. Are electrically connected to each other. The positive electrode plate 24, the negative electrode plate 26, and the separator 28 will be described later.

そして、外装缶10内には、電極群22の一端と蓋板14との間に、正極リード30が配置され、正極リード30の両端は正極板24及び蓋板14にそれぞれ接続されている。従って、正極端子20と正極板24との間は、正極リード30及び蓋板14を介して電気的に接続されている。なお、蓋板14と電極群22との間には円形の絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリットを通して延びている。また、電極群22と外装缶10の底部との間にも円形の絶縁部材34が配置されている。   In the outer can 10, a positive electrode lead 30 is disposed between one end of the electrode group 22 and the lid plate 14, and both ends of the positive electrode lead 30 are connected to the positive electrode plate 24 and the lid plate 14, respectively. Therefore, the positive electrode terminal 20 and the positive electrode plate 24 are electrically connected via the positive electrode lead 30 and the lid plate 14. A circular insulating member 32 is disposed between the cover plate 14 and the electrode group 22, and the positive electrode lead 30 extends through a slit provided in the insulating member 32. A circular insulating member 34 is also arranged between the electrode group 22 and the bottom of the outer can 10.

更に、外装缶10内には、所定量のアルカリ電解液(図示せず)が注液され、セパレータ28に含まれたアルカリ電解液を介して正極板24と負極板26との間で充放電反応が進行する。なお、アルカリ電解液の種類としては、特に限定されないけれども、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等をあげることができ、またアルカリ電解液の濃度についても特には限定されず、例えば8Nのものを用いることができる。   Further, a predetermined amount of an alkaline electrolyte (not shown) is injected into the outer can 10, and charging / discharging is performed between the positive electrode plate 24 and the negative electrode plate 26 through the alkaline electrolyte contained in the separator 28. The reaction proceeds. In addition, although it does not specifically limit as a kind of alkaline electrolyte, For example, sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, potassium hydroxide aqueous solution, the aqueous solution which mixed 2 or more of these, etc. can be mention | raise | lifted, Also, the concentration of the alkaline electrolyte is not particularly limited, and, for example, 8N can be used.

セパレータ28の材料としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを用いることができる。
正極板24は、多孔質構造を有する導電性の正極基板と、正極基板の空孔内に保持された正極合剤とからなり、正極合剤は、正極活物質粒子と、必要に応じて正極板24の特性を改善するための種々の添加剤粒子と、これら正極活物質粒子及び添加剤粒子の混合粒子を正極基板に結着するための結着剤とからなる。
As a material for the separator 28, for example, a polyamide fiber nonwoven fabric or a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene provided with a hydrophilic functional group can be used.
The positive electrode plate 24 is composed of a conductive positive electrode substrate having a porous structure and a positive electrode mixture held in the pores of the positive electrode substrate. The positive electrode mixture includes positive electrode active material particles and, if necessary, a positive electrode It consists of various additive particles for improving the characteristics of the plate 24, and a binder for binding the mixed particles of these positive electrode active material particles and additive particles to the positive electrode substrate.

なお、正極活物質粒子は、この電池がニッケル水素二次電池なので水酸化ニッケル粒子であるけれども、水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいは表面がアルカリ熱処理されたコバルト化合物で被覆されていてもよい。また、いずれも特に限定されることはないが、添加剤としては、酸化イットリウムの他に、酸化コバルト、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、酸化エルビウム等の希土類化合物等を、結着剤としては親水性若しくは疎水性のポリマー等を用いることができる。   The positive electrode active material particles are nickel hydroxide particles because this battery is a nickel-hydrogen secondary battery. However, the nickel hydroxide particles may be dissolved in cobalt, zinc, cadmium or the like, or the surface is alkaline. You may coat | cover with the heat-treated cobalt compound. In addition, although there is no particular limitation, additives include, in addition to yttrium oxide, cobalt compounds such as cobalt oxide, metal cobalt, and cobalt hydroxide, zinc such as metal zinc, zinc oxide, and zinc hydroxide. Compounds, rare earth compounds such as erbium oxide, etc., and hydrophilic or hydrophobic polymers can be used as binders.

負極板26は、帯状をなす導電性の負極基板を有し、この負極基板に負極合剤が保持されている。負極基板は、貫通孔が分布されたシート状の金属材からなり、例えば、パンチングメタルや、金属粉末を成型してから焼結した金属粉末焼結体基板を用いることができる。従って、負極合剤は、負極基板の貫通孔内に充填されるとともに、負極基板の両面上に層状にして保持される。   The negative electrode plate 26 has a conductive negative electrode substrate having a strip shape, and a negative electrode mixture is held on the negative electrode substrate. The negative electrode substrate is made of a sheet-like metal material in which through-holes are distributed. For example, a punching metal or a metal powder sintered body substrate that is sintered after molding metal powder can be used. Therefore, the negative electrode mixture is filled in the through holes of the negative electrode substrate and is held in layers on both surfaces of the negative electrode substrate.

