JP2004124132A - Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same - Google Patents

Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same Download PDF

Info

Publication number
JP2004124132A
JP2004124132A JP2002287749A JP2002287749A JP2004124132A JP 2004124132 A JP2004124132 A JP 2004124132A JP 2002287749 A JP2002287749 A JP 2002287749A JP 2002287749 A JP2002287749 A JP 2002287749A JP 2004124132 A JP2004124132 A JP 2004124132A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
nickel
electrode
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002287749A
Other languages
Japanese (ja)
Other versions
JP3861788B2 (en
JP2004124132A5 (en
Inventor
Manabu Kanemoto
金本  学
Minoru Kurokuzuhara
黒葛原 実
Mitsuhiro Kodama
児玉 充浩
Koichi Sakamoto
坂本 晃一
Masaharu Watada
綿田 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2002287749A priority Critical patent/JP3861788B2/en
Publication of JP2004124132A publication Critical patent/JP2004124132A/en
Publication of JP2004124132A5 publication Critical patent/JP2004124132A5/ja
Application granted granted Critical
Publication of JP3861788B2 publication Critical patent/JP3861788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen occlusion alloy electrode and a nickel hydrogen storage battery which is not inferior to discharge capacity and excellent in durability represented by the charging-discharging cyclic characteristic compared with conventional ones. <P>SOLUTION: In the composition of hydrogen occlusion alloy powder, R1 denotes at least one element out of lanthanoids with atomic number 59-62, R2 denotes at least one element out of lanthanoids with the atomic number being Y and ≥ 63, and X denotes at least one kind of metal elements not belonging to rare earth elements. When the composition formula is expressed by La<SB>a</SB>Ce<SB>b</SB>R1<SB>c</SB>R2<SB>d</SB>Ni<SB>e</SB>Co<SB>f</SB>S<SB>g</SB>, the following conditions are satisfied: a+b+c+d=1.0, 0.6 ≤ a ≤ 0.9, 0.05 ≤ b, 0 ≤ c, 0<d ≤ 0.06, 5.0 ≤ e+f+g ≤ 5.4, and 0.1 ≤ f ≤ 1.20, 0 < g. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金粉末とそれを用いた水素吸蔵合金電極およびニッケル水素蓄電池に関するものである。
【0002】
【従来の技術】
ニッケル水素蓄電池は、耐過充電、耐過放電特性に優れ、一般ユーザーにとって使い易い電池であるところから、携帯電話、小型電動工具および小型パーソナルコンピュータ等の携帯用小型電子機器類用の電源として広く利用されており、これらの小型電子機器類の普及とともに需要が飛躍的に増大している。また、ハイブリッド型電気自動車(HEV)の駆動用電源としても実用化されている。そして、アルカリ蓄電池に対してはさらなる容量アップ、充放電サイクル性能の向上が求められている。
【0003】
前記ニッケル水素蓄電池の負極は、活物質となる水素吸蔵合金を主成分とするペーストを、鉄、ニッケルや銅等、耐アルカリ性で良導電性金属の多孔性基板に担持させたものである。
【0004】
前記水素吸蔵合金としてはLa−Ni系の他にMg系、Ti系、Zr系の合金があるが、合金の活性が高いこと、耐久性が優れているところからLa−Ni系の合金が重用されている。しかし、HEV用電源やパーソナルコンピューター用電源等高温で動作する機会が多くなり、電池に対して高温での耐久性など高温特性の更なる改良が求められており、従来の水素吸蔵合金電極を適用したニッケル水素蓄電池においては、水素吸蔵合金の耐久性が劣り、前記要求に対応仕切れない欠点があった。
【0005】
従来、水素吸蔵合金の組成の改良によって水素吸蔵合金の耐久性を向上しようとする試みがなされてきた。(例えば、特許文献1参照。)
【0006】
【特許文献1】
特開平5−62674号公報(第2頁、第14段落、第4頁、表1、表2)
【0007】
上記特許文献1には、MmNi(Mmはミッシュメタル)で示され、MmがLa0.2Ce0.4Pr0.1Nd0.10.2(Rは原子番号が63以上のランタノイドのうちの1種の元素を示す)なる例が開示されている。しかし、特許文献1で示された組成の水素吸蔵合金は、単位重量当たりの容量が250mAh/g以下と低い値であり、該水素吸蔵合金を用いて作製した水素吸蔵合金電極を適用したニッケル水素蓄電池は容量が低い欠点があった。
【発明が解決しようとする課題】
本発明は、前記従来技術の欠点に鑑みなされたものであって、従来のものに比べて放電容量が劣らず、且つ、充放電サイクル特性に代表される耐久性において従来に勝る水素吸蔵合金電極およびニッケル水素蓄電池を提供せんとするものである。
【0008】
【課題を解決するための手段】
前記課題を解決するため、本発明に係る水素吸蔵合金粉末を、CaCu型の結晶構造を有し、La、Ce、Yと原子番号が63以上のランタノイドのうちの少なくとも1種の元素、NiおよびCoを必須成分とし、R1を原子番号59〜62のランタノイドのうちの少なくとも1種の元素とし、R2をYと原子番号が63以上のランタノイドのうちの少なくとも1種の元素とし、Xを希土類に属さない金属元素とし、組成式LaCeR1R2NiCoで表した時に、前記a+b+c+d=1.0であり、0.6≦a≦0.9、0.05≦b、0≦c、0<d≦0.06であり、5.0≦e+f+g≦5.4であって、0.1≦f≦1.2、0<gで示される水素吸蔵合金粉末とする。
【0009】
さらに、本発明においては、水素吸蔵合金粉末を、前記請求項1に記載の組成を有する水素吸蔵合金粉末であって、該粉末に含まれるR2(R2は、原子番号が63以上のランタノイドのうちの少なくとも1種の元素を示す。該元素を総称して以下重希土類元素と記述する。)の濃度が、粉末の内部に比べて粉末の表面において高くすることが望ましい。
【0010】
本発明に係る水素吸蔵合金電極は、前記請求項1〜請求項4に記載の水素吸蔵合金粉末を適用した電極である。本発明に係るニッケル水素蓄電池は、ニッケル電極を正極とし、請求項5に記載の水素吸蔵合金電極を負極とするニッケル水素蓄電池である。前記ニッケル電極が、Er、Tm、Yb、Lu、Yのうちの少なくとも1種類の元素を含有したニッケル水素蓄電池がさらに望ましい。
【0011】
【発明の実施の形態】
本発明に係る水素吸蔵合金粉末は、CaCu型の結晶構造を有し、La、Ce、原子番号が63以上のランタノイドのうちの少なくとも1種の元素、NiおよびCoを必須成分とし、R1を原子番号59〜62のランタノイドのうちの少なくとも1種の元素とし、R2をYと原子番号が63以上のランタノイドのうちの少なくとも1種の元素とし、Xを希土類に属さない金属元素とし、組成式LaCeR1R2NiCoで表した時に、前記a+b+c+d=1.0であり、0.6<a<0.9、0.05≦b、0≦c、0<d<0.06であり、5.0≦e+f+g≦5.4であって、0.1≦f≦1.2、0<gで示されることを特徴とする水素吸蔵合金粉末である。
【0012】
該水素吸蔵合金粉末は、例えば前記組成の合金のインゴットを粉砕して得る。該水素吸蔵合金の平均粒径は、20〜100μmとすることが望ましい。平均粒径が20μm未満では充填性が劣る。また、平均粒径が100μmを超えると水素吸蔵合金電極の活物質としての活性が低い欠点がある。
【0013】
前記Mm中のLaの比率aが0.6以下の場合は、該組成の合金粉末を水素吸蔵合金電極に適用した時に容量が低い欠点がある。前記Mm中のLaの比率aが0.9を超える場合は、アルカリ電解液中での耐食性が劣るために、該組成の合金粉末を水素吸蔵合金電極に適用した時に電極の耐久性が劣る欠点がある。
【0014】
本発明に係る水素吸蔵合金は、Ceの含有比率bを0.05以上とする。さらに、該比率bを前記原子番号59〜62に属する希土類元素R1(以下該4種の元素の総称を示すときは軽希土類元素と記述する)の比率cより大きくすることが望ましい。前記bを0.05≦b、c<bとすることによって水素吸蔵合金の耐食性を高める効果がある。また、充電時に正極で発生する酸素を水素吸蔵合金が吸収するのを促進する効果がある。このことによって、水素吸蔵合金の腐食が抑制され、サイクル性能を高めることができる。
【0015】
合金中の前記重希土類元素R2は、アルカリ電解液中での合金粉末の耐食性を向上させる作用がある。しかし、前記Mm中のR2の含有比率が大きくなるに従い、合金の水素の平行圧力が増大して該合金粉末を適用した水素吸蔵合金電極の容量が低下する。また、電極の活性化が遅くなる欠点がある。R2の比率dが0.06を超えるとこの欠点が顕著に現れる。
【0016】
前記e+f+gの値は5.0以上、5.4以下とする。該値が5.0未満の場合は、合金中にMmの偏析が生じ、耐食性が低い欠点がある。また、該値が5.4を超えると、水素吸蔵合金の水素吸蔵能が低下して該組成の合金粉末を水素吸蔵合金電極に適用した時に電極の容量が低い欠点がある。
【0017】
前記のように、本発明においては、水素吸蔵合金粉末に含まれるR2(R2は重希土類元素のうちの少なくとも1種の元素を示す)の濃度を、粉末の内部に比べて粉末の表面において高くすることが望ましい。ここでいう粉末の表面とは、合金粉末がアルカリ電解液と接触した時に合金が腐食を受けて合金を構成する一部の成分が溶出するために、合金の組成が元の組成と異なる組成に変化する領域を意味し、このような変化を受ける領域であれば粉末の表面からの深さに拘束されない。しかし、通常は粉末の表面からの距離が約500ナノメートル(nm)以下の領域をここでいう表面とみなすことができる。逆に、粉末の内部とは合金粉末がアルカリ電解液と接触しても組成の変化が起きない領域を意味し、具体的には粉末の表面からの距離が約600ナノメートル(nm)以上の領域を粉末の内部とみなすことができる。
【0018】
前記内部に比べて表面の重希土類元素R2がリッチな水素吸蔵合金粉末は、前記本発明に係る組成の合金粉末を高温、高濃度の化成アルカリ中に浸漬処理することによって得ることができる。該合金粉末は、アルカリ電解液中で表面に重希土類元素(R2)を含む不動態被膜を形成するため、耐食性が高いと考えられる。
【0019】
前記合金粉末表面に含まれる重希土類元素は、TEM(透過型電子顕微鏡)−EDSやESCA(光電子分光法)によって定量的に分析することができる。
【0020】
本発明においては、水素吸蔵合金中に含まれるNiの比率eは3.3以上4.4以下とすることが望ましい。該比率eが3.3未満および4.4を超える場合は、合金粉末の耐食性が劣る欠点があり、水素吸蔵合金電極のサイクル特性が低い欠点がある。
【0021】
本発明における水素吸蔵合金粉末に含まれるCoの比率fは、0.1以上1.2以下とする。fが0.1未満では合金粉末の耐食性が劣り、fが1.2を超えると水素吸蔵合金電極の活物質としての活性化が遅くなる欠点がある。
【0022】
本発明における前記希土類元素に属さない金属元素であるXは、Al、Cu、Fe、Mn、Ti、Zr、Cr、MoおよびBeのうち少なくとも1種の元素であることが好ましい。これらの金属元素元素は水素吸蔵合金に添加することによって、水素吸蔵合金の水素吸蔵能力を高めたり、水素吸蔵合金電極としての活性化を速めたり、水素吸蔵合金の耐食性を高めたりする効果がある。
【0023】
金属元素Xは、前記金属元素のうちでも特にMn、AlおよびFeが好ましい。Mnの存在は、水素吸蔵合金の水素吸蔵能力を高める効果がある。ただし、その反面合金の耐食性を低下させる。このような理由から、前記a+b+c+d=1.0あるいはa+b+c+d+h=1.0と表した時に、合金に含有させるMnの比率を0.1以上0.5以下とすることが好ましい。Alの存在は、水素吸蔵合金の耐食性を高めるのに有効である。その反面水素吸蔵合金電極の活性化が遅くなる欠点がある。このような理由から、前記a+b+c+d=1.0あるいはa+b+c+d+h=1.0と表した時に、合金に含有させるAlの比率を0.1以上0.5以下とすることが好ましい。Feの存在は、水素吸蔵合金を水素吸蔵合金電極の活物質材料と適用したときに電極の活性を高める効果がある。但し、Feの比率が多くなるに従い合金の耐食性が顕著に低下する。このような理由から、前記a+b+c+d=1.0あるいはa+b+c+d+h=1.0と表した時に、合金に含有させるFeの比率を0以上0.05以下とすることが好ましい。
【0024】
本発明に係る水素吸蔵合金に含有させる金属元素Xの比率gは0<gとする。前記の理由により、該範囲のうちでも0.2<g≦1.05とすることが好ましい。
【0025】
本発明に係る水素吸蔵合金電極は、前記本発明に係る水素吸蔵合金粉末をニッケルやニッケルメッキを施した金属製の穿孔板や発泡メタル等の対電解液性の基板に担持させたものである。
【0026】
本発明に係るニッケル水素蓄電池に適用するニッケル電極は、前記重希土類元素およびYのうちの少なくとも1種類の元素を含有したニッケル電極とすることが望ましい。該ニッケル電極を適用したニッケル水素蓄電池を、高温下で充電すると、ニッケル電極における酸素の発生が抑制される。該ニッケル電極を本発明に係る水素吸蔵合金電極と組み合わせたニッケル水素蓄電池は、従来のニッケル水素蓄電池に比較して顕著に水素吸蔵合金の腐食が抑制され耐久性に優れ、サイクル性能が顕著に優れたニッケル水素蓄電池となる。
【0027】
前記ニッケル電極に含まれる前記重希土類元素およびYのうちの、少なくとも1種類の元素は酸化物、水酸化物として含まれる。前記重希土類元素は、酸化物や水酸化物(水和した水酸化物も適用できる)としてニッケル電極に添加することが好ましい。特に酸化物が安価に入手でき、好ましい化合物である。
【0028】
【実施例】
以下実施例に基づいて本発明の詳細を説明する。
(実施例1)
(水素吸蔵合金の調整)
元素のモル比でLa0.60、Ce0.27、Pr0.01、Nd0.08、Yb0.04、Ni4.02、Co0.50、Mn0.30、Al0.32、Fe0.01を秤量し坩堝に投入し高周波溶解炉を用いてアルゴン雰囲気(不活性雰囲気)にて金属を溶解させて合金のインゴットを得た。該インゴットを粉砕して平均粒径40μmの合金粉末を得た。
【0029】
(水素吸蔵合金電極の作製)
前記水素吸蔵合金粉末100重量部に対して、平均粒径1μmのニッケルの微粉末3重量部、増粘剤であるメチルセルロース(MC)の1wt%水溶液20重量部と、結着剤であるスチレンブタジエンゴム1重量部とを加えて混練してペーストを調製した。
【0030】
水素吸蔵合金電極の基板には、ニッケル鍍金を施した厚さ70μm、開口径1.5mm、開口率40%の鋼板製の穿孔板を適用した。該基板の両面に前記ペーストを塗工した。塗工後の極板を乾燥し、厚さ1.1mmの極板を得た。該極板を2本のロールの間を通して、極板の仕上がり厚さが0.4mmになるようにプレス加工を施した。
【0031】
(ニッケル電極材料粉末の作製)
所定の方法に従いコバルトおよび亜鉛をそれぞれ水酸化物換算で3重量%および5重量%固溶状態で含有させた高密度水酸化ニッケルを核とし、表面に水酸化コバルトの被覆層を形成させた平均粒径が10μmの水酸化ニッケルを主成分とするニッケル電極材料粉末を用意した。なお、該材料粉末の表面に形成させた前記水酸化コバルトの被覆層の比率を6重量%とした。
【0032】
(ニッケル電極の作製)
得られたニッケル電極材料紛末80重量部に、濃度が1重量%のカルボキシメチルセルロース(CMC)水溶液20重量部を添加混練して、ニッケル電極活物質ペーストを作製した。該ペーストを厚さ1.4mm、目付量500g/mの発泡ニッケル製多孔体基板に充填して乾燥した後、プレスして厚さを0.75mmに調整し、長尺帯状のニッケル電極用原板を得た。
【0033】
(水素吸蔵合金電極単板試験用セルの作製)
前記ニッケル電極と水素吸蔵合金電極をサイズ3cm×3cmに裁断し上辺の導電端縁に集電用タブを取り付けた。該水素吸蔵合金電極の両面に厚さ0.12mmの親水処理を施したポリプロピレン製不織布を介して所定寸法に裁断したニッケル電極を積層させた。ニッケル電極と水素吸蔵合金電極の充填容量の比、正極容量/負極容量の比が4になるように設定した。6.8モル/lのKOHと0.8モル/lのLiOHを含む電解液を所定量注入し、参照電極として酸化水銀電極(Hg/HgO)を挿入して水素吸蔵合金電極単板試験用セルとした。
【0034】
(水素吸蔵合金電極単板試験用セルの化成)
得られたニッケル水素蓄電池を温度20℃において12時間エージングした後、以下に記述する条件にて化成をおこなった。初回の充電は、1/50ItAの充電電流で10時間充電し、その後、1/10ItAの充電電流にて10時間充電した。次いで1/5ItAの放電電流にて水素吸蔵合金電極の参照電極に対する電位が−0.6Vに至った時を放電終止として放電した。2サイクル目以降は、充電を1/10ItAの充電電流にて12時間充電、1/5ItAの放電電流にて前記の放電終止条件にて放電した。該サイクルを1サイクルとし、初回の充放電を含めて10サイクル充放電を繰り返し実施した。
【0035】
(円筒型ニッケル水素蓄電池の作製)
前記ニッケル電極の原板を所定の寸法に裁断してニッケル電極とした。活物質充填量から算定されるニッケル電極の容量は、1600mAhであった。前記水素吸蔵電極の原板を所定の寸法に裁断して水素吸蔵合金電極とした。前記ニッケル電極と水素吸蔵合金電極を厚さ0.12mmの親水処理を施したポリプロピレ製不織布を介して積層し、これを捲回して極板群とした。該極板群の負極(水素吸蔵合金電極)と正極(ニッケル電極)の容量の比が1.6対1となるようにした。極板群に正極用集電端子を取り付け金属製電槽に挿入し、6.8モル/lのKOHと0.8モル/lのLiOHを含む電解液を所定量注入した後封口して円筒型の密閉式ニッケル水素電池とした。
【0036】
(円筒型ニッケル水素蓄電池の化成)
得られたニッケル水素蓄電池を温度40℃において12時間エージングした後、以下に記述する条件にて化成をおこなった。初回の充電は、1/50ItA(32mA)の充電電流で10時間充電し、その後、1/10ItA(160mA)の充電電流にて10時間充電した。次いで1/5ItA(320mA)の放電電流にて放電終止電圧を1.0Vとして放電した。2サイクル目以降は、充電を1/10ItA(160mA)の充電電流にて12時間充電、1/5ItA(320mA)の放電電流にて放電終止電圧を1.0Vとして放電した。該サイクルを1サイクルとし、初回の充放電を含めて10サイクル充放電を繰り返し実施した。
【0037】
(実施例2〜実施例6)
水素吸蔵合金を調整する時の金属元素の仕込量(モル比)を表1の実施例2〜実施例6に示した通りとした。それ以外は、実施例1と同じとした。
【0038】
(比較例1〜比較例3)
水素吸蔵合金を調整する時の金属元素の仕込量(モル比)を表1の比較例1〜比較例4に示した通りとした。それ以外は、実施例1と同じとした。表1に実施例1〜実施例6と比較例1〜比較例3の試作内容をまとめて示す。なお、表1においては、Mn、Al、Feの比率であるMn0.30、Al0.32、Fe0.01を合わせてX0.63として表示した。
【0039】
【表1】