負極合剤は、図1中円内に模式的に示したけれども、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子36と、必要に応じて例えばカーボン等の導電助剤(図示せず)と、これら水素吸蔵合金及び導電助剤を負極基板に結着する結着剤38とからなる。結着剤38としては親水性若しくは疎水性のポリマー等を用いることができ、導電助剤としては、カーボンブラックや黒鉛を用いることができる。なお、活物質が水素の場合、負極容量は水素吸蔵合金量により規定されるので、本発明では、水素吸蔵合金のことを負極活物質ともいう。   Although the negative electrode mixture is schematically shown in a circle in FIG. 1, the hydrogen storage alloy particles 36 capable of occluding and releasing hydrogen as the negative electrode active material and, if necessary, a conductive auxiliary agent such as carbon (see FIG. And a binder 38 that binds the hydrogen storage alloy and the conductive additive to the negative electrode substrate. A hydrophilic or hydrophobic polymer or the like can be used as the binder 38, and carbon black or graphite can be used as the conductive assistant. Note that when the active material is hydrogen, the negative electrode capacity is defined by the amount of the hydrogen storage alloy. Therefore, in the present invention, the hydrogen storage alloy is also referred to as a negative electrode active material.

この電池の水素吸蔵合金粒子36における水素吸蔵合金は、希土類−Mg−Ni系合金であって、AB型構造とAB型構造とを合わせた超格子構造を有し、その組成が一般式:
(CePrNdYA1−wMgNiAlT…(1)
で示される。
ただし、式(1)中、Aは、Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sr,Sc,Zr,Hf,Ca及びTiよりなる群から選ばれる少なくとも1種の元素を表し、Tは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、a,b,c,d,eは、a>0,b≧0,c≧0,d≧0,e≧0,a+b+c+d+e=1で示される関係を満たし、w,x,y,zはそれぞれ0.08≦w≦0.13,3.2≦x+y+z≦4.2,0.15≦y≦0.25,0≦z≦0.1で示される範囲にある。
The hydrogen storage alloy in the hydrogen storage alloy particles 36 of this battery is a rare earth-Mg-Ni alloy, and has a superlattice structure combining an AB 5 type structure and an AB 2 type structure, and the composition is of the general formula :
(Ce a Pr b Nd c Y d A e) 1-w Mg w Ni x Al y T z ... (1)
Indicated by
However, in formula (1), A is selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Sc, Zr, Hf, Ca and Ti. T represents at least one element, and T is at least one selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, and B A, b, c, d, e satisfy the relationship shown by a> 0, b ≧ 0, c ≧ 0, d ≧ 0, e ≧ 0, a + b + c + d + e = 1, and w, x , Y, and z are in the ranges represented by 0.08 ≦ w ≦ 0.13, 3.2 ≦ x + y + z ≦ 4.2, 0.15 ≦ y ≦ 0.25, and 0 ≦ z ≦ 0.1, respectively.

水素吸蔵合金粒子36は、以下のようにして得ることできる。
まず、上述の組成となるよう金属原料を秤量して混合し、この混合物を例えば高周波溶解炉で溶解してインゴットにする。得られたインゴットに、900〜1200℃の温度の不活性ガス雰囲気下にて5〜24時間加熱する熱処理を施し、インゴットの金属組織をAB型構造とAB型構造とを合わせた超格子構造にする。この後、インゴットを粉砕し、篩分けにより所望粒径に分級して、水素吸蔵合金粒子36を得ることができる。
The hydrogen storage alloy particles 36 can be obtained as follows.
First, metal raw materials are weighed and mixed so as to have the above-described composition, and this mixture is melted in, for example, a high-frequency melting furnace to form an ingot. The obtained ingot was heat-treated in an inert gas atmosphere at a temperature of 900 to 1200 ° C. for 5 to 24 hours, and the metal structure of the ingot was combined with an AB 5 type structure and an AB 2 type structure. Make the structure. Thereafter, the ingot is pulverized and classified to a desired particle size by sieving, whereby the hydrogen storage alloy particles 36 can be obtained.

式(1)で示される組成の水素吸蔵合金は、実質的にLaを含まない希土類−Mg−Ni系合金である。この水素吸蔵合金は、必須の希土類成分としてCeを含み、付加的な希土類成分としてPr、Nd、Y及びAで示される元素を含み、且つ、Mg含有量、Al含有量及び化学量論比が適切な範囲に設定されている。この結果として、この水素吸蔵合金は優れた耐アルカリ性を有する。この理由は、Ce、Pr、Nd及びYは原子半径がほぼ同一(1.83〜1.82Å)であり、合金結晶の格子長が合金全体で同一になるためと推測される。これに対し、希土類成分がLaを含む場合、Laの原子半径(1.88Å)はCe、Pr、Nd及びYの原子半径よりもやや大きいため、Laを含む部分だけ結晶の格子長が変化し、耐アルカリ性の低い不均一な部分が生じると推測される。   The hydrogen storage alloy having the composition represented by the formula (1) is a rare earth-Mg-Ni alloy that does not substantially contain La. This hydrogen storage alloy contains Ce as an essential rare earth component, contains elements represented by Pr, Nd, Y and A as additional rare earth components, and has an Mg content, an Al content and a stoichiometric ratio. It is set to an appropriate range. As a result, this hydrogen storage alloy has excellent alkali resistance. This is presumably because Ce, Pr, Nd, and Y have the same atomic radius (1.83 to 1.82 mm), and the lattice length of the alloy crystal is the same throughout the alloy. On the other hand, when the rare earth component contains La, the atomic radius of La (1.88 や) is slightly larger than the atomic radius of Ce, Pr, Nd and Y, so the lattice length of the crystal changes only in the portion containing La, It is estimated that a non-uniform part with low alkali resistance is generated.