Figure 2004124132
【0040】
(実施例7、実施例8)
水素吸蔵合金を調整する時の金属元素の仕込量(モル比)を表2の実施例7、実施例8に示した通りとした。それ以外は、実施例1と同じとした。
【0041】
(比較例4、比較例5)
水素吸蔵合金を調整する時の金属元素の仕込量(モル比)を表2の比較例4、比較例5に示した通りとした。それ以外は、実施例1と同じとした。比較例5は、従来の水素吸蔵合金組成の1典型例として示した。
【0042】
【表2】
Figure 2004124132
【0043】
(実施例9〜実施例19)
水素吸蔵合金を調整する時の金属元素の仕込量(モル比)を表3の実施例9〜実施例19に示した通りとした。それ以外は、実施例1と同じとした。
【0044】
【表3】
Figure 2004124132
【0045】
(実施例20〜実施例23)
水素吸蔵合金を調整する時の金属元素の仕込量(モル比)を表4の実施例20〜実施例23に示した通りとした。それ以外は、実施例1と同じとした。
【0046】
(比較例6〜比較例9)
水素吸蔵合金を調整する時の金属元素の仕込量(モル比)を表4の比較例6〜比較例9に示した通りとした。それ以外は、実施例1と同じとした。
【0047】
【表4】
Figure 2004124132
【0048】
(実施例24〜実施例27)
水素吸蔵合金の成分としてMgを加えた。水素吸蔵合金を調整する時の金属元素の仕込量(モル比)を表5の実施例24〜実施例27に示した通りとした。それ以外は、実施例1と同じとした。
【0049】
【表5】
Figure 2004124132
【0050】
(実施例28)
水素吸蔵合金を調整する時の金属元素の仕込量(モル比)を表1の実施例2と同じとした。得られた水素吸蔵合金粉末100gを温度100℃に保った6.8モル/lのKOHと0.8モル/lのLiOHを含む水溶液200mlに1時間浸漬してその間溶液を撹拌した。その後水洗しアルカリを除去し、真空乾燥を行った。それ以外は実施例2と同じとした。
(水素吸蔵合金粉末中の重希土類元素の分析)
前記TEM−EDSを用いて得られた水素吸蔵合金粉末に含まれる元素分析を行った。なお、ここではアルカリ浸漬直後の水素吸蔵合金を対象として分析したが、電池に組み込んだ後化成を含めて充放電サイクル数が30サイクル以下の電池を解体して回収した水素吸蔵合金粉末を対象として分析してもほぼ同様の結果が得られる。
【0051】
(実施例29〜実施例33)
(ニッケル電極材料粉末の作製)
前記実施例2においてコバルトおよび亜鉛を固溶状態で含有させ、表面に水酸化コバルトからなる被覆層を形成させた水酸化ニッケル粉末97重量部に、それぞれ平均粒径約5μmのEr、Tm、Yb、Lu、Yを3重量部を添加混合して正極材料粉末とした。それ以外は実施例2と同じとした。それぞれを実施例29〜実施例23とする。
【0052】
(実施例34)
正極には、前記実施例31と同じYbを混合添加した正極材料粉末を適用したニッケル電極を用い、負極には前記実施例28と同じKOHとLiOHを含むアルカリ水溶液に浸漬処理した水素吸蔵合金粉末を適用した水素吸蔵合金を適用し、それ以外は実施例2と同様にしてニッケル水素蓄電池を作製した。
【0053】
(比較例10)
(ニッケル電極材料粉末の作製)
前記実施例30と同じ水酸化ニッケル粉末97重量部に、平均粒径約5μmのYbを3重量部混合添加したニッケル電極と水素吸蔵合金電極には前記比較例1と同じ水素吸蔵合金電極を組み合わせてニッケ水素蓄電池を構成した。
表4に実施例29〜実施例34および比較例10の試作内容をまとめて示す。
【0054】
【表6】
Figure 2004124132
【0055】
(水素吸蔵合金電極の単板試験)
化成終了後の水素吸蔵合金電極の単板試験用セルを、温度20℃において水素吸蔵合金電極の充填容量基準で0.2ItAの電流で120%充電し、同じく0.2ItAの電流で水素吸蔵合金電極の参照電極基準の電位が−0.6Vになるまで放電した。該充放電サイクルを5サイクル繰り返し行い、安定した容量が得られたことを確認した。後述の試験結果は化成終了後5サイクル目の容量を示した。
【0056】
(円筒型ニッケル水素蓄電池の充放電サイクル試験)
化成終了後の実施例電池および比較例電池を、温度20℃において充放電サイクル試験に供した。充電はItAの電流で1.2時間行い、放電はItAの電流にて放電終止電圧を1.0Vとして実施した。該充放電サイクルを1サイクルとして、サイクルを繰り返し実施した。放電容量が初期の80%に低下した時点をもってサイクル寿命とした。
【0057】
(高温における充放電試験)
化成終了後の実施例電池および比較例電池を6個用意し、3個を温度20℃において別の3個を50℃において充放電試験に供した。充電は0.2ItAの電流で6時間行い、放電は0.2ItAの電流にて放電終止電圧を1.0Vとして実施した。5サイクル充電放電を繰り返し行い安定した容量が得られたことを確認した。後述の試験結果は、化成終了後5サイクル目の50℃の容量と20℃の容量の比で示した。
【0058】
(円筒型ニッケル水素蓄電池の高温での充放電サイクル試験)
化成終了後の実施例電池および比較例電池を、温度40℃において充放電サイクル試験に供した。充電はItAの電流で1.2時間行い、放電はItAの電流にて放電終止電圧を1.0Vとして実施した。該充放電サイクルを1サイクルとして、サイクルを繰り返し実施した。
【0059】
(水素吸蔵合金電極の単板試験および円筒型蓄電池のサイクル試験結果)
表7〜表12に試験結果を示す。
【表7】
Figure 2004124132
【0060】
表7に示す通り、水素吸蔵合金電極の単板試験によれば本発明の実施例1〜実施例6に係る水素吸蔵合金電極は、水素吸蔵合金1g当たり何れも280mAh/gを超える容量を示し、従来の典型的な例(表2に示した比較例5)とほぼ同等かまたはそれを上回る容量を有する。且つ、本発明に係る水素吸蔵合金を用いて作製した水素吸蔵合金電極を適用した円筒型ニッケル水素蓄電池は、充放電サイクルが400サイクルを超えており、前記比較例5や比較例3のサイクル性能を上回る性能を有している。水素吸蔵合金中のLaの比率の小さい比較例1は、容量が小さく、逆にLaの比率の大きい比較例2はサイクル性能が劣る。
【0061】
図1に水素吸蔵合金のLaの比率と水素吸蔵合金電極の単板試験における容量、ニッケル水素蓄電池のサイクル性能の関係を示した。図1に示す如く、Laの比率aが0.6〜0.9の領域で容量、サイクル性能共に優れており、0.6≦a≦0.9が良いことが判る。
【0062】
表7に示す通り、水素吸蔵合金中のCeの比率bを0.05≦bとした実施例3、実施例4、実施例5とb=0.01とした比較例3を比較すると何れの実施例も比較例1とほぼ同等の容量を有し、且つ比較例4に比べて優れたサイクル性能を示す。図2に水素吸蔵合金のCeの比率bと水素吸蔵合金電極の単板試験における容量、ニッケル水素蓄電池のサイクル性能の関係を示した。図2に示したように、水素吸蔵吸蔵合金中のCeの比率bは、0.05≦bの範囲においてサイクル性能が良いことが判る。
【0063】
【表8】
Figure 2004124132
【0064】
表8に示す通り、実施例7および実施例8は、サイクル性能において比較例4および比較例5を上回っている。このことから水素吸蔵合金中のYbの存在がサイクル性能向上に有効であることが判る、但し、Ybの比率dを0.08と大きくするとdを0.06とした実施例8や、dを0.01とした実施例7と比べてサイクル性能が低下しており、dの値が高すぎても良くないことがわかる。図3に水素吸蔵合金のYbの比率dと水素吸蔵合金電極の単板試験における容量、ニッケル水素蓄電池のサイクル性能の関係を示した。図3に示したように、Ybの比率dが0.01〜0.06の領域で容量、サイクル性能共に優れており、0.01≦d≦0.06が良いことが判る。
【0065】
【表9】
Figure 2004124132
【0066】
表9に示す通り、本発明の実施例9〜実施例19に係る水素吸蔵合金電極は、何れも280mAh/gを超える容量を示し、従来のものに比べて同等以上の容量を有する。且つ、本発明に係る水素吸蔵合金を用いて作製した水素吸蔵合金電極を適用した円筒型ニッケル水素蓄電池は、充放電サイクルが400サイクルを超えており、前記いずれの比較例電池と比べても比較例を上回るサイクル性能を有している。このことから、前記RとしてEu以下LuおよびY、ErとTmの2種類、ErとYbの2種類の元素を含むいずれの場合も放電容量が従来と同等以上であり、サイクル性能において優れていることが判る。
【0067】
【表10】
Figure 2004124132
【0068】
表10に示すように、Niの比率e、Coの比率f、Sの比率gの和e+f+gが4.9と低い比較例8は、放電容量は高いが、サイクル性能が劣る。逆にe+f+gが5.5と高い比較例9は、容量が低い欠点があることが判る。図4にe+f+gの値と水素吸蔵合金電極の単板試験における容量、ニッケル水素蓄電池のサイクル性能の関係を示した。e+f+gの値が5.0〜5.4の領域で容量、サイクル性能共に優れており、5.0≦e+f+g≦5.4が良いことが判る。
【0069】
Niの比率が3.12と低く、Coの比率が1.4と高い比較例7は、放電容量、サイクル性能共に劣る。図5に水素吸蔵合金中のCoの比率fの値と水素吸蔵合金電極の単板試験における容量、ニッケル水素蓄電池のサイクル性能の関係を示した。Coの比率fが0.10〜1.2の領域で容量、サイクル性能共に優れており、0.1≦f≦1.2が良いことが判る。
【0070】
また、図6に水素吸蔵合金中のNiの比率eの値と水素吸蔵合金電極の単板試験における容量、ニッケル水素蓄電池のサイクル性能の関係を示した。Niの比率eが3.3〜4.4の領域で容量、サイクル性能共に優れており、3.3≦e≦4.4が好ましいことが判る。
【0071】
【表11】
Figure 2004124132
【0072】
表11に示したように本発明の実施例24〜実施例27に係る水素吸蔵合金は、何れも290mAh/gを超える容量を示し、従来のものに比べて同等以上の容量を有する。且つ、実施例24、実施例25および実施例27に係る水素吸蔵合金を用いて作製した水素吸蔵合金電極を適用した円筒型ニッケル水素蓄電池は、500サイクルを超えるサイクル性能を有しサイクル性能において従来に比べて高い性能を有する。実施例24および実施例25は、Mgを含有しない水素吸蔵合金を用いた実施例17に比べて容量、サイクル性能共に勝る。また、実施例27もMgを含有しない実施例2に比べて容量、サイクル性能共に勝る。このことから、水素吸蔵合金中に希土類元素に加えてMgを含ませることが有効であることが判る。但し、水素吸蔵合金のMgの比率を0.07と高くした実施例26は、容量、サイクル性能共に実施例24、実施例25に比べて劣る。
【0073】
図7にMgの比率hと水素吸蔵合金電極の単板試験における容量、ニッケル水素蓄電池のサイクル性能の関係を示した。hの値が0〜0.04の領域で容量、サイクル性能共に優れており、0<h≦0.04が望ましいことが判る。
【0074】
表12に実施例2および実施例28に係る水素吸蔵合金の、粉末の表面および粉末の内部の分析結果を示す。
【表12】
Figure 2004124132
【0075】
表12に示す通り、実施例2の水素吸蔵合金粉末は,表面からの深さが200nm、400nm、600nmいずれの部分においてもYbの比率が同じである。これに対して実施例28に係る水素吸蔵合金粉末においては、表面からの深さが200nm、400nmにおけるYbの比率が600nm前記粉末の表面のYbの含有比率が高い、つまり前記粉末内部に比べて表面のYbの含有比率高い値であることが判る。
【0076】
表13に実施例2および実施例28の水素吸蔵合金電極の単板試験における容量、ニッケル水素蓄電池のサイクル性能を示した。
【表13】
Figure 2004124132
【0077】
表13に示す如く、本発明の実施例28に係る水素吸蔵合金を適用したニッケル水素蓄電池は、サイクル性能が顕著に優れている。実施例28の場合、合金粉末の表面がYbリッチであり、Ybを含む不動態化被膜によって被覆されたことにより、合金の耐食性が向上したことによると考えられる。なお、実施例28ではR2がYbの場合の例を示したが、R2がYまたはYb以外の前記重希土類元素の場合も同様の効果が得られる。
【0078】
表14に実施例2、実施例29〜実施例34および比較例10に係るニッケル水素蓄電池の高温充放電試験結果とサイクル性能を示した。
【表14】
Figure 2004124132
【0079】
表14に示した如く、実施例29〜実施例33に係る希土類元素を含むニッケル電極を適用したニッケル水素蓄電池は、希土類元素を含まないニッケル電極を適用した実施例2のニッケル水素蓄電池と比較して50℃での充放電性能、40℃での充放電サイクル性能共に優れている。実施例29〜実施例33の場合は、ニッケル電極の充電受け入れ性が良く、充電の過程においてニッケル電極での酸素発生が抑制されたことと耐久性に優れた水素吸蔵合金電極を適用することによって、サイクル性能が顕著に向上したと考えられる。
【0080】
なお、実施例29〜実施例33においては、ニッケル電極に添加する物質としてYb等表6に示した重希土類元素およびYの酸化物を適用したが、該希土類元素の水酸化物を適用することも有効である。また実施例では水酸化ニッケル粉末97重量部に前記希土類元素の酸化物を3重量部を混合添加したが、本発明はこれに限定されるものではなく、水酸化ニッケル粉末90〜99重量部、Yb等前記希土類元素の化合物のうちの少なくとも1種類を1〜10重量部の範囲で混合添加するのが有効である。
【0081】
実施例34に係るニッケル水素蓄電池は、50℃放電での放電容量は実施例29〜実施例33とほぼ同等であるが、40℃におけるサイクル性能において実施例29〜実施例33を顕著に上回る性能(サイクル寿命)を示す。また、前記20℃での充放電サイクル試験においても、サイクル寿命が前記実施例28の680サイクル、実施例31の570サイクルに比べて720サイクルと顕著に上回るサイクル性能を示す。
【0082】
この結果は、前記実施例28の評価結果において記述した水素吸蔵合金の耐食性向効果と、実施例29〜実施例33の評価結果で記述したニッケル電極の酸素発生抑制効果が相俟ってサイクル性能向上において顕著な効果が得られたことを示すものと考えられる。
【発明の効果】
【0083】
本発明の請求項1に係る水素吸蔵合金粉末は、従来の水素吸蔵合金粉末に比べて単位重量あたりの容量が同等以上であり、耐久性が良く充放電サイクル特性に優れたニッケル水素蓄電池を可能にするものである。
【0084】
本発明の請求項2に係る水素吸蔵合金粉末は、特に耐久性に優れた水素吸蔵合金粉末である。
【0085】
本発明の請求項3に係るアルカリ蓄電池用負極は、耐久性に優れ、容量および活性化の速さにおいても従来の水素吸蔵合金に同等以上の水素吸蔵合金である。
【0086】
本発明の請求項4に係る水素吸蔵合金は、アルカリ電解液に対する耐食性において特に優れ、充放電サイクル特性に優れたニッケル水素蓄電池を可能にするものである。
【0087】
本発明の請求項5に係る水素吸蔵合金電極は、従来の水素吸蔵電極に比べて同等以上の容量を保持し、サイクル性能の優れた水素吸蔵合金電極である。
【0088】
本発明の請求項6に係るニッケル水素蓄電池は、従来の電池に比べて同等以上の容量を保持し、サイクル性能の優れたニッケル水素蓄電池である。
【0089】
本発明の請求項7に係るニッケル水素蓄電池は、高温での充放電性能および高温および常温での充放電サイクル性能の優れたニッケル水素蓄電池である。
【図面の簡単な説明】
【図1】水素吸蔵合金に含まれるLaの比率aと水素吸蔵合金粉末の容量、およびニッケル水素蓄電池のサイクル性能の関係を示すグラフである。
【図2】水素吸蔵合金に含まれるCeの比率bと水素吸蔵合金粉末の容量、およびニッケル水素蓄電池のサイクル性能の関係を示すグラフである。
【図3】水素吸蔵合金に含まれるYbの比率dと水素吸蔵合金粉末の容量、およびニッケル水素蓄電池のサイクル性能の関係を示すグラフである。
【図4】水素吸蔵合金に含まれるNi、CoおよびSの比率の和e+f+gと水素吸蔵合金粉末の容量、およびニッケル水素蓄電池のサイクル性能の関係を示すグラフである。
【図5】水素吸蔵合金に含まれるCoの比率fと水素吸蔵合金粉末の容量、およびニッケル水素蓄電池のサイクル性能の関係を示すグラフである。
【図6】水素吸蔵合金に含まれるNiの比率eと水素吸蔵合金粉末の容量、およびニッケル水素蓄電池のサイクル性能の関係を示すグラフである。
【図7】水素吸蔵合金に含まれるMgの比率hと水素吸蔵合金粉末の容量、およびニッケル水素蓄電池のサイクル性能の関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage alloy powder, a hydrogen storage alloy electrode using the same, and a nickel-metal hydride storage battery.
[0002]
[Prior art]
Nickel-metal hydride storage batteries have excellent resistance to overcharge and overdischarge and are easy to use for general users.Therefore, they are widely used as power sources for portable small electronic devices such as mobile phones, small power tools and small personal computers. The demand is increasing dramatically with the spread of these small electronic devices. Further, it has been put to practical use as a power supply for driving a hybrid electric vehicle (HEV). Further, there is a demand for further increase in capacity and improvement in charge / discharge cycle performance of alkaline storage batteries.
[0003]
The negative electrode of the nickel-metal hydride storage battery is one in which a paste mainly composed of a hydrogen storage alloy serving as an active material is supported on a porous substrate of an alkali-resistant and highly conductive metal such as iron, nickel, and copper.
[0004]
As the hydrogen storage alloy, there are Mg-based alloys, Ti-based alloys, and Zr-based alloys in addition to La-Ni-based alloys. La-Ni-based alloys are frequently used because of their high activity and excellent durability. Have been. However, there are many opportunities to operate at high temperature such as power supply for HEV and personal computer, and further improvement of high temperature characteristics such as durability at high temperature is required for batteries, and conventional hydrogen storage alloy electrodes are applied. In the nickel-metal hydride storage battery described above, there is a disadvantage that the durability of the hydrogen storage alloy is inferior and the above-mentioned demand cannot be satisfied.
[0005]
Conventionally, attempts have been made to improve the durability of the hydrogen storage alloy by improving the composition of the hydrogen storage alloy. (For example, refer to Patent Document 1.)
[0006]
[Patent Document 1]
JP-A-5-62674 (page 2, page 14, paragraph 4, page 1, Table 1 and Table 2)
[0007]
Patent Document 1 discloses that MmNi 5 (Mm is misch metal) and Mm is La 0.2 Ce 0.4 Pr 0.1 Nd 0.1 R 0.2 (R represents one element of a lanthanoid having an atomic number of 63 or more). However, the hydrogen storage alloy having the composition described in Patent Document 1 has a low capacity per unit weight of 250 mAh / g or less, and a nickel-metal hydride using a hydrogen storage alloy electrode manufactured using the hydrogen storage alloy. Storage batteries have the disadvantage of low capacity.