そして、この水素吸蔵合金は、単体金属の値段が低いCeを含むため、Ceを含まない水素吸蔵合金に比べて安価である。
かくして本実施形態のニッケル水素二次電池は、負極板26が、耐アルカリ性に優れ且つ安価な水素吸蔵合金を含むため、サイクル特性に優れ且つ安価である。
なお、式(1)中、原子数比を表すw,x,y,zの数値範囲の限定理由は以下のとおりである。
And since this hydrogen storage alloy contains Ce with a low price of a single metal, it is less expensive than a hydrogen storage alloy not containing Ce.
Thus, the nickel metal hydride secondary battery of the present embodiment is excellent in cycle characteristics and inexpensive because the negative electrode plate 26 includes a hydrogen storage alloy having excellent alkali resistance and low cost.
In the formula (1), the reasons for limiting the numerical ranges of w, x, y, and z representing the atomic ratio are as follows.

AサイトにおけるMgの原子数比を表すwが0.08≦w≦0.13で示される範囲に設定されるのは、wが0.08未満である場合、合金容量の低下が顕著になるからである。また、wが0.13を超えている場合、合金の耐食性が低下し、電池の寿命特性が低下するからである。
BサイトにおけるAlの原子数比を表すyが0.15≦y≦0.25で示される範囲に設定されるのは、yの値が0.15未満の場合、合金の耐食性が不十分からである。また、wが0.25を超えている場合、放電性を高める役割があるNi量が不十分であるからである。
The reason why w representing the atomic ratio of Mg at the A site is set in the range represented by 0.08 ≦ w ≦ 0.13 is that when w is less than 0.08, the alloy capacity is significantly reduced. In addition, if w exceeds 0.13, the corrosion resistance of the alloy is lowered, and the life characteristics of the battery are lowered.
The reason why y representing the atomic ratio of Al at the B site is set in a range represented by 0.15 ≦ y ≦ 0.25 is that the corrosion resistance of the alloy is insufficient when the value of y is less than 0.15. Further, if w exceeds 0.25, the amount of Ni that plays a role of improving the discharge performance is insufficient.

BサイトにおけるTの原子数比を表すzが0≦z≦0.1で示される範囲に設定されるのは、zの値が当該範囲であると、本発明の効果が顕著となるからである。
Aサイトに対するBサイトの比率を表すx+y+zが3.2≦x+y+z≦4.2で示される範囲に設定されるのは、x+y+zが小さくなりすぎると、水素吸蔵合金内における水素の吸蔵安定性が高くなるため、水素放出能が劣化し、またx+y+zが大きくなりすぎると、今度は水素吸蔵合金における水素の吸蔵サイトが減少して、水素吸蔵能の劣化が起こり始めるためである。
The reason why z representing the atomic ratio of T at the B site is set to a range represented by 0 ≦ z ≦ 0.1 is that the effect of the present invention becomes remarkable when the value of z is within the range.
X + y + z, which represents the ratio of B site to A site, is set in the range shown by 3.2 ≦ x + y + z ≦ 4.2. If x + y + z becomes too small, As hydrogen storage stability increases in hydrogen, the hydrogen release ability deteriorates, and if x + y + z becomes too large, the hydrogen storage sites in the hydrogen storage alloy decrease, and the hydrogen storage capacity deteriorates. Because it begins to happen.

本発明は上記した一実施形態に限定されることはなく、種々変形が可能である。
例えば、上記した一実施形態において、水素吸蔵合金粒子36の希土類−Mg−Ni系合金にあっては、式(1)中のaが0.2以下であることが好ましい。aが0.2を超えると、合金の耐アルカリ性が低下するからである。
上記した一実施形態において、式(1)中のeが0.1以下であることが好ましい。eが0.1以下であることにより、希土類−Mg−Ni系合金は更に優れた耐アルカリ性を有するからである。
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, in the above-described embodiment, in the rare earth-Mg-Ni alloy of the hydrogen storage alloy particles 36, it is preferable that a in the formula (1) is 0.2 or less. This is because the alkali resistance of the alloy decreases when a exceeds 0.2.
In the above-described embodiment, it is preferable that e in the formula (1) is 0.1 or less. This is because, when e is 0.1 or less, the rare earth-Mg-Ni alloy has further excellent alkali resistance.