[Problems to be solved by the invention]
The present invention has been made in view of the drawbacks of the prior art, and has a discharge capacity that is not inferior to the conventional one, and a hydrogen storage alloy electrode that is superior to the conventional one in durability represented by charge and discharge cycle characteristics. And a nickel-metal hydride storage battery.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the hydrogen storage alloy powder according to the present invention is 5 Having at least one element of La, Ce, Y and a lanthanoid having an atomic number of 63 or more, Ni and Co as essential components, and R1 of a lanthanoid having an atomic number of 59 to 62. At least one element; R2 at least one of Y and lanthanoids having an atomic number of 63 or more; X as a metal element not belonging to a rare earth element; a Ce b R1 c R2 d Ni e Co f X g A + b + c + d = 1.0, 0.6 ≦ a ≦ 0.9, 0.05 ≦ b, 0 ≦ c, 0 <d ≦ 0.06, and 5.0 ≦ e + f + g ≦ 5.4, and a hydrogen storage alloy powder represented by 0.1 ≦ f ≦ 1.2 and 0 <g.
[0009]
Furthermore, in the present invention, the hydrogen storage alloy powder is a hydrogen storage alloy powder having the composition according to claim 1, wherein R2 (R2 is a lanthanoid having an atomic number of 63 or more contained in the powder). It is preferable that the concentration of the element be higher at the surface of the powder than at the inside of the powder.
[0010]
The hydrogen storage alloy electrode according to the present invention is an electrode to which the hydrogen storage alloy powder according to any one of claims 1 to 4 is applied. A nickel-metal hydride storage battery according to the present invention is a nickel-metal hydride storage battery having a nickel electrode as a positive electrode and the hydrogen storage alloy electrode according to claim 5 as a negative electrode. It is further desirable that the nickel electrode contains at least one element of Er, Tm, Yb, Lu and Y.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The hydrogen storage alloy powder according to the present invention comprises CaCu 5 Having at least one element selected from the group consisting of La, Ce, and a lanthanoid having an atomic number of 63 or more, Ni and Co as essential components, and R1 having at least one of lanthanoids having an atomic number of 59 to 62. R2 is at least one element of Y and a lanthanoid having an atomic number of 63 or more, X is a metal element not belonging to a rare earth element, and a composition formula La a Ce b R1 c R2 d Ni e Co f X g A + b + c + d = 1.0, 0.6 <a <0.9, 0.05 ≦ b, 0 ≦ c, 0 <d <0.06, and 5.0 ≦ e + f + g ≦ 5.4, wherein 0.1 ≦ f ≦ 1.2 and 0 <g.
[0012]
The hydrogen storage alloy powder is obtained by, for example, grinding an ingot of an alloy having the above composition. The average particle size of the hydrogen storage alloy is desirably 20 to 100 μm. If the average particle size is less than 20 μm, the filling property is inferior. On the other hand, when the average particle size exceeds 100 μm, there is a disadvantage that the activity of the hydrogen storage alloy electrode as an active material is low.
[0013]
When the ratio a of La in Mm is 0.6 or less, there is a disadvantage that the capacity is low when the alloy powder of the composition is applied to a hydrogen storage alloy electrode. When the ratio a of La in Mm exceeds 0.9, corrosion resistance in an alkaline electrolyte is inferior, so that when the alloy powder of the composition is applied to a hydrogen storage alloy electrode, the durability of the electrode is inferior. There is.
[0014]
In the hydrogen storage alloy according to the present invention, the content ratio b of Ce is set to 0.05 or more. Further, it is preferable that the ratio b is larger than the ratio c of the rare earth element R1 belonging to the atomic numbers 59 to 62 (hereinafter referred to as a light rare earth element when the four elements are collectively referred to). By setting b to 0.05 ≦ b and c <b, there is an effect of increasing the corrosion resistance of the hydrogen storage alloy. In addition, there is an effect of promoting absorption of oxygen generated at the positive electrode during charging by the hydrogen storage alloy. Thereby, corrosion of the hydrogen storage alloy is suppressed, and cycle performance can be improved.
[0015]
The heavy rare earth element R2 in the alloy has an effect of improving the corrosion resistance of the alloy powder in the alkaline electrolyte. However, as the content ratio of R2 in the Mm increases, the parallel pressure of hydrogen in the alloy increases, and the capacity of the hydrogen storage alloy electrode using the alloy powder decreases. Further, there is a disadvantage that activation of the electrode is delayed. When the ratio d of R2 exceeds 0.06, this defect becomes remarkable.
[0016]
The value of e + f + g is 5.0 or more and 5.4 or less. When the value is less than 5.0, Mm segregates in the alloy, and there is a defect that the corrosion resistance is low. On the other hand, if the value exceeds 5.4, the hydrogen storage capacity of the hydrogen storage alloy decreases, and when the alloy powder of the composition is applied to a hydrogen storage alloy electrode, the capacity of the electrode is low.
[0017]
As described above, in the present invention, the concentration of R2 (R2 represents at least one of heavy rare earth elements) contained in the hydrogen storage alloy powder is higher on the surface of the powder than inside the powder. It is desirable to do. The powder surface here means that when the alloy powder comes in contact with the alkaline electrolyte, the alloy is corroded and some of the constituents of the alloy are eluted. It means a region that changes, and any region that undergoes such a change is not restricted by the depth from the surface of the powder. However, usually, a region having a distance from the surface of the powder of about 500 nanometers (nm) or less can be regarded as the surface here. Conversely, the inside of the powder means a region where the composition does not change even when the alloy powder comes in contact with the alkaline electrolyte, and specifically, the distance from the powder surface is about 600 nanometers (nm) or more. The area can be considered as inside the powder.
[0018]
The hydrogen-absorbing alloy powder in which the surface heavy rare earth element R2 is richer than the inside can be obtained by immersing the alloy powder having the composition according to the present invention in a high-temperature, high-concentration chemical conversion alkali. The alloy powder is considered to have high corrosion resistance because it forms a passive film containing a heavy rare earth element (R2) on the surface in an alkaline electrolyte.
[0019]
The heavy rare earth element contained in the surface of the alloy powder can be quantitatively analyzed by TEM (transmission electron microscope) -EDS or ESCA (photoelectron spectroscopy).
[0020]
In the present invention, it is desirable that the ratio e of Ni contained in the hydrogen storage alloy is 3.3 or more and 4.4 or less. When the ratio e is less than 3.3 or more than 4.4, there is a disadvantage that the corrosion resistance of the alloy powder is inferior and that the cycle characteristics of the hydrogen storage alloy electrode are low.
[0021]
In the present invention, the ratio f of Co contained in the hydrogen storage alloy powder is set to 0.1 or more and 1.2 or less. If f is less than 0.1, the corrosion resistance of the alloy powder is inferior. If f exceeds 1.2, activation of the hydrogen storage alloy electrode as an active material is delayed.
[0022]
In the present invention, X, which is a metal element that does not belong to the rare earth element, is preferably at least one element of Al, Cu, Fe, Mn, Ti, Zr, Cr, Mo, and Be. The addition of these metal elements to the hydrogen storage alloy has the effect of increasing the hydrogen storage capacity of the hydrogen storage alloy, speeding up the activation of the hydrogen storage alloy electrode, and increasing the corrosion resistance of the hydrogen storage alloy. .
[0023]
The metal element X is particularly preferably Mn, Al and Fe among the above-mentioned metal elements. The presence of Mn has the effect of increasing the hydrogen storage capacity of the hydrogen storage alloy. However, it reduces the corrosion resistance of the alloy. For these reasons, when a + b + c + d = 1.0 or a + b + c + d + h = 1.0, it is preferable that the ratio of Mn contained in the alloy be 0.1 or more and 0.5 or less. The presence of Al is effective in increasing the corrosion resistance of the hydrogen storage alloy. On the other hand, there is a disadvantage that activation of the hydrogen storage alloy electrode is delayed. For these reasons, when a + b + c + d = 1.0 or a + b + c + d + h = 1.0, it is preferable that the ratio of Al contained in the alloy be 0.1 or more and 0.5 or less. The presence of Fe has the effect of increasing the activity of the hydrogen storage alloy when the hydrogen storage alloy is used as the active material of the hydrogen storage alloy electrode. However, as the proportion of Fe increases, the corrosion resistance of the alloy significantly decreases. For such a reason, when a + b + c + d = 1.0 or a + b + c + d + h = 1.0, it is preferable that the ratio of Fe contained in the alloy be 0 or more and 0.05 or less.
[0024]
The ratio g of the metal element X contained in the hydrogen storage alloy according to the present invention is set to 0 <g. For the above-mentioned reason, it is preferable that 0.2 <g ≦ 1.05 in the above range.
[0025]
The hydrogen storage alloy electrode according to the present invention is one in which the hydrogen storage alloy powder according to the present invention is supported on a substrate having an anti-electrolyte property such as a perforated plate made of nickel or nickel plated metal or a foamed metal. .
[0026]
The nickel electrode applied to the nickel-metal hydride storage battery according to the present invention is preferably a nickel electrode containing at least one of the heavy rare earth element and Y. When a nickel-metal hydride storage battery to which the nickel electrode is applied is charged at a high temperature, generation of oxygen at the nickel electrode is suppressed. A nickel-metal hydride storage battery in which the nickel electrode is combined with the hydrogen storage alloy electrode according to the present invention has remarkably suppressed corrosion of the hydrogen storage alloy, excellent durability, and excellent cycle performance as compared with the conventional nickel-metal hydride storage battery. Nickel-metal hydride storage battery.
[0027]
At least one of the heavy rare earth element and Y included in the nickel electrode is included as an oxide or a hydroxide. The heavy rare earth element is preferably added to the nickel electrode as an oxide or a hydroxide (a hydrated hydroxide can also be applied). In particular, oxides are inexpensive and are preferred compounds.
[0028]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
(Example 1)
(Adjustment of hydrogen storage alloy)
La0.60, Ce0.27, Pr0.01, Nd0.08, Yb0.04, Ni4.02, Co0.50, Mn0.30, Al0.32, Fe0.01 are weighed and put into the crucible in the molar ratio of the elements. Then, the metal was melted in an argon atmosphere (inert atmosphere) using a high frequency melting furnace to obtain an alloy ingot. The ingot was pulverized to obtain an alloy powder having an average particle size of 40 μm.
[0029]
(Preparation of hydrogen storage alloy electrode)
For 100 parts by weight of the hydrogen storage alloy powder, 3 parts by weight of nickel fine powder having an average particle diameter of 1 μm, 20 parts by weight of a 1 wt% aqueous solution of methylcellulose (MC) as a thickener, and styrene butadiene as a binder One part by weight of rubber was added and kneaded to prepare a paste.
[0030]
As the substrate of the hydrogen storage alloy electrode, a perforated plate made of a steel plate having a thickness of 70 μm, an opening diameter of 1.5 mm, and an opening ratio of 40% plated with nickel was applied. The paste was applied to both sides of the substrate. The coated electrode plate was dried to obtain an electrode plate having a thickness of 1.1 mm. The electrode plate was pressed between two rolls so that the finished thickness of the electrode plate was 0.4 mm.
[0031]
(Preparation of nickel electrode material powder)
According to a predetermined method, an average having a high density nickel hydroxide containing 3% by weight and 5% by weight of a solid solution in terms of hydroxide in the form of hydroxide as a nucleus and forming a coating layer of cobalt hydroxide on the surface. A nickel electrode material powder having a particle size of 10 μm and containing nickel hydroxide as a main component was prepared. The ratio of the cobalt hydroxide coating layer formed on the surface of the material powder was 6% by weight.
[0032]
(Preparation of nickel electrode)
To 80 parts by weight of the obtained nickel electrode material powder, 20 parts by weight of a 1% by weight aqueous solution of carboxymethyl cellulose (CMC) was added and kneaded to prepare a nickel electrode active material paste. The paste was 1.4 mm thick and the basis weight was 500 g / m. 2 After filling in a porous nickel foam substrate and drying, the thickness was adjusted to 0.75 mm by pressing to obtain a long strip-shaped original plate for nickel electrodes.
[0033]
(Preparation of cell for single plate test of hydrogen storage alloy electrode)
The nickel electrode and the hydrogen storage alloy electrode were cut into a size of 3 cm × 3 cm, and a current collecting tab was attached to the upper conductive edge. A nickel electrode cut to a predetermined size was laminated on both surfaces of the hydrogen storage alloy electrode via a polypropylene nonwoven fabric having a thickness of 0.12 mm and subjected to a hydrophilic treatment. The ratio of the filling capacity of the nickel electrode and the hydrogen storage alloy electrode and the ratio of the positive electrode capacity / negative electrode capacity were set to 4. A predetermined amount of an electrolyte containing 6.8 mol / l KOH and 0.8 mol / l LiOH is injected, and a mercury oxide electrode (Hg / HgO) is inserted as a reference electrode to test a hydrogen storage alloy electrode single plate. Cell.
[0034]
(Formation of test cell for hydrogen storage alloy electrode single plate)
After aging the obtained nickel-metal hydride storage battery at a temperature of 20 ° C. for 12 hours, formation was performed under the following conditions. In the first charging, the battery was charged at a charging current of 1/50 ItA for 10 hours, and then charged at a charging current of 1/10 ItA for 10 hours. Then, when the potential of the hydrogen storage alloy electrode with respect to the reference electrode reached −0.6 V at a discharge current of 5 ItA, discharge was terminated. From the second cycle on, the charge was performed at a charge current of 1/10 ItA for 12 hours and discharged at a discharge current of 1/5 ItA under the above-mentioned discharge termination condition. The cycle was defined as one cycle, and the charge and discharge were repeated for 10 cycles including the first charge and discharge.
[0035]
(Production of cylindrical nickel-metal hydride battery)
The original plate of the nickel electrode was cut into a predetermined size to obtain a nickel electrode. The capacity of the nickel electrode calculated from the active material filling amount was 1600 mAh. The original plate of the hydrogen storage electrode was cut into a predetermined size to obtain a hydrogen storage alloy electrode. The nickel electrode and the hydrogen storage alloy electrode were laminated via a non-woven fabric made of polypropylene having a thickness of 0.12 mm and subjected to a hydrophilic treatment, and this was wound to form an electrode plate group. The capacity ratio of the negative electrode (hydrogen storage alloy electrode) and the positive electrode (nickel electrode) of the electrode plate group was set to 1.6 to 1. A current collecting terminal for a positive electrode is attached to the electrode plate group, inserted into a metal battery case, a predetermined amount of an electrolytic solution containing 6.8 mol / l of KOH and 0.8 mol / l of LiOH is injected, and then sealed and sealed. Type sealed nickel-metal hydride battery.
[0036]
(Formation of cylindrical nickel-metal hydride storage battery)
After aging the obtained nickel-metal hydride storage battery at a temperature of 40 ° C. for 12 hours, formation was performed under the following conditions. The first charging was performed at a charging current of 1/50 ItA (32 mA) for 10 hours, and thereafter, charging was performed at a charging current of 1/10 ItA (160 mA) for 10 hours. Next, the battery was discharged at a discharge current of 1/5 ItA (320 mA) with a discharge end voltage of 1.0 V. After the second cycle, the battery was charged at a charge current of 1/10 ItA (160 mA) for 12 hours, and discharged at a discharge current of 1/5 ItA (320 mA) with a discharge end voltage of 1.0 V. The cycle was defined as one cycle, and the charge and discharge were repeated for 10 cycles including the first charge and discharge.
[0037]
(Examples 2 to 6)
The charged amounts (molar ratios) of the metal elements when adjusting the hydrogen storage alloy were as shown in Examples 2 to 6 in Table 1. Other than that, it was the same as Example 1.
[0038]
(Comparative Examples 1 to 3)
The amounts (molar ratios) of metal elements charged when adjusting the hydrogen storage alloy were as shown in Comparative Examples 1 to 4 in Table 1. Other than that, it was the same as Example 1. Table 1 summarizes the trial production contents of Examples 1 to 6 and Comparative Examples 1 to 3. In Table 1, Mn0.30, Al0.32, and Fe0.01, which are the ratios of Mn, Al, and Fe, are collectively indicated as X0.63.
[0039]
[Table 1]
Figure 2004124132
[0040]
(Examples 7 and 8)
The amounts (molar ratios) of metal elements charged when adjusting the hydrogen storage alloy were as shown in Examples 7 and 8 in Table 2. Other than that, it was the same as Example 1.
[0041]
(Comparative Example 4, Comparative Example 5)
The amounts (molar ratios) of the metal elements used for preparing the hydrogen storage alloy were as shown in Comparative Examples 4 and 5 in Table 2. Other than that, it was the same as Example 1. Comparative Example 5 is shown as a typical example of a conventional hydrogen storage alloy composition.
[0042]
[Table 2]
Figure 2004124132
[0043]
(Examples 9 to 19)
The amounts (molar ratios) of metal elements charged when adjusting the hydrogen storage alloy were as shown in Examples 9 to 19 in Table 3. Other than that, it was the same as Example 1.
[0044]
[Table 3]
Figure 2004124132
[0045]
(Examples 20 to 23)
The amounts (molar ratios) of metal elements charged when adjusting the hydrogen storage alloy were as shown in Examples 20 to 23 in Table 4. Other than that, it was the same as Example 1.
[0046]
(Comparative Examples 6 to 9)
The amounts (molar ratios) of metal elements charged when adjusting the hydrogen storage alloy were as shown in Comparative Examples 6 to 9 in Table 4. Other than that, it was the same as Example 1.
[0047]
[Table 4]
Figure 2004124132
[0048]
(Examples 24 to 27)
Mg was added as a component of the hydrogen storage alloy. The preparation amounts (molar ratios) of metal elements when adjusting the hydrogen storage alloy were as shown in Examples 24 to 27 of Table 5. Other than that, it was the same as Example 1.
[0049]
[Table 5]
Figure 2004124132
[0050]
(Example 28)