上記した一実施形態において、式(1)中のaとcとの和(a+c)が0.8以上であることが好ましい。aとcとの和(a+c)が0.8以上であることにより、希土類−Mg−Ni系合金は更に優れた耐アルカリ性を有するからである。
上記した一実施形態において、式(1)中のbは0.2以下であるのが好ましく、且つ、cをbで除した商が3.0以上であるのが好ましい。bが0.2以下であり、且つ、cをbで除した商が3.0以上である場合、希土類−Mg−Ni系合金の原材料としてジジムを用いることができる。ジジムは、PrとNdの混合物であり、通常、Prの含有率よりもNdの含有率のほうが高い。ジジムは、Pr及びNdの単体金属に比べて廉価であり、ジジムを用いることで水素吸合金が更に安価になる。
In the above-described embodiment, the sum (a + c) of a and c in formula (1) is preferably 0.8 or more. This is because when the sum of a and c (a + c) is 0.8 or more, the rare earth-Mg-Ni alloy has further excellent alkali resistance.
In the above-described embodiment, b in the formula (1) is preferably 0.2 or less, and a quotient obtained by dividing c by b is preferably 3.0 or more. When b is 0.2 or less and the quotient obtained by dividing c by b is 3.0 or more, didymium can be used as a raw material for the rare earth-Mg-Ni-based alloy. Didymium is a mixture of Pr and Nd, and usually the Nd content is higher than the Pr content. Didymium is less expensive than Pr and Nd single metals, and using didymium makes hydrogen absorbing alloys even cheaper.

上記した一実施形態において、式(1)中、wは、0.08≦w≦0.13で示される範囲に入っているが、好ましい範囲は0.08≦w≦0.11であり、より好ましい範囲は、0.09≦w≦0.11である。
上記した一実施形態において、式(1)中、xの好ましい範囲は、3.0≦x≦3.4であり、より好ましい範囲は、3.05≦x≦3.35である。
In the above-described embodiment, in Formula (1), w is in the range represented by 0.08 ≦ w ≦ 0.13, but a preferred range is 0.08 ≦ w ≦ 0.11, and a more preferred range is 0.09 ≦ w. ≦ 0.11.
In the above-described embodiment, in Formula (1), a preferable range of x is 3.0 ≦ x ≦ 3.4, and a more preferable range is 3.05 ≦ x ≦ 3.35.

上記した一実施形態において、式(1)中、x+y+zは、3.2≦x+y+z≦4.2で示される範囲に入っているが、好ましい範囲は、3.2≦x+y+z≦3.8であり、より好ましい範囲は、3.3≦x+y+z≦3.5である。
上記した一実施形態において、式(1)中、yは、0.15≦y≦0.25で示される範囲に入っていたが、好ましい範囲は0.15≦y≦0.20であり、より好ましい範囲は、0.17≦y≦0.20である。
In the above-described embodiment, in the formula (1), x + y + z is in a range represented by 3.2 ≦ x + y + z ≦ 4.2, but a preferable range is 3.2 ≦ x + y + z ≦ 3.8, and a more preferable range is 3.3 ≦ x. x + y + z ≦ 3.5.
In the above-described embodiment, in the formula (1), y is in the range represented by 0.15 ≦ y ≦ 0.25, but the preferred range is 0.15 ≦ y ≦ 0.20, and the more preferred range is 0.17 ≦ y. ≦ 0.20.

上記した一実施形態において、式(1)中、zは、0≦z≦0.1で示される範囲に入っていたが、好ましい範囲は、0≦z≦0.08であり、より好ましい範囲は、0.02≦z≦0.05である。   In the above-described embodiment, in the formula (1), z is in the range represented by 0 ≦ z ≦ 0.1, but the preferred range is 0 ≦ z ≦ 0.08, and the more preferred range is 0.02 ≦ z ≦ 0.05.

1.電池の組立て
実施例1
1)負極板の作製
希土類成分の内訳が、原子数比で、10%のCe、30%のPr、30%のNd及び5%のYになるように希土類成分の原材料を用意し、そして、希土類成分、Mg、Ni及びAlを原子数比で0.90:0.10:3.5:0.20の割合で含有する水素吸蔵合金の塊を誘導溶解炉を用いて調製した。この合金をアルゴン雰囲気中で1000℃、10時間の熱処理を行い、組成が(Ce0.10Pr0.30Nd0.30Y0.30)0.90Mg0.10Ni3.5Al0.2で表わされる超格子構造の希土類−Mg−Ni系合金のインゴットを得た。
1. Battery assembly Example 1
1) Preparation of negative electrode plate Prepare the raw materials of the rare earth component so that the breakdown of the rare earth component is 10% Ce, 30% Pr, 30% Nd and 5% Y by atomic ratio, A mass of a hydrogen storage alloy containing rare earth components, Mg, Ni, and Al in an atomic ratio of 0.90: 0.10: 3.5: 0.20 was prepared using an induction melting furnace. This alloy was heat-treated at 1000 ° C. for 10 hours in an argon atmosphere, and the composition was (Ce 0.10 Pr 0.30 Nd 0.30 Y 0.30 ) 0.90 Mg 0.10 Ni 3.5 Al 0.2 with a superlattice rare earth-Mg-Ni alloy Got the ingot.