The amount (molar ratio) of the metal element charged when adjusting the hydrogen storage alloy was the same as in Example 2 in Table 1. 100 g of the obtained hydrogen-absorbing alloy powder was immersed in 200 ml of an aqueous solution containing 6.8 mol / l KOH and 0.8 mol / l LiOH maintained at a temperature of 100 ° C. for 1 hour, and the solution was stirred during the immersion. Thereafter, the resultant was washed with water to remove alkali, and vacuum-dried. The other conditions were the same as in Example 2.
(Analysis of heavy rare earth elements in hydrogen storage alloy powder)
Elemental analysis included in the obtained hydrogen storage alloy powder using the TEM-EDS was performed. In this case, the analysis was performed on the hydrogen storage alloy immediately after immersion in the alkali, but the analysis was performed on the hydrogen storage alloy powder recovered by disassembling the battery having a charge / discharge cycle number of 30 cycles or less, including formation after forming the battery. The analysis yields almost the same results.
[0051]
(Examples 29 to 33)
(Preparation of nickel electrode material powder)
In the above Example 2, 97 parts by weight of nickel hydroxide powder containing cobalt and zinc in a solid solution state and having a coating layer made of cobalt hydroxide formed on the surface was added to each of Er having an average particle size of about 5 μm. 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , Y 2 O 3 Was added and mixed to obtain a positive electrode material powder. The other conditions were the same as in Example 2. These are referred to as Examples 29 to 23, respectively.
[0052]
(Example 34)
The same Yb as in Example 31 was used for the positive electrode. 2 O 3 Using a nickel electrode to which a cathode material powder mixed with and added is applied, and a hydrogen storage alloy to which a hydrogen storage alloy powder applied by immersion treatment in the same alkaline aqueous solution containing KOH and LiOH as in Example 28 is applied to the negative electrode, A nickel-metal hydride storage battery was fabricated in the same manner as in Example 2 except for the above.
[0053]
(Comparative Example 10)
(Preparation of nickel electrode material powder)
97 parts by weight of the same nickel hydroxide powder as in Example 30 was mixed with Yb having an average particle size of about 5 μm. 2 O 3 Was mixed and added to the nickel electrode and the hydrogen storage alloy electrode, and the same hydrogen storage alloy electrode as in Comparative Example 1 was combined to form a nickel hydrogen storage battery.
Table 4 summarizes the trial production contents of Examples 29 to 34 and Comparative Example 10.
[0054]
[Table 6]
Figure 2004124132
[0055]
(Single plate test of hydrogen storage alloy electrode)
After the formation, the single cell test cell of the hydrogen storage alloy electrode is charged at a temperature of 20 ° C. with a current of 0.2 ItA based on the filling capacity of the hydrogen storage alloy electrode at 120%, and the hydrogen storage alloy is also charged with a current of 0.2 ItA. Discharge was performed until the reference potential of the electrode became −0.6 V. The charge / discharge cycle was repeated five times, and it was confirmed that a stable capacity was obtained. The test results described below showed the capacity at the fifth cycle after the formation was completed.
[0056]
(Charge / discharge cycle test of cylindrical nickel-metal hydride battery)
The battery of Example and the battery of Comparative Example after the formation were subjected to a charge / discharge cycle test at a temperature of 20 ° C. Charging was performed with an ItA current for 1.2 hours, and discharging was performed with an ItA current with a discharge end voltage of 1.0 V. The cycle was repeated with the charge / discharge cycle as one cycle. The cycle life was defined as the point at which the discharge capacity decreased to 80% of the initial value.
[0057]
(Charge / discharge test at high temperature)
After completion of the formation, six Example batteries and Comparative Example batteries were prepared, and three were subjected to a charge / discharge test at a temperature of 20 ° C. and another three at 50 ° C. Charging was performed at a current of 0.2 ItA for 6 hours, and discharging was performed at a current of 0.2 ItA with a discharge end voltage of 1.0 V. It was confirmed that a stable capacity was obtained by repeating charge and discharge for 5 cycles. The test results described below are shown as the ratio of the capacity at 50 ° C. to the capacity at 20 ° C. in the fifth cycle after the formation.
[0058]
(Charge / discharge cycle test of cylindrical nickel-metal hydride storage battery at high temperature)
The battery of Example and the battery of Comparative Example after the formation were subjected to a charge / discharge cycle test at a temperature of 40 ° C. Charging was performed with an ItA current for 1.2 hours, and discharging was performed with an ItA current with a discharge end voltage of 1.0 V. The cycle was repeated with the charge / discharge cycle as one cycle.
[0059]
(Single plate test of hydrogen storage alloy electrode and cycle test result of cylindrical storage battery)
Tables 7 to 12 show the test results.
[Table 7]
Figure 2004124132
[0060]
As shown in Table 7, according to the single plate test of the hydrogen storage alloy electrode, the hydrogen storage alloy electrodes according to Examples 1 to 6 of the present invention all showed a capacity exceeding 280 mAh / g per 1 g of the hydrogen storage alloy. Has a capacity almost equal to or greater than that of a typical conventional example (Comparative Example 5 shown in Table 2). In addition, the cylindrical nickel-metal hydride storage battery using the hydrogen storage alloy electrode manufactured using the hydrogen storage alloy according to the present invention has a charge / discharge cycle exceeding 400 cycles, and the cycle performance of Comparative Examples 5 and 3 described above. It has performance exceeding that of Comparative Example 1, in which the ratio of La in the hydrogen storage alloy is small, has a small capacity, and conversely, Comparative Example 2, in which the ratio of La is large, is inferior in cycle performance.
[0061]
FIG. 1 shows the relationship between the ratio of La in the hydrogen storage alloy, the capacity of the hydrogen storage alloy electrode in the single plate test, and the cycle performance of the nickel-metal hydride storage battery. As shown in FIG. 1, in the region where the ratio a of La is 0.6 to 0.9, both the capacity and the cycle performance are excellent, and it can be seen that 0.6 ≦ a ≦ 0.9 is good.
[0062]
As shown in Table 7, when comparing Example 3, Example 4, and Example 5 in which the ratio b of Ce in the hydrogen storage alloy was 0.05 ≦ b with Comparative Example 3 in which b = 0.01, The example also has substantially the same capacity as the comparative example 1 and shows superior cycle performance as compared with the comparative example 4. FIG. 2 shows the relationship between the ratio b of Ce in the hydrogen storage alloy, the capacity of the hydrogen storage alloy electrode in a single plate test, and the cycle performance of the nickel-metal hydride storage battery. As shown in FIG. 2, it can be seen that the cycle performance is good when the ratio b of Ce in the hydrogen storage alloy is 0.05 ≦ b.
[0063]
[Table 8]
Figure 2004124132
[0064]
As shown in Table 8, Examples 7 and 8 are superior to Comparative Examples 4 and 5 in cycle performance. This indicates that the presence of Yb in the hydrogen storage alloy is effective for improving the cycle performance. However, when the ratio d of Yb is increased to 0.08, Example 8 in which d is 0.06 and The cycle performance was lower than that of Example 7 in which the value was 0.01, and it can be seen that the value of d may not be too high. FIG. 3 shows the relationship between the ratio d of Yb in the hydrogen storage alloy, the capacity of the hydrogen storage alloy electrode in the single plate test, and the cycle performance of the nickel-metal hydride storage battery. As shown in FIG. 3, it is found that the capacity and the cycle performance are excellent in the range where the ratio d of Yb is 0.01 to 0.06, and that 0.01 ≦ d ≦ 0.06 is good.
[0065]
[Table 9]
Figure 2004124132
[0066]
As shown in Table 9, each of the hydrogen storage alloy electrodes according to Examples 9 to 19 of the present invention has a capacity exceeding 280 mAh / g, and has a capacity equal to or higher than that of the conventional one. Moreover, the cylindrical nickel-metal hydride storage battery to which the hydrogen storage alloy electrode manufactured using the hydrogen storage alloy according to the present invention is applied has a charge / discharge cycle exceeding 400 cycles, and is compared with any of the comparative example batteries. It has cycle performance that exceeds that of the examples. From this, the above R 2 It can be seen that the discharge capacity is equal to or higher than that of the conventional one and the cycle performance is excellent in any case including Lu and Y below Eu and two types of elements Er and Tm and two types of elements Er and Yb.
[0067]
[Table 10]
Figure 2004124132
[0068]
As shown in Table 10, Comparative Example 8 in which the sum e + f + g of the ratio e of Ni, the ratio f of Co, and the ratio g of S is as low as 4.9 has a high discharge capacity, but is inferior in cycle performance. Conversely, it can be seen that Comparative Example 9 having a high e + f + g of 5.5 has a disadvantage of low capacity. FIG. 4 shows the relationship between the value of e + f + g, the capacity of the hydrogen storage alloy electrode in a single plate test, and the cycle performance of the nickel-metal hydride storage battery. In the region where the value of e + f + g is 5.0 to 5.4, both the capacity and the cycle performance are excellent, and it can be seen that 5.0 ≦ e + f + g ≦ 5.4 is good.
[0069]
Comparative Example 7 in which the ratio of Ni is as low as 3.12 and the ratio of Co is as high as 1.4 is inferior in both discharge capacity and cycle performance. FIG. 5 shows the relationship between the value of the ratio f of Co in the hydrogen storage alloy, the capacity of the hydrogen storage alloy electrode in the single plate test, and the cycle performance of the nickel-metal hydride storage battery. In the region where the Co ratio f is 0.10 to 1.2, both capacity and cycle performance are excellent, and it can be seen that 0.1 ≦ f ≦ 1.2 is good.
[0070]
FIG. 6 shows the relationship between the value of the ratio e of Ni in the hydrogen storage alloy, the capacity of the hydrogen storage alloy electrode in a single plate test, and the cycle performance of the nickel-metal hydride storage battery. In the region where the ratio e of Ni is 3.3 to 4.4, both capacity and cycle performance are excellent, and it can be seen that 3.3 ≦ e ≦ 4.4 is preferable.
[0071]
[Table 11]
Figure 2004124132
[0072]
As shown in Table 11, each of the hydrogen storage alloys according to Examples 24 to 27 of the present invention has a capacity exceeding 290 mAh / g, and has a capacity equal to or greater than that of the conventional one. In addition, the cylindrical nickel-metal hydride storage battery using the hydrogen storage alloy electrode manufactured using the hydrogen storage alloy according to Example 24, Example 25 or Example 27 has a cycle performance exceeding 500 cycles and has a conventional cycle performance. Has higher performance than. Examples 24 and 25 are superior in both capacity and cycle performance as compared with Example 17 using a hydrogen storage alloy containing no Mg. In addition, Example 27 also excels in both capacity and cycle performance as compared to Example 2 containing no Mg. This indicates that it is effective to include Mg in the hydrogen storage alloy in addition to the rare earth element. However, Example 26 in which the ratio of Mg in the hydrogen storage alloy was increased to 0.07 was inferior to Examples 24 and 25 in both capacity and cycle performance.
[0073]
FIG. 7 shows the relationship between the Mg ratio h, the capacity of the hydrogen storage alloy electrode in a single plate test, and the cycle performance of the nickel-metal hydride storage battery. In the range of h from 0 to 0.04, both capacity and cycle performance are excellent, and it is understood that 0 <h ≦ 0.04 is desirable.
[0074]
Table 12 shows the results of analysis of the surface of the powder and the inside of the powder for the hydrogen storage alloys according to Example 2 and Example 28.
[Table 12]
Figure 2004124132
[0075]
As shown in Table 12, the hydrogen storage alloy powder of Example 2 has the same Yb ratio at any part of the depth from the surface of 200 nm, 400 nm, and 600 nm. On the other hand, in the hydrogen storage alloy powder according to Example 28, the depth from the surface was 200 nm, the Yb ratio at 400 nm was 600 nm, and the Yb content at the surface of the powder was high, that is, compared to the inside of the powder. It can be seen that the content ratio of Yb on the surface is high.
[0076]
Table 13 shows the capacity of the hydrogen storage alloy electrodes of Example 2 and Example 28 in the single plate test and the cycle performance of the nickel-metal hydride storage battery.
[Table 13]
Figure 2004124132
[0077]
As shown in Table 13, the nickel-metal hydride storage battery using the hydrogen storage alloy according to Example 28 of the present invention has remarkably excellent cycle performance. In the case of Example 28, it is considered that the surface of the alloy powder was Yb-rich and was coated with the passivation film containing Yb, thereby improving the corrosion resistance of the alloy. Although the example in which R2 is Yb is shown in Example 28, the same effect can be obtained when R2 is the heavy rare earth element other than Y or Yb.
[0078]
Table 14 shows the high-temperature charge / discharge test results and the cycle performance of the nickel-metal hydride storage batteries according to Example 2, Examples 29 to 34, and Comparative Example 10.
[Table 14]
Figure 2004124132
[0079]
As shown in Table 14, the nickel-metal hydride storage batteries using the nickel electrodes containing rare earth elements according to Examples 29 to 33 were compared with the nickel-metal hydride storage batteries of Example 2 using nickel electrodes containing no rare earth elements. The charge / discharge performance at 50 ° C. and the charge / discharge cycle performance at 40 ° C. are both excellent. In the case of Examples 29 to 33, the charge acceptance of the nickel electrode is good, and the generation of oxygen at the nickel electrode is suppressed in the charging process, and the hydrogen storage alloy electrode with excellent durability is applied. It is considered that the cycle performance was significantly improved.
[0080]
In Examples 29 to 33, the heavy rare earth elements and the oxides of Y shown in Table 6 such as Yb were applied as the materials to be added to the nickel electrode, but the hydroxides of the rare earth elements were applied. Is also effective. In the examples, 3 parts by weight of the oxide of the rare earth element was mixed and added to 97 parts by weight of nickel hydroxide powder, but the present invention is not limited to this, and 90 to 99 parts by weight of nickel hydroxide powder, It is effective to mix and add at least one of the rare earth element compounds such as Yb in the range of 1 to 10 parts by weight.
[0081]
Although the nickel-metal hydride storage battery according to Example 34 had a discharge capacity at 50 ° C. discharge substantially equal to those of Examples 29 to 33, the cycle performance at 40 ° C. remarkably exceeded that of Examples 29 to 33. (Cycle life). Also, in the charge / discharge cycle test at 20 ° C., the cycle life is remarkably superior to the 680 cycles of Example 28 and 720 cycles compared to the 570 cycles of Example 31.
[0082]
This result is due to the combination of the corrosion resistance effect of the hydrogen storage alloy described in the evaluation results of Example 28 and the effect of suppressing the oxygen generation of the nickel electrode described in the evaluation results of Examples 29 to 33. This is considered to indicate that a remarkable effect was obtained in the improvement.
【The invention's effect】
[0083]
The hydrogen storage alloy powder according to claim 1 of the present invention has a capacity per unit weight equal to or greater than that of the conventional hydrogen storage alloy powder, and enables a nickel-metal hydride storage battery having excellent durability and excellent charge / discharge cycle characteristics. It is to be.
[0084]
The hydrogen storage alloy powder according to claim 2 of the present invention is a hydrogen storage alloy powder having particularly excellent durability.
[0085]
The negative electrode for an alkaline storage battery according to the third aspect of the present invention is a hydrogen storage alloy having excellent durability and a capacity and an activation speed that are equal to or higher than those of the conventional hydrogen storage alloy.
[0086]
The hydrogen storage alloy according to claim 4 of the present invention is particularly excellent in corrosion resistance to an alkaline electrolyte and enables a nickel-metal hydride storage battery having excellent charge / discharge cycle characteristics.
[0087]
The hydrogen storage alloy electrode according to claim 5 of the present invention is a hydrogen storage alloy electrode that has a capacity equal to or higher than that of a conventional hydrogen storage electrode and has excellent cycle performance.
[0088]
The nickel-metal hydride storage battery according to claim 6 of the present invention is a nickel-metal hydride storage battery that has a capacity equal to or higher than that of a conventional battery and has excellent cycle performance.
[0089]
The nickel-metal hydride storage battery according to claim 7 of the present invention is a nickel-metal hydride storage battery excellent in charge / discharge performance at high temperatures and charge / discharge cycle performance at high temperatures and normal temperatures.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the ratio a of La contained in a hydrogen storage alloy, the capacity of a hydrogen storage alloy powder, and the cycle performance of a nickel-metal hydride storage battery.
FIG. 2 is a graph showing the relationship between the ratio b of Ce contained in the hydrogen storage alloy, the capacity of the hydrogen storage alloy powder, and the cycle performance of the nickel-metal hydride storage battery.
FIG. 3 is a graph showing the relationship between the ratio d of Yb contained in the hydrogen storage alloy, the capacity of the hydrogen storage alloy powder, and the cycle performance of the nickel-metal hydride storage battery.
FIG. 4 is a graph showing a relationship between the sum e + f + g of the ratio of Ni, Co and S contained in the hydrogen storage alloy, the capacity of the hydrogen storage alloy powder, and the cycle performance of the nickel-metal hydride storage battery.
FIG. 5 is a graph showing the relationship between the ratio f of Co contained in the hydrogen storage alloy, the capacity of the hydrogen storage alloy powder, and the cycle performance of the nickel-metal hydride storage battery.
FIG. 6 is a graph showing the relationship between the ratio e of Ni contained in the hydrogen storage alloy, the capacity of the hydrogen storage alloy powder, and the cycle performance of the nickel-metal hydride storage battery.
FIG. 7 is a graph showing the relationship between the ratio h of Mg contained in the hydrogen storage alloy, the capacity of the hydrogen storage alloy powder, and the cycle performance of the nickel-metal hydride storage battery.