この希土類−Mg−Ni系合金のインゴットを不活性ガス雰囲気中で機械的に粉砕し、篩分けにより400〜200メッシュの範囲の粒径を有する合金粒子を選別した。この合金粒子に対してレーザ回折・散乱式粒度分布測定装置を使用して粒度分布を測定したところ、重量積分50%に相当する平均粒径は30μmであり、最大粒径は45μmであった。
この合金粒子100質量部に対してポリアクリル酸ナトリウム0.4質量部、カルボキシメチルセルロース0.1質量部、および、ポリテトラフルオロエチレン分散液(分散媒:水、固形分60質量部)2.5質量部を加えた後、混練して負極合剤のスラリーを得た。
The ingot of the rare earth-Mg-Ni alloy was mechanically pulverized in an inert gas atmosphere, and alloy particles having a particle size in the range of 400 to 200 mesh were selected by sieving. When the particle size distribution of the alloy particles was measured using a laser diffraction / scattering type particle size distribution measuring device, the average particle size corresponding to 50% by weight integral was 30 μm, and the maximum particle size was 45 μm.
After adding 0.4 parts by weight of sodium polyacrylate, 0.1 parts by weight of carboxymethylcellulose, and 2.5 parts by weight of polytetrafluoroethylene dispersion (dispersion medium: water, solid content 60 parts by weight) to 100 parts by weight of the alloy particles And kneading to obtain a slurry of the negative electrode mixture.

このスラリーを、Niめっきを施した厚さ60μmのFe製パンチングメタルの両面の全面に均等に、つまり、厚さが一定になるように塗着し、スラリーの乾燥を経て、このパンチングメタルをプレスして裁断し、AAサイズのニッケル水素二次電池用の負極板を作製した。
2)正極板の作製
金属Niに対して、Znが3質量%、Coが1質量%の比率となるように、硫酸ニッケル、硫酸亜鉛および硫酸コバルトの混合水溶液を調製し、この混合水溶液に攪拌しながら水酸化ナトリウム水溶液を徐々に添加した。この際、反応中のpHを13〜14に保持して水酸化ニッケル粒子を析出させ、この水酸化ニッケル粒子を10倍量の純水にて3回洗浄したのち、脱水、乾燥した。
This slurry is applied evenly on both sides of the 60 μm thick Fe punching metal with Ni plating, that is, the thickness is constant, and after drying the slurry, the punching metal is pressed. Then, a negative electrode plate for an AA-size nickel metal hydride secondary battery was produced.
2) Preparation of positive electrode plate A mixed aqueous solution of nickel sulfate, zinc sulfate and cobalt sulfate was prepared so that the ratio of Zn to 3% by mass and Co to 1% by mass with respect to metal Ni was stirred. While adding sodium hydroxide aqueous solution gradually. At this time, the pH during the reaction was maintained at 13 to 14 to precipitate nickel hydroxide particles. The nickel hydroxide particles were washed three times with 10 times the amount of pure water, and then dehydrated and dried.

得られた水酸化ニッケル粒子に、40質量%のHPCディスパージョン液を混合して、正極合剤のスラリーを調製した。このスラリーを多孔質構造のニッケル基板に充填して乾燥させてから、この基板を圧延、裁断してAAサイズのニッケル水素二次電池用の正極板を作製した。
3)ニッケル水素二次電池の組立て
上記のようにして得られた負極板及び正極板を、ポリプロピレンまたはナイロン製の不織布よりなるセパレータを介して渦巻状に巻回して電極群を形成し、この電極群を外装缶に収容したのち、この外装缶内に、リチウム、ナトリウムを含有した濃度30質量%の水酸化カリウム水溶液を注入して、図1に示した構成の電池を有し、体積エネルギー密度が300Wh/lであるAAサイズのニッケル水素二次電池を組立てた。
The obtained nickel hydroxide particles were mixed with 40% by mass of an HPC dispersion liquid to prepare a slurry of a positive electrode mixture. The slurry was filled in a nickel substrate having a porous structure and dried, and then the substrate was rolled and cut to produce a positive electrode plate for an AA size nickel metal hydride secondary battery.
3) Assembling of the nickel hydride secondary battery The negative electrode plate and the positive electrode plate obtained as described above are spirally wound through a separator made of polypropylene or nylon nonwoven fabric to form an electrode group. After housing the group in an outer can, a lithium hydroxide sodium-containing 30% by weight potassium hydroxide aqueous solution containing lithium and sodium is injected into the outer can, and the battery having the configuration shown in FIG. AA size nickel metal hydride secondary battery with 300Wh / l was assembled.

実施例2
水素吸蔵合金の組成を(Ce0.20Pr0.20Nd0.60)0.90Mg0.10Ni3.50Al0.20にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
実施例3
水素吸蔵合金の組成を(Ce0.20Pr0.10Nd0.70)0.90Mg0.10Ni3.50Al0.20にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
Example 2
A nickel-metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (Ce 0.20 Pr 0.20 Nd 0.60 ) 0.90 Mg 0.10 Ni 3.50 Al 0.20 .
Example 3
A nickel-hydrogen secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (Ce 0.20 Pr 0.10 Nd 0.70 ) 0.90 Mg 0.10 Ni 3.50 Al 0.20 .

実施例4
水素吸蔵合金の組成を(Ce0.30Pr0.10Nd0.60)0.90Mg0.10Ni3.50Al0.20にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
比較例1
水素吸蔵合金の組成を(La0.60Pr0.20Nd0.20)0.90Mg0.10Ni3.50Al0.20にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
Example 4
A nickel hydrogen secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (Ce 0.30 Pr 0.10 Nd 0.60 ) 0.90 Mg 0.10 Ni 3.50 Al 0.20 .
Comparative Example 1
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.60 Pr 0.20 Nd 0.20 ) 0.90 Mg 0.10 Ni 3.50 Al 0.20 .

比較例2
水素吸蔵合金の組成を(La0.50Ce0.10Pr0.20Nd0.20)0.90Mg0.10Ni3.50Al0.20にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
比較例3
水素吸蔵合金の組成を(La0.20Ce0.10Pr0.30Nd0.30Y0.10)0.90Mg0.10Ni3.50Al0.20にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
Comparative Example 2
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.50 Ce 0.10 Pr 0.20 Nd 0.20 ) 0.90 Mg 0.10 Ni 3.50 Al 0.20 .
Comparative Example 3
A nickel metal hydride secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (La 0.20 Ce 0.10 Pr 0.30 Nd 0.30 Y 0.10 ) 0.90 Mg 0.10 Ni 3.50 Al 0.20 .

比較例4
水素吸蔵合金の組成を(Pr0.40Nd0.40Y0.20)0.90Mg0.10Ni3.50Al0.20にしたこと以外は実施例1の場合と同様にして、ニッケル水素二次電池を組立てた。
なお、実施例1〜3及び比較例1〜4の水素吸蔵合金作製の際、希土類成分の原材料として各元素の単金属を使用したが、Pr及びNdについては原材料としてジジム(PrとNdとの混合金属)を使用し、不足する残りの構成元素を単金属でもって補填してもよい。
2.電池のサイクル寿命評価試験
実施例1〜3及び比較例1〜4の各電池について、1.0Cの電流で1時間充電してから1.0Cの電流で終止電圧0.8Vまで放電する電池容量測定を繰り返し、電池が放電できなくなるまでのサイクル数(サイクル寿命)を数えた。これらの結果を、比較例1の結果を100として表1に示す。
Comparative Example 4
A nickel hydrogen secondary battery was assembled in the same manner as in Example 1 except that the composition of the hydrogen storage alloy was (Pr 0.40 Nd 0.40 Y 0.20 ) 0.90 Mg 0.10 Ni 3.50 Al 0.20 .
In addition, when producing the hydrogen storage alloys of Examples 1 to 3 and Comparative Examples 1 to 4, single metals of each element were used as raw materials for the rare earth component, but Pr and Nd were used as raw materials for didymium (Pr and Nd (Mixed metal) may be used and the remaining remaining constituent elements may be supplemented with a single metal.
2. Battery cycle life evaluation test For each of the batteries of Examples 1 to 3 and Comparative Examples 1 to 4, the battery capacity measurement was repeated by charging at 1.0 C current for 1 hour and then discharging to 1.0 V at a final voltage of 0.8 V. The number of cycles (cycle life) until the battery could not be discharged was counted. These results are shown in Table 1 with the result of Comparative Example 1 being 100.

Figure 2008084668
Figure 2008084668

表1からは以下のことが明らかである。
(1)希土類成分がCeを含まない比較例1に比べ、原子数比でCeを0.1含有した比較例2、3では、電池のサイクル寿命が大幅に低下している。これより、希土類−Mg−Ni系合金において、Ceの含有は合金の耐アルカリ性に悪影響を及ぼすことがわかる。
(2)比較例1〜3に比べ、希土類成分がLaを含まない実施例1では、サイクル寿命が大幅に向上しており、Laを含まない希土類−Mg−Ni系合金では、Ceを含有しても合金の耐アルカリ性が低下しないことがわかる。
From Table 1, the following is clear.
(1) Compared with Comparative Example 1 in which the rare earth component does not contain Ce, Comparative Examples 2 and 3 containing 0.1 Ce in terms of the number of atoms have significantly reduced the cycle life of the battery. From this, it can be seen that in rare earth-Mg-Ni alloys, the inclusion of Ce adversely affects the alkali resistance of the alloy.
(2) Compared with Comparative Examples 1 to 3, in Example 1 where the rare earth component does not contain La, the cycle life is greatly improved, and the rare earth-Mg-Ni alloy containing no La contains Ce. However, it can be seen that the alkali resistance of the alloy does not decrease.