Claims (7)

CaCu型の結晶構造を有し、La、Ce、Yと原子番号が63以上のランタノイドのうち少なくとも1種の元素、NiおよびCoを必須成分とし、R1を原子番号59〜62のランタノイドのうちの少なくとも1種の元素とし、R2を原子番号がYと63以上のランタノイドのうちの少なくとも1種の元素とし、Xを希土類に属さない少なくとも1種類の金属元素とし、組成式LaCeR1R2NiCoで表した時に、前記a+b+c+d=1.0であり、0.6≦a≦0.9、0.05≦b、0≦c、0<d≦0.06であり、5.0≦e+f+g≦5.4であって、0.1≦f≦1.2、0<gで示されることを特徴とする水素吸蔵合金粉末。It has a CaCu type 5 crystal structure, La, Ce, Y and at least one element of lanthanoids having an atomic number of 63 or more, Ni and Co, as essential components, and R1 among lanthanoids having an atomic number of 59 to 62. R2 is at least one element of lanthanoids having an atomic number of Y and 63 or more; X is at least one metal element that does not belong to a rare earth element; and a composition formula La a Ce b R1 c R2 when expressed in d Ni e Co f X g, the a + b + c + d = a 1.0, 0.6 ≦ a ≦ 0.9,0.05 ≦ b, 0 ≦ c, 0 <d ≦ 0.06 And 5.0 ≦ e + f + g ≦ 5.4, wherein 0.1 ≦ f ≦ 1.2 and 0 <g. 前記請求項1記載の水素吸蔵合金において、さらにMgを必須成分として含み、組成式LaCeR1R2MgNiCoで表した時に、前記a+b+c+d+h=1.0であり、0.6≦a≦0.9、0.05≦b、0≦c、0<h<0.04、0<d≦0.06であり5.0≦e+f+g≦5.4であって、0.1≦f≦1.2、0<gで示されることを特徴とする請求項1記載の水素吸蔵合金粉末。In the hydrogen storage alloy of claim 1, further comprising a Mg as an essential component, when expressed by the composition formula La a Ce b R1 c R2 d Mg h Ni e Co f X g, be the a + b + c + d + h = 1.0 0.6 ≦ a ≦ 0.9, 0.05 ≦ b, 0 ≦ c, 0 <h <0.04, 0 <d ≦ 0.06 and 5.0 ≦ e + f + g ≦ 5.4, 2. The hydrogen storage alloy powder according to claim 1, wherein 0.1, f ≦ 1.2 and 0 <g. 前記組成式LaCeR1R2NiCoおよびLaCeR1MgR2NiCoの金属元素SがMn、Al、Feのうち、少なくとも1種の元素であることを特徴とする請求項1または請求項2に記載の水素吸蔵合金粉末。The composition formula La a Ce b R1 c R2 d Ni e Co f X g and La a Ce b R1 c Mg h R2 d Ni e Co f X g of a metal element S is Mn, Al, of Fe, at least one The hydrogen storage alloy powder according to claim 1, wherein the hydrogen storage alloy powder is an element. 前記請求項1または請求項2に記載の組成を有する水素吸蔵合金粉末であって、該粉末に含まれるR2(R2はYと原子番号が63以上のランタノイドのうちの少なくとも1種の元素を示す)の濃度が、粉末の内部に比べて粉末の表面において高いことを特徴とする水素吸蔵合金粉末。3. A hydrogen storage alloy powder having the composition according to claim 1 or 2, wherein R2 represents at least one element of Y and a lanthanoid having an atomic number of 63 or more contained in the powder. A) a hydrogen storage alloy powder having a higher concentration on the surface of the powder than inside the powder. 請求項1、請求項2、請求項3または請求項4に記載の水素吸蔵合金粉末を耐アルカリ電解液性の金属からなる基板に担持させたことを特徴とする水素吸蔵合金電極。5. A hydrogen storage alloy electrode, wherein the hydrogen storage alloy powder according to claim 1, 2, 3, or 4 is supported on a substrate made of a metal having an alkali electrolyte resistance. ニッケル電極を正極とし、請求項5に記載の水素吸蔵合金電極を負極とするニッケル水素蓄電池。A nickel-metal hydride storage battery having a nickel electrode as a positive electrode and the hydrogen storage alloy electrode according to claim 5 as a negative electrode. 前記ニッケル電極が、Er、Tm、Yb、Lu、Yのうちの少なくとも1種類の元素を含有することを特徴とする請求項6に記載のニッケル水素蓄電池。The nickel-metal hydride storage battery according to claim 6, wherein the nickel electrode contains at least one element of Er, Tm, Yb, Lu, and Y.
JP2002287749A 2002-09-30 2002-09-30 Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same. Expired - Lifetime JP3861788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002287749A JP3861788B2 (en) 2002-09-30 2002-09-30 Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002287749A JP3861788B2 (en) 2002-09-30 2002-09-30 Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.

Publications (3)

Publication Number Publication Date
JP2004124132A true JP2004124132A (en) 2004-04-22
JP2004124132A5 JP2004124132A5 (en) 2005-07-07
JP3861788B2 JP3861788B2 (en) 2006-12-20

Family

ID=32280444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002287749A Expired - Lifetime JP3861788B2 (en) 2002-09-30 2002-09-30 Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.

Country Status (1)

Country Link
JP (1) JP3861788B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085542A1 (en) * 2005-02-08 2006-08-17 Mitsui Mining & Smelting Co., Ltd. Hydrogen-occluding alloy with low cobalt content
JP2008084668A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Hydrogen storage alloy and sealed alkaline storage battery using the same
CN105463256A (en) * 2015-12-03 2016-04-06 内蒙古稀奥科贮氢合金有限公司 Hydrogen storage alloy for nickel-metal hydride battery and manufacturing method of hydrogen storage alloy
JP2016528676A (en) * 2013-06-25 2016-09-15 オヴォニック バッテリー カンパニー インコーポレイテッド Synergistic multiphase hydride alloy
WO2016157669A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
US9490477B2 (en) 2012-09-27 2016-11-08 Gs Yuasa International Ltd. Nickel-metal hydride storage battery including negative electrode containing yttrium substituted hydrogen storage alloy and electrolyte solution containing sodium hydroxide
JP2021120954A (en) * 2016-06-30 2021-08-19 南通沃▲徳▼材料科技有限公司Nantong Volta Materials Ltd. Method of preparing battery electrode plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043451A (en) * 1983-08-15 1985-03-08 Daido Steel Co Ltd Material for storing hydrogen
JPH0448042A (en) * 1990-06-18 1992-02-18 Furukawa Battery Co Ltd:The Hydrogen occluding electrode
JPH0562674A (en) * 1991-08-30 1993-03-12 Sanyo Electric Co Ltd Alkaline storage battery
JPH0925529A (en) * 1995-07-10 1997-01-28 Santoku Kinzoku Kogyo Kk Rare earth metal-nickel based hydrogen storage alloy and its production, and cathode for nickel-hydrogen secondary battery
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043451A (en) * 1983-08-15 1985-03-08 Daido Steel Co Ltd Material for storing hydrogen
JPH0448042A (en) * 1990-06-18 1992-02-18 Furukawa Battery Co Ltd:The Hydrogen occluding electrode
JPH0562674A (en) * 1991-08-30 1993-03-12 Sanyo Electric Co Ltd Alkaline storage battery
JPH0925529A (en) * 1995-07-10 1997-01-28 Santoku Kinzoku Kogyo Kk Rare earth metal-nickel based hydrogen storage alloy and its production, and cathode for nickel-hydrogen secondary battery
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085542A1 (en) * 2005-02-08 2006-08-17 Mitsui Mining & Smelting Co., Ltd. Hydrogen-occluding alloy with low cobalt content
JP2008084668A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Hydrogen storage alloy and sealed alkaline storage battery using the same
US9490477B2 (en) 2012-09-27 2016-11-08 Gs Yuasa International Ltd. Nickel-metal hydride storage battery including negative electrode containing yttrium substituted hydrogen storage alloy and electrolyte solution containing sodium hydroxide
JP2016528676A (en) * 2013-06-25 2016-09-15 オヴォニック バッテリー カンパニー インコーポレイテッド Synergistic multiphase hydride alloy
WO2016157669A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JPWO2016157669A1 (en) * 2015-03-31 2017-10-12 パナソニックIpマネジメント株式会社 Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
CN105463256A (en) * 2015-12-03 2016-04-06 内蒙古稀奥科贮氢合金有限公司 Hydrogen storage alloy for nickel-metal hydride battery and manufacturing method of hydrogen storage alloy
JP2021120954A (en) * 2016-06-30 2021-08-19 南通沃▲徳▼材料科技有限公司Nantong Volta Materials Ltd. Method of preparing battery electrode plate
JP7427149B2 (en) 2016-06-30 2024-02-05 合肥集新能源科技有限公司 How to prepare battery plates

Also Published As

Publication number Publication date
JP3861788B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP4342186B2 (en) Alkaline storage battery
JP4458725B2 (en) Alkaline storage battery
US20100081053A1 (en) Negative electrode for alkaline storage battery, alkaline storage battery, and method of manufacturing alkaline storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP4304430B2 (en) Hydrogen storage alloy and electrode using the same
JP4458713B2 (en) Alkaline storage battery
JPH11111330A (en) Nickel-hydrogen storage battery
JP5278411B2 (en) Hydrogen storage alloy powder and nickel metal hydride storage battery using the same.
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP2010212117A (en) Negative electrode for alkaline storage battery, and alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP3945944B2 (en) Hydrogen storage alloy particles for sealed alkaline storage batteries
JP3118812B2 (en) Alkaline storage battery
JPH09293501A (en) Manufacture of hydrogen storage alloy electrode
JP4601754B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP5482024B2 (en) Hydrogen storage alloy electrode for alkaline storage battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Ref document number: 3861788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

EXPY Cancellation because of completion of term