(3)LaとCeの両方を含まない比較例4では、比較例1〜3に比べ電池のサイクル寿命は向上するが、向上の程度は実施例1に及ばない。このようにLaを含まずCeを含む場合に、LaとCeの両方を含まない場合に比べ耐アルカリ性が向上するのは、希土類-Mg-Ni系水素吸蔵合金独特の効果である。
(4)CeとNdの合計量が、原子数比で希土類成分の80%以上を占めるように構成した実施例2では、実施例1よりも更にサイクル寿命が向上している。また、実施例3のようにPrの含有量が低い組成でも、サイクル寿命は変わらないことがわかる。Prの含有量が低い組成では、合金の原材料として廉価なジジム(PrとNdの混合合金であり、通常PrよりNdの含有率のほうが高い)を使うことができ、工業的に有利である。
(5)Ce量を表すaが0.2を超えている実施例4では、aが0.2以下の実施例1〜3に比べてサイクル寿命が低下した。このことから、Laを含まずCeを含む希土類-Mg-Ni系水素吸蔵合金において、aは0.2以下であるのが好ましいことがわかる。
(3) In Comparative Example 4 that does not include both La and Ce, the cycle life of the battery is improved as compared with Comparative Examples 1 to 3, but the degree of improvement does not reach that of Example 1. Thus, when Ce is contained without containing La, the alkali resistance is improved as compared with the case where both La and Ce are not contained, which is a unique effect of the rare earth-Mg—Ni-based hydrogen storage alloy.
(4) In Example 2 configured such that the total amount of Ce and Nd occupies 80% or more of the rare earth component by atomic ratio, the cycle life is further improved as compared with Example 1. It can also be seen that the cycle life does not change even with a composition having a low Pr content as in Example 3. In the composition having a low Pr content, inexpensive didymium (a mixed alloy of Pr and Nd, which usually has a higher Nd content than Pr) can be used as an alloy raw material, which is industrially advantageous.
(5) In Example 4 in which a representing Ce amount exceeded 0.2, the cycle life was reduced as compared with Examples 1 to 3 in which a was 0.2 or less. From this, it is understood that a is preferably 0.2 or less in the rare earth-Mg-Ni hydrogen storage alloy not containing La but containing Ce.

本発明の一実施形態の密閉型アルカリ蓄電池としてのニッケル水素二次電池を示す部分切欠斜視図であり、円内に負極板の一部を拡大して模式的に示した。It is a partial notch perspective view which shows the nickel hydride secondary battery as a sealed alkaline storage battery of one Embodiment of this invention, and expanded and showed a part of negative electrode plate in the circle.

符号の説明Explanation of symbols

26 負極板
36 水素吸蔵合金粒子
26 Negative electrode plate
36 Hydrogen storage alloy particles

Claims (5)

一般式:
(CePrNdYA1−wMgNiAlT
(ただし、式中、Aは、Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sr,Sc,Zr,Hf,Ca及びTiよりなる群から選ばれる少なくとも1種の元素を表し、Tは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Ga,Zn,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、a,b,c,d,eは、a>0,b≧0,c≧0,d≧0,e≧0,a+b+c+d+e=1で示される関係を満たし、w,x,y,zはそれぞれ0.08≦w≦0.13,3.2≦x+y+z≦4.2,0.15≦y≦0.25,0≦z≦0.1で示される範囲にある。)
にて表される組成を有する水素吸蔵合金。
General formula:
(Ce a Pr b Nd c Y d A e) 1-w Mg w Ni x Al y T z
(Wherein, A is at least one selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, Sc, Zr, Hf, Ca and Ti. T represents at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ga, Zn, Sn, In, Cu, Si, P, and B A, b, c, d, and e satisfy the relationship represented by a> 0, b ≧ 0, c ≧ 0, d ≧ 0, e ≧ 0, a + b + c + d + e = 1, and w, x, y , Z are in the ranges indicated by 0.08 ≦ w ≦ 0.13, 3.2 ≦ x + y + z ≦ 4.2, 0.15 ≦ y ≦ 0.25, and 0 ≦ z ≦ 0.1, respectively.
The hydrogen storage alloy which has a composition represented by these.
前記一般式中のeは0.1以下であることを特徴とする請求項1記載の水素吸蔵合金。   The hydrogen storage alloy according to claim 1, wherein e in the general formula is 0.1 or less. 前記一般式中のaとcとの和(a+c)は0.8以上であることを特徴とする請求項1又は2に記載の水素吸蔵合金。   3. The hydrogen storage alloy according to claim 1, wherein the sum (a + c) of a and c in the general formula is 0.8 or more. 前記一般式中のbは0.2以下であり、且つ、cをbで除した商が3.0以上であることを特徴とする請求項1乃至3の何れかに記載の水素吸蔵合金。   4. The hydrogen storage alloy according to claim 1, wherein b in the general formula is 0.2 or less, and a quotient obtained by dividing c by b is 3.0 or more. 請求項1乃至4の何れか1項に記載の水素吸蔵合金を含む負極を備えたことを特徴とする密閉型アルカリ蓄電池。   A sealed alkaline storage battery comprising a negative electrode containing the hydrogen storage alloy according to any one of claims 1 to 4.
JP2006262543A 2006-09-27 2006-09-27 Hydrogen storage alloy and sealed alkaline storage battery using the alloy Expired - Fee Related JP5142503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262543A JP5142503B2 (en) 2006-09-27 2006-09-27 Hydrogen storage alloy and sealed alkaline storage battery using the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262543A JP5142503B2 (en) 2006-09-27 2006-09-27 Hydrogen storage alloy and sealed alkaline storage battery using the alloy

Publications (2)

Publication Number Publication Date
JP2008084668A true JP2008084668A (en) 2008-04-10
JP5142503B2 JP5142503B2 (en) 2013-02-13

Family

ID=39355307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262543A Expired - Fee Related JP5142503B2 (en) 2006-09-27 2006-09-27 Hydrogen storage alloy and sealed alkaline storage battery using the alloy

Country Status (1)

Country Link
JP (1) JP5142503B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860265A (en) * 1994-08-22 1996-03-05 Sumitomo Special Metals Co Ltd Hydrogen storage alloy thin sheet, alloy powder and production thereof
JP2001291511A (en) * 2000-04-07 2001-10-19 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP2004124132A (en) * 2002-09-30 2004-04-22 Yuasa Corp Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP2005290473A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Hydrogen occlusion alloy, hydrogen occlusion alloy particle and secondary battery
JP2006040847A (en) * 2004-07-30 2006-02-09 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and secondary battery using this electrode
JP2007169724A (en) * 2005-12-22 2007-07-05 Sanyo Electric Co Ltd Hydrogen occlusion alloy and alkaline secondary battery using the hydrogen occlusion alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860265A (en) * 1994-08-22 1996-03-05 Sumitomo Special Metals Co Ltd Hydrogen storage alloy thin sheet, alloy powder and production thereof
JP2001291511A (en) * 2000-04-07 2001-10-19 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP2004124132A (en) * 2002-09-30 2004-04-22 Yuasa Corp Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP2005290473A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Hydrogen occlusion alloy, hydrogen occlusion alloy particle and secondary battery
JP2006040847A (en) * 2004-07-30 2006-02-09 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and secondary battery using this electrode
JP2007169724A (en) * 2005-12-22 2007-07-05 Sanyo Electric Co Ltd Hydrogen occlusion alloy and alkaline secondary battery using the hydrogen occlusion alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012041283; 安岡茂和、木原勝: '超格子水素吸蔵合金を用いた高容量ニッケル水素電池の開発' 希土類 No.48, 20060523, 112-113ページ, 日本希土類学会 *

Also Published As

Publication number Publication date
JP5142503B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP4873947B2 (en) Hydrogen storage alloy and alkaline secondary battery using the hydrogen storage alloy
JP5196953B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP4566025B2 (en) Alkaline storage battery
JP5733859B2 (en) Nickel metal hydride secondary battery
JP2007087631A (en) Alkaline storage battery
JP5121499B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP4911561B2 (en) Alkaline storage battery
JP2012134110A (en) Negative electrode for alkaline secondary battery, and alkaline secondary battery comprising the negative electrode
EP2690690A1 (en) Nickel-metal hydride secondary cell and negative electrode therefor
JP4587734B2 (en) Hydrogen storage alloy electrode and secondary battery using the electrode
JP5196932B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the hydrogen storage alloy, and nickel-hydrogen secondary battery
JP2009228096A (en) Hydrogen storage alloy
JP2007250250A (en) Nickel hydrogen storage battery
JP6153156B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy
JP5183077B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP5196805B2 (en) Alkaline storage battery
JP4159501B2 (en) Rare earth-magnesium hydrogen storage alloy, hydrogen storage alloy particles, and secondary battery
JP2008235173A (en) Nickel-hydrogen secondary battery
JP5142503B2 (en) Hydrogen storage alloy and sealed alkaline storage battery using the alloy
JP2010080291A (en) Hydrogen storage alloy powder, manufacturing method therefor, and alkaline accumulator of alkaline storage battery
JP2010231940A (en) Alkaline secondary battery
JP4511298B2 (en) Nickel metal hydride storage battery
JP4121438B2 (en) Negative electrode for nickel-metal hydride secondary battery and sealed nickel-metal hydride secondary battery using the same
JP2007092115A (en) Hydrogen storage alloy, and nickel-hydrogen storage battery using this alloy
JP2007087723A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5142503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees