JPH11162459A - Nickel-hydrogen secondary battery - Google Patents

Nickel-hydrogen secondary battery

Info

Publication number
JPH11162459A
JPH11162459A JP9329213A JP32921397A JPH11162459A JP H11162459 A JPH11162459 A JP H11162459A JP 9329213 A JP9329213 A JP 9329213A JP 32921397 A JP32921397 A JP 32921397A JP H11162459 A JPH11162459 A JP H11162459A
Authority
JP
Japan
Prior art keywords
nickel
negative electrode
hydrogen storage
secondary battery
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9329213A
Other languages
Japanese (ja)
Inventor
Masaaki Yamamoto
雅秋 山本
Hirotaka Hayashida
浩孝 林田
Hiroshi Kitayama
浩 北山
Shusuke Inada
周介 稲田
Isao Sakai
勲 酒井
Ryuko Kono
龍興 河野
Hidenori Yoshida
秀紀 吉田
Takamichi Inaba
隆道 稲葉
Motoi Kanda
基 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9329213A priority Critical patent/JPH11162459A/en
Priority to KR1019980051649A priority patent/KR100276018B1/en
Priority to US09/200,464 priority patent/US6248475B1/en
Publication of JPH11162459A publication Critical patent/JPH11162459A/en
Priority to US09/475,037 priority patent/US6268084B1/en
Priority to US09/871,941 priority patent/US6703164B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel-hydrogen secondary battery having an equal or higher capacity and superior high-rate charging/discharging characteristics than a conventional secondary battery provided with a negative electrode containing a hydrogen storage alloy mainly constituted of magnesium, nickel and rare earth elements. SOLUTION: The negative electrode 4 of this battery contains a hydrogen storage alloy expressed by the general formula (R1-x Mgx )Niy Az (where R is at least one element selected from rare earth elements including yttrium, Ca, Zr and Ti, A is at least one element selected from Co, Mn, Fe, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P and B, and (x), (y) and (z) are 0<x<1, 0<=z<=1.5, 2.5<=y+x<4.5), and conductive metal chips 0.3-20 pts.wt. added against the hydrogen storage alloy 100 pts. wt. A positive electrode Z contains nickel hydroxide as an active material, and the battery is provided with the positive electrode 2 and the negative electrode 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、ニッケル水素二次
電池に関する。
[0001] The present invention relates to a nickel-metal hydride secondary battery.

【0002】[0002]

【従来の技術】ニッケル水素二次電池としては、CaC
5 型結晶を主相とするLaNi5 系の水素吸蔵合金、
またはTi、Zr、VおよびNiを構成元素として含有
するラーベス相を主相とする水素吸蔵合金を含む負極を
備えた構造のものが実用化されている。
2. Description of the Related Art As a nickel-hydrogen secondary battery, CaC
a LaNi 5 -based hydrogen storage alloy having a u 5 type crystal as a main phase,
Alternatively, a structure having a negative electrode including a hydrogen storage alloy having a Laves phase as a main phase containing Ti, Zr, V and Ni as constituent elements has been put to practical use.

【0003】LaNi5 系の水素吸蔵合金を含む負極を
備えたニッケル水素二次電池は、現在生産されている二
次電池の大部分を占め、汎用性の高い電池である。しか
しながら、この水素吸蔵合金は水素吸蔵量が合金1に対
して水素原子1の割合であるため、これ以上の水素を吸
蔵させることは実質的に困難である。前記水素吸蔵合金
の水素吸蔵量を電気化学的な容量に換算すると、約37
0mAh/gに相当するが、現行の実用二次電池では既
に330mAh/g程度の容量に到達している。したが
って、今後、さらに高容量の二次電池を実用化するには
LaNi5 系の水素吸蔵合金を用いる限り飛躍的な増大
は望めない。
[0003] Nickel-metal hydride secondary batteries provided with a negative electrode containing a LaNi 5 -based hydrogen storage alloy occupy most of currently produced secondary batteries and are highly versatile batteries. However, since this hydrogen storage alloy has a hydrogen storage amount of 1 hydrogen atom to 1 alloy, it is substantially difficult to store more hydrogen. When the hydrogen storage amount of the hydrogen storage alloy is converted into an electrochemical capacity, about 37
Although it corresponds to 0 mAh / g, the capacity of the current practical secondary battery has already reached about 330 mAh / g. Therefore, in order to commercialize a higher capacity secondary battery in the future, a dramatic increase cannot be expected unless a LaNi 5 -based hydrogen storage alloy is used.

【0004】一方、ラーベス相を主相する水素吸蔵合金
では合金1に対して水素原子1以上の吸蔵が可能である
ことが知られており、原理的には高容量の電池を実現す
ることが可能である。しかしながら、この水素吸蔵合金
はその表面に安定な酸化膜を生成するため、充分に利用
できない、初期活性に時間が掛かる、高率での充放電特
性が不十分、高容量化と他の電池に要求される特性の両
立が困難である、等の理由から負極材料として用いるに
至っていない。
On the other hand, it is known that a hydrogen storage alloy having a Laves phase as a main phase can store one or more hydrogen atoms with respect to alloy 1, and in principle, it is possible to realize a high-capacity battery. It is possible. However, this hydrogen storage alloy forms a stable oxide film on its surface, so it cannot be used sufficiently, it takes a long time for initial activation, the charge / discharge characteristics at a high rate are inadequate, and high capacity and other batteries can be used. It has not been used as a negative electrode material because it is difficult to achieve the required characteristics.

【0005】これに対し、新たに見出だされたマグネシ
ウム、ニッケルおよび希土類元素を主要構成元素とする
水素吸蔵合金は、LaNi5 系の水素吸蔵合金に比べて
体積当りおよび重量当り、いずれも高容量であり、ラー
ベス相系の水素吸蔵合金よりも活性化が速く、高率充放
電特性にも優れいるという特徴を有する。このため、こ
の水素吸蔵合金を含む負極材料として用いることにより
LaNi5 系の水素吸蔵合金を含む負極を備えた二次電
池に比べて高容量であり、しかもラーベス相系の水素吸
蔵合金を含む負極を備えた二次電池よりも優れた高率率
充放電特性を有する二次電池を製造することが可能にな
る。
On the other hand, newly discovered hydrogen storage alloys containing magnesium, nickel and rare earth elements as main constituent elements are higher in volume and weight than LaNi 5 -based hydrogen storage alloys. It is characterized by its capacity, faster activation than Laves phase hydrogen storage alloys, and excellent high rate charge / discharge characteristics. For this reason, by using this negative electrode material containing a hydrogen storage alloy, a negative electrode containing a Laves phase-based hydrogen storage alloy has a higher capacity than a secondary battery having a negative electrode containing a LaNi 5 -based hydrogen storage alloy. It is possible to manufacture a secondary battery having a higher rate rate charge / discharge characteristic than a secondary battery provided with.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記マ
グネシウム、ニッケルおよび希土類元素を主要構成元素
とする水素吸蔵合金を含む負極を備えた二次電池は高率
充放電特性に注目した場合、LaNi5 系の水素吸蔵合
金を含む負極を備えた二次電池に及ばないという問題が
ある。
[SUMMARY OF THE INVENTION However, the magnesium, when secondary battery comprising a negative electrode containing a hydrogen storage alloy whose main constituent elements nickel and rare earth elements with a focus on high-rate charge and discharge characteristics, LaNi 5 type There is a problem that it is not as good as a secondary battery provided with a negative electrode containing a hydrogen storage alloy.

【0007】本発明は、従来のマグネシウム、ニッケル
および希土類元素を主要構成元素とする水素吸蔵合金を
含む負極を備えた二次電池と比較して容量的に同等以上
で、かつ優れた高率充放電特性を有するニッケル水素二
次電池を提供しようとするものである。
The present invention provides a high-capacity battery having a capacity equal to or higher than that of a conventional secondary battery including a negative electrode including a hydrogen storage alloy containing magnesium, nickel and a rare earth element as main constituent elements. An object of the present invention is to provide a nickel-metal hydride secondary battery having discharge characteristics.

【0008】[0008]

【課題を解決するための手段】本発明に係わるニッケル
水素二次電池は、一般式 (R1-x Mgx )Niyz
(ただし、Rはイットリウムを含む希土類元素、Ca、
ZrおよびTiから選ばれる少なくとも1つの元素、A
はCo,Mn,Fe,V,Cr,Nb,Al,Ga,Z
n,Sn,Cu,Si,PおよびBから選ばれる少なく
とも1つの元素であり、x、y、zはそれぞれ0<x<
1、0≦z≦1.5,2.5≦y+z<4.5を示
す。)で表される水素吸蔵合金と、この水素吸蔵合金1
00重量部に対して0.3〜20重量部添加される導電
性金属小片とを含む負極;および水酸化ニッケルを活物
質として含む正極;を具備したことを特徴とするもので
ある。
The nickel-hydrogen secondary battery according to the present invention has a general formula (R 1-x Mg x ) Ni y AZ
(Where R is a rare earth element containing yttrium, Ca,
At least one element selected from Zr and Ti, A
Are Co, Mn, Fe, V, Cr, Nb, Al, Ga, Z
n, Sn, Cu, Si, P, and at least one element selected from B and x, y, and z are each 0 <x <
1, 0 ≦ z ≦ 1.5, 2.5 ≦ y + z <4.5. ) And the hydrogen storage alloy 1
A negative electrode containing 0.3 to 20 parts by weight of a conductive metal piece added to 00 parts by weight; and a positive electrode containing nickel hydroxide as an active material.

【0009】[0009]

【発明の実施の形態】以下、本発明に係わるニッケル水
素二次電池を図1に示す円筒形ニッケル水素二次電池を
例にして詳細に説明する。図1に示すように有底円筒状
の容器1内には、正極2とセパレータ3と負極4とを積
層してスパイラル状に捲回することにより作製された電
極群5が収納されている。前記負極4は、前記電極群5
の最外周に配置されて前記容器1と電気的に接触してい
る。アルカリ電解液は、前記容器1内に収容されてい
る。中央に孔6を有する円形の第1の封口板7は、前記
容器1の上部開口部に配置されている。リング状の絶縁
性ガスケット8は、前記封口板7の周縁と前記容器1の
上部開口部内面の間に配置され、前記上部開口部を内側
に縮径するカシメ加工により前記容器1に前記封口板7
を前記ガスケット8を介して気密に固定している。正極
リード9は、一端が前記正極2に接続、他端が前記封口
板7の下面に接続されている。帽子形状をなす正極端子
10は、前記封口板7上に前記孔6を覆うように取り付
けられている。ゴム製の安全弁11は、前記封口板7と
前記正極端子10で囲まれた空間内に前記孔6を塞ぐよ
うに配置されている。中央に穴を有する絶縁材料からな
る円形の押え板12は、前記正極端子10上に前記正極
端子10の突起部がその押え板12の前記穴から突出さ
れるように配置されている。外装チューブ13は、前記
押え板12の周縁、前記容器1の側面及び前記容器1の
底部周縁を被覆している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a nickel-metal hydride secondary battery according to the present invention will be described in detail by taking a cylindrical nickel-metal hydride secondary battery shown in FIG. 1 as an example. As shown in FIG. 1, an electrode group 5 produced by stacking a positive electrode 2, a separator 3, and a negative electrode 4 and winding them spirally is accommodated in a bottomed cylindrical container 1. The negative electrode 4 includes the electrode group 5
And is in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1. A circular first sealing plate 7 having a hole 6 in the center is arranged at the upper opening of the container 1. The ring-shaped insulating gasket 8 is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the sealing plate is formed on the container 1 by caulking to reduce the diameter of the upper opening inward. 7
Are hermetically fixed via the gasket 8. One end of the positive electrode lead 9 is connected to the positive electrode 2, and the other end is connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 having a hat shape is attached on the sealing plate 7 so as to cover the hole 6. A rubber safety valve 11 is disposed so as to close the hole 6 in a space surrounded by the sealing plate 7 and the positive electrode terminal 10. A circular holding plate 12 made of an insulating material having a hole in the center is arranged on the positive electrode terminal 10 such that a protrusion of the positive electrode terminal 10 projects from the hole of the holding plate 12. The outer tube 13 covers the periphery of the holding plate 12, the side surface of the container 1, and the periphery of the bottom of the container 1.

【0010】次に、前記正極2、負極4、セパレータ3
および電解液について説明する。 1)正極2 この正極2は、活物質である水酸化ニッケル粉末を含有
する。
Next, the positive electrode 2, the negative electrode 4, the separator 3
And the electrolyte will be described. 1) Positive electrode 2 This positive electrode 2 contains nickel hydroxide powder as an active material.

【0011】前記正極は、例えば活物質である水酸化ニ
ッケル粉末に導電材料を添加し、高分子結着剤および水
と共に混練してペーストを調製し、前記ペーストを導電
性基板に充填し、乾燥した後、成形することにより作製
される。
The positive electrode is prepared by adding a conductive material to, for example, nickel hydroxide powder as an active material, kneading the mixture with a polymer binder and water to prepare a paste, filling the paste into a conductive substrate, and drying the paste. After that, it is produced by molding.

【0012】前記導電材料としては、例えばコバルト酸
化物、コバルト水酸化物、金属コバルト、金属ニッケ
ル、炭素等を挙げることができる。前記高分子結着剤と
しては、例えばカルボキシメチルセルロース、メチルセ
ルロース、ポリアクリル酸ナトリウム、ポリテトラフル
オロエチレンを挙げることができる。
Examples of the conductive material include cobalt oxide, cobalt hydroxide, metallic cobalt, metallic nickel, and carbon. Examples of the polymer binder include carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, and polytetrafluoroethylene.

【0013】前記導電性基板としては、例えばニッケ
ル、ステンレスまたはニッケルメッキが施された金属か
ら形成された網状、スポンジ状、繊維状、もしくはフェ
ルト状の金属多孔体を挙げることができる。
Examples of the conductive substrate include a mesh-like, sponge-like, fibrous, or felt-like porous metal body made of nickel, stainless steel, or nickel-plated metal.

【0014】2)負極4 この負極4は、一般式 (R1-x Mgx )Niyz
(ただし、Rはイットリウムを含む希土類元素、Ca、
ZrおよびTiから選ばれる少なくとも1つの元素、A
はCo,Mn,Fe,V,Cr,Nb,Al,Ga,Z
n,Sn,Cu,Si,PおよびBから選ばれる少なく
とも1つの元素であり、x、y、zはそれぞれ0<x<
1、0≦z≦1.5,2.5≦y+z<4.5を示
す。)で表される水素吸蔵合金と、この水素吸蔵合金1
00重量部に対して0.3〜20重量部添加される導電
性金属小片とを含有する。
2) Negative Electrode 4 The negative electrode 4 has the general formula (R 1-x Mg x ) Ni y AZ
(Where R is a rare earth element containing yttrium, Ca,
At least one element selected from Zr and Ti, A
Are Co, Mn, Fe, V, Cr, Nb, Al, Ga, Z
n, Sn, Cu, Si, P, and at least one element selected from B and x, y, and z are each 0 <x <
1, 0 ≦ z ≦ 1.5, 2.5 ≦ y + z <4.5. ) And the hydrogen storage alloy 1
And 0.3 to 20 parts by weight of conductive metal pieces added to 00 parts by weight.

【0015】前記一般式で表される水素吸蔵合金は、L
aNi5 系水素吸蔵合金に比べて体積当り約120%の
大きな水素吸蔵量を示す。前記水素吸蔵合金に含まれる
Rとしては、イットリウムを含む希土類元素が好まし
い。このようにRとして希土類元素を用いた場合には、
水素吸蔵電極の低コスト化を考慮して、La,Ce,P
r,NdおよびYから選ばれた少なくとも1種の希土類
元素を使用することが好ましい。この例としては、Ce
がリッチなMm、LaがリッチなLmのような希土類混
合物のミッシュメタルを挙げることができる。
The hydrogen storage alloy represented by the above general formula is L
aNi exhibit large hydrogen storage capacity of about 120% per volume compared to the 5 system hydrogen absorbing alloy. R contained in the hydrogen storage alloy is preferably a rare earth element containing yttrium. Thus, when a rare earth element is used as R,
In consideration of the cost reduction of the hydrogen storage electrode, La, Ce, P
It is preferable to use at least one rare earth element selected from r, Nd and Y. An example of this is Ce
And Mm metal of a rare earth mixture such as Mm rich in La and Lm rich La.

【0016】また、Rとして希土類元素とCa、Zrお
よびTiから選ばれる少なくとも1つの元素とを用いて
もよい。この場合、後者の元素は前者の希土類元素に対
して0.3原子%以下の量で置換することが好ましい。
Further, R may be a rare earth element and at least one element selected from Ca, Zr and Ti. In this case, the latter element is preferably replaced with the former rare earth element in an amount of 0.3 atomic% or less.

【0017】前記水素吸蔵合金において、MgのRに対
する置換量であるxを前記範囲することによって、水素
を放出し難いという問題点を改善し、大きな放電容量を
実現することが可能になる。特に、前記置換量xは0.
1≦x≦0.6にすることが好ましい。前記置換量xを
0.1未満にすると、水素を放出し難いとう問題点を改
善できなくなる恐れがあり、放電容量が大きな二次電池
を得ることが困難になる恐れがある。一方、前記置換量
xが0.6を越えると可逆的な水素の吸蔵・放出量が低
下して放電容量が大きな二次電池を得ることが困難にな
る恐れがある。さらにこの好ましい前記置換量xは、
0.15≦x≦0.45である。
In the hydrogen storage alloy, by setting x, which is the substitution amount of Mg to R, in the above range, the problem that hydrogen is hardly released can be improved, and a large discharge capacity can be realized. In particular, the substitution amount x is set to 0.1.
It is preferable that 1 ≦ x ≦ 0.6. If the substitution amount x is less than 0.1, the problem of difficulty in releasing hydrogen may not be improved, and it may be difficult to obtain a secondary battery having a large discharge capacity. On the other hand, if the substitution amount x exceeds 0.6, the amount of reversible hydrogen storage and release decreases, and it may be difficult to obtain a secondary battery having a large discharge capacity. Further, the preferable substitution amount x is:
0.15 ≦ x ≦ 0.45.

【0018】前記水素吸蔵合金において、Aの量(z)
を前記範囲にすることによって、合金の水素吸蔵・放出
速度等の水素吸蔵・放出特性を向上することができると
共に、ニッケル水素二次電池のサイクル特性を飛躍的に
改善することができる。Aの量(z)が1.5を越える
と、放電容量が低下する。前記Aの量(z)のより好ま
しい範囲は、0.1≦z≦1.0である。特に、Aとし
てはCo、Mnが好ましい。このようなA元素を含む水
素吸蔵合金を含む負極を備えたアルカリ二次電池はサイ
クル特性が向上され、特にCoを用いた場合には放電容
量も向上される。
In the hydrogen storage alloy, the amount of A (z)
Is within the above range, the hydrogen storage / release characteristics such as the hydrogen storage / release speed of the alloy can be improved, and the cycle characteristics of the nickel-metal hydride secondary battery can be dramatically improved. If the amount (z) of A exceeds 1.5, the discharge capacity decreases. A more preferable range of the amount (z) of A is 0.1 ≦ z ≦ 1.0. In particular, A is preferably Co or Mn. An alkaline secondary battery provided with such a negative electrode containing a hydrogen storage alloy containing the element A has improved cycle characteristics, and particularly when Co is used, has improved discharge capacity.

【0019】前記水素吸蔵合金中のNiおよびAの含有
量(y+z)が2.5以上の範囲で水素吸蔵合金の水素
吸蔵・放出速度等の水素吸蔵・放出特性が著しく向上さ
れ、大きな放電容量を得ることができ、しかもサイクル
特性が改善される。しかしながら、(y+z)を4.5
以上にすると、合金の水素サイトが減少して水素吸蔵量
が低減し、放電容量が低下する。より好ましい(y+
z)は、3.0≦(y+z)≦3.8である。
When the content (y + z) of Ni and A in the hydrogen storage alloy is 2.5 or more, the hydrogen storage / release characteristics such as the hydrogen storage / release speed of the hydrogen storage alloy are remarkably improved, and a large discharge capacity is obtained. And cycle characteristics are improved. However, (y + z) is 4.5
By doing so, the number of hydrogen sites in the alloy is reduced, the hydrogen storage amount is reduced, and the discharge capacity is reduced. More preferred (y +
z) is 3.0 ≦ (y + z) ≦ 3.8.

【0020】前記導電性金属小片は、水素吸蔵合金10
0重量部に対して0.3〜20重量部添加することによ
り100mAのような比較的小さい電流での放電容量を
高めることができる上、1A以上の大電流での放電容量
を向上できる。前記導電性金属小片の添加量が20重量
部を越えると100mAのような比較的小さい電流での
放電容量を向上させることが困難になる。より好ましい
前記導電性金属小片の添加量は、水素吸蔵合金100重
量部に対して0.5〜15重量部である。
The conductive metal piece is a hydrogen storage alloy 10
By adding 0.3 to 20 parts by weight with respect to 0 parts by weight, the discharge capacity at a relatively small current such as 100 mA can be increased, and the discharge capacity at a large current of 1 A or more can be improved. If the amount of the conductive metal pieces exceeds 20 parts by weight, it becomes difficult to improve the discharge capacity at a relatively small current such as 100 mA. A more preferable addition amount of the conductive metal piece is 0.5 to 15 parts by weight based on 100 parts by weight of the hydrogen storage alloy.

【0021】前記導電性金属としては、水素電極(負
極)電位において金属状態が安定であるものであればよ
く、例えばNi、Cuのような各種の導電性金属を用い
ることができる。特に、Niは100mAのような比較
的小さい電流での放電容量を向上することができる。
As the conductive metal, any metal can be used as long as the metal state is stable at the potential of the hydrogen electrode (negative electrode). For example, various conductive metals such as Ni and Cu can be used. In particular, Ni can improve the discharge capacity at a relatively small current such as 100 mA.

【0022】前記導電性金属小片としては、例えば平均
粒径1〜100μmの粒状またはフレーク状の形態で用
いられる。前記負極は、例えば前記一般式で表される水
素吸蔵合金の粉末に前記導電性金属小片導電材を添加
し、高分子結着剤および水と共に混練してペーストを調
製し、前記ペーストを導電性基板に充填し、乾燥した
後、成形することにより作製される。
The conductive metal pieces are used, for example, in the form of particles or flakes having an average particle size of 1 to 100 μm. The negative electrode is prepared, for example, by adding the conductive metal piece conductive material to a powder of a hydrogen storage alloy represented by the general formula, kneading the mixture with a polymer binder and water to prepare a paste, and forming the paste into a conductive material. It is produced by filling a substrate, drying and molding.

【0023】前記高分子結着剤としては、前記正極2で
用いたのと同様なものを挙げることができる。前記ペー
スト中にはカーボンブラックのような導電材を別途添加
することを許容する。
Examples of the polymer binder include those similar to those used for the positive electrode 2. The paste allows a conductive material such as carbon black to be separately added.

【0024】前記導電性基板としては、例えば、パンチ
ドメタル、エキスパンデッドメタル、穿孔剛板、ニッケ
ルネットなどの二次元基板や、フェルト状金属多孔体
や、スポンジ状金属基板などの三次元基板を挙げること
ができる。
Examples of the conductive substrate include a two-dimensional substrate such as a punched metal, an expanded metal, a perforated rigid plate, and a nickel net, and a three-dimensional substrate such as a felt-like metal porous body and a sponge-like metal substrate. Can be mentioned.

【0025】3)セパレータ3 このセパレータ3は、例えばポリプロピレン繊維、ナイ
ロン繊維からなる不織布、ポリプロピレン繊維とナイロ
ン繊維を混繊した不織布のような高分子不織布により形
成される。特に、表面が親水化処理されたポリプロピレ
ンのようなポリオレフィン繊維の不織布はセパレータと
して好適である。
3) Separator 3 The separator 3 is made of a polymer non-woven fabric such as a non-woven fabric made of, for example, polypropylene fiber or nylon fiber, or a non-woven fabric in which polypropylene fiber and nylon fiber are mixed. In particular, a nonwoven fabric of a polyolefin fiber such as polypropylene whose surface is subjected to a hydrophilic treatment is suitable as a separator.

【0026】4)アルカリ電解液 このアルカリ電解液としては、例えば、水酸化ナトリウ
ム(NaOH)の水溶液、水酸化リチウム(LiOH)
の水溶液、水酸化カリウム(KOH)の水溶液、NaO
HとLiOHの混合液、KOHとLiOHの混合液、K
OHとLiOHとNaOHの混合液等を用いることがで
きる。
4) Alkaline Electrolyte Examples of the alkaline electrolyte include an aqueous solution of sodium hydroxide (NaOH), lithium hydroxide (LiOH)
Aqueous solution, potassium hydroxide (KOH) aqueous solution, NaO
H and LiOH mixed solution, KOH and LiOH mixed solution, K
A mixed solution of OH, LiOH, and NaOH can be used.

【0027】なお、前述した図1では正極と負極の間に
セパレータを介在して渦巻状に捲回し、有底円筒状の容
器1内に収納したが、本発明のニッケル水素二次電池は
このような構造に限定されず、例えば正極と負極との間
にセパレータを介在し、これを複数枚積層した積層物を
有底矩形筒状の容器内に収納して角形ニッケル水素二次
電池にも同様に適用できる。
In FIG. 1 described above, the separator is interposed between the positive electrode and the negative electrode and spirally wound and accommodated in the cylindrical container 1 having a bottom. It is not limited to such a structure, for example, a separator is interposed between the positive electrode and the negative electrode, and a stack of a plurality of these is housed in a bottomed rectangular cylindrical container, and a square nickel-metal hydride secondary battery is also used. The same applies.

【0028】以上説明した本発明に係わるニッケル水素
二次電池は、一般式 (R1-x Mgx )Niyz (た
だし、Rはイットリウムを含む希土類元素、Ca、Zr
およびTiから選ばれる少なくとも1つの元素、AはC
o,Mn,Fe,V,Cr,Nb,Al,Ga,Zn,
Sn,Cu,Si,PおよびBから選ばれる少なくとも
1つの元素であり、x、y、zはそれぞれ0<x<1、
0≦z≦1.5,2.5≦y+z<4.5を示す。)で
表される水素吸蔵合金と、この水素吸蔵合金100重量
部に対して0.3〜20重量部添加される導電性金属小
片とを含む負極を具備する。
The nickel-hydrogen secondary battery according to the present invention described above has the general formula (R 1-x Mg x ) Ni y A z (where R is a rare earth element containing yttrium, Ca, Zr
And at least one element selected from Ti and A is C
o, Mn, Fe, V, Cr, Nb, Al, Ga, Zn,
At least one element selected from Sn, Cu, Si, P and B, wherein x, y and z are each 0 <x <1,
0 ≦ z ≦ 1.5, 2.5 ≦ y + z <4.5. ), And a negative electrode comprising a conductive metal piece added in an amount of 0.3 to 20 parts by weight based on 100 parts by weight of the hydrogen storage alloy.

【0029】前記一般式で表される水素吸蔵合金は、L
aNi5 系水素吸蔵合金に比べて体積当りで約20%大
きい水素吸蔵量を示すものの、この水素吸蔵合金を含む
負極を備えた二次電池はLaNi5 系水素吸蔵合金を含
む負極を備えた二次電池に比べて放電電流の増加に伴う
放電容量の低下が顕著になる。このようなことから、前
記水素吸蔵合金と共に導電性金属小片を負極中に所定量
添加することにより充電または放電の際に起こる分極を
著しく低減して高率充放電特性においてLaNi5 系水
素吸蔵合金を含む負極を用いた場合と遜色なく、容量に
おいてそれ以上の特性を有するニッケル水素二次電池を
実現できる。
The hydrogen storage alloy represented by the above general formula is L
while indicating approximately 20% greater hydrogen storage capacity per volume compared to the ANI 5 system hydrogen absorbing alloy, the secondary battery comprising a negative electrode containing this hydrogen-absorbing alloy comprising a negative electrode containing a LaNi 5 type hydrogen absorbing alloy two As compared with the secondary battery, the discharge capacity is significantly reduced with an increase in the discharge current. For this reason, by adding a predetermined amount of conductive metal pieces to the negative electrode together with the hydrogen storage alloy, the polarization that occurs during charging or discharging is significantly reduced, and the LaNi 5 -based hydrogen storage alloy has a high rate charge / discharge characteristic. A nickel-hydrogen secondary battery having a capacity higher than that of the case of using a negative electrode containing

【0030】すなわち、LaNi5 系水素吸蔵合金を含
む負極はアルカリ電解液中ではランタン等の電気化学的
に卑な成分が選択的に腐食されるため、金属ニッケルを
多く含む表面層が形成される。この表面層は、水素電極
(負極)の反応に高い活性を示すため、高率放電におい
ても大きな電圧の低下を招くことなく良好な特性を維持
することができるものと考えられる。
That is, the negative electrode containing the LaNi 5 hydrogen storage alloy is selectively corroded by an electrochemically low component such as lanthanum in an alkaline electrolyte, so that a surface layer containing a large amount of metallic nickel is formed. . Since this surface layer exhibits high activity in the reaction of the hydrogen electrode (negative electrode), it is considered that good characteristics can be maintained without causing a large voltage drop even in high-rate discharge.

【0031】これに対し、前記一般式で表される水素吸
蔵合金を含む負極は低率放電では大きな容量を示すもの
の、高率放電の場合には電圧の降下が大きくLaNi5
系水素吸蔵合金を含む負極に比べて容量がかなり低下す
る。これは、前記一般式の水素吸蔵合金はLaNi5
水素吸蔵合金に比べてニッケル含有量が少ないことや構
成元素として含まれるマグネシウムが安定な酸化皮膜を
形成し易いことによるものと考えられる。つまり、前記
水素吸蔵合金粒子表面の水素電極反応に対する触媒能の
不足と、水素吸蔵合金表面の皮膜によって生じる負極集
電体と水素吸蔵合金粒子の間の導電性の低下の両者が高
率放電時に大きな電圧降下として働くものと推定され
る。
On the other hand, the negative electrode containing the hydrogen storage alloy represented by the above general formula has a large capacity in low-rate discharge, but has a large voltage drop in high-rate discharge, and has a large LaNi 5 content.
The capacity is considerably lower than that of a negative electrode containing a system hydrogen storage alloy. This is presumably because the hydrogen storage alloy of the above general formula has a lower nickel content than the LaNi 5 -based hydrogen storage alloy, and magnesium contained as a constituent element easily forms a stable oxide film. In other words, both the lack of catalytic ability for the hydrogen electrode reaction on the surface of the hydrogen storage alloy particles and the decrease in conductivity between the negative electrode current collector and the hydrogen storage alloy particles caused by the coating on the surface of the hydrogen storage alloy during high-rate discharge. It is presumed to work as a large voltage drop.

【0032】このようなことから負極中に導電性金属小
片を添加することにより水素吸蔵合金粒子相互の電気的
接触を助長し、負極電位において金属状態が安定的に存
在させることができる。また、前記導電性金属小片は負
極反応の触媒としても機能するため、負極の反応抵抗を
低減させる効果を有する。したがって、両者の相乗効果
と前記一般式の水素吸蔵合金が持つ高容量特性によっ
て、LaNi5 系水素吸蔵合金を含む負極を備えた二次
電池に比べて高容量でかつ高率放電特性において遜色の
ないニッケル水素二次電池を得ることができる。
From the above, by adding a small conductive metal piece to the negative electrode, electrical contact between the hydrogen storage alloy particles is promoted, and the metal state can be stably present at the negative electrode potential. In addition, since the conductive metal pieces also function as a catalyst for the negative electrode reaction, they have an effect of reducing the reaction resistance of the negative electrode. Therefore, due to the synergistic effect of the two and the high capacity characteristics of the hydrogen storage alloy of the above general formula, it is inferior in the high capacity and high rate discharge characteristics as compared with the secondary battery including the negative electrode including the LaNi 5 -based hydrogen storage alloy. A nickel-metal hydride secondary battery can be obtained.

【0033】[0033]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 (実施例1−1〜1−8および比較例1−1〜1−3) <負極の作製>La、Mg、NiおよびCoの各元素を
高周波溶解炉によって溶解することによりLa0.7 Mg
0.3 Ni2.5 Co0.5 の組成からなる水素吸蔵合金を作
製した。この合金をアルゴン雰囲気中で熱処理して合金
組成を均質化した。つづいて、この水素吸蔵合金を不活
性雰囲気中で機械的に粉砕し、篩分けを行って粒度が4
00〜200メッシュの範囲の合金粉末を選別した。こ
の合金100重量部に対して市販のカルボニル法により
得たニッケル粉末をそれぞれ0.1重量部,0.3重量
部,0.5重量部,1.0重量部,3.0重量部,5.
0重量部,20重量部および30重量部添加し、混合し
た後、これら混合物100重量部に対して4重量%のポ
リビニルアルコール水溶液25重量部をそれぞれ加えて
11種のペーストを調製した。ひきつづき、これらのペ
ーストを発泡ニッケル基板(三次元基板)に充填し、プ
レス成形して11種の負極を作製した。この時、単位体
積当りの水素吸蔵合金の充填量がMmNi5 系であるM
1.0 Ni4.0 Co0.4 Mn0.3 Al0.3 を含む負極
(参照例1)に対比して体積比で20%減になるように
初期の充填量およびプレス圧を調節した。なお、得られ
た各負極のうちニッケル粉末を20重量部以下添加した
負極はMmNi5 系合金を含む負極より薄く、ニッケル
粉末を30重量部添加した負極はMmNi5 系合金を含
む負極より厚くなった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. (Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-3) <Preparation of Negative Electrode> La 0.7 Mg was obtained by melting La, Mg, Ni and Co in a high-frequency melting furnace.
A hydrogen storage alloy having a composition of 0.3 Ni 2.5 Co 0.5 was produced. This alloy was heat-treated in an argon atmosphere to homogenize the alloy composition. Subsequently, the hydrogen storage alloy was mechanically pulverized in an inert atmosphere and sieved to obtain a particle size of 4%.
The alloy powder in the range of 00 to 200 mesh was selected. 0.1 parts by weight, 0.3 parts by weight, 0.5 parts by weight, 1.0 parts by weight, 3.0 parts by weight, 5 parts by weight of nickel powder obtained by a commercially available carbonyl method were added to 100 parts by weight of this alloy. .
After adding and mixing 0 parts by weight, 20 parts by weight, and 30 parts by weight, 11 parts of pastes were prepared by adding 25 parts by weight of a 4% by weight aqueous solution of polyvinyl alcohol to 100 parts by weight of the mixture. Subsequently, these pastes were filled in a foamed nickel substrate (three-dimensional substrate) and press-molded to produce 11 types of negative electrodes. At this time, the filling amount of the hydrogen storage alloy per unit volume is MmNi 5 based M
The initial filling amount and press pressure were adjusted so that the volume ratio was reduced by 20% as compared with the negative electrode containing m 1.0 Ni 4.0 Co 0.4 Mn 0.3 Al 0.3 (Reference Example 1). Among the obtained negative electrodes, the negative electrode to which nickel powder was added in an amount of 20 parts by weight or less was thinner than the negative electrode containing MmNi 5 -based alloy, and the negative electrode to which 30 parts by weight of nickel powder was added was thicker than the negative electrode containing MmNi 5 -based alloy. Was.

【0034】<ペースト式正極の作製>水酸化ニッケル
粉末90重量部および一酸化コバルト粉末10重量部か
らなる混合粉体に、ポリテトラフルオロエチレン1重量
部およびカルボキシメチルセルロース0.2重量部を添
加し、これらに純水を60重量部添加して混練すること
によりペーストを調製した。つづいて、このペーストを
ニッケルメッキ繊維基板内に充填し、乾燥した後、ロー
ラプレスを行って圧延することによりペースト式正極を
作製した。
<Preparation of Paste-Type Positive Electrode> To a mixed powder consisting of 90 parts by weight of nickel hydroxide powder and 10 parts by weight of cobalt monoxide powder, 1 part by weight of polytetrafluoroethylene and 0.2 parts by weight of carboxymethyl cellulose were added. A paste was prepared by adding 60 parts by weight of pure water to these and kneading them. Subsequently, the paste was filled in a nickel-plated fiber substrate, dried, and then rolled by roller pressing to produce a paste-type positive electrode.

【0035】次いで、前記各負極と前記正極との間に親
水化処理を施したポリプロピレン繊維製不織布からなる
セパレータを介装し、渦巻状に捲回して11種の電極群
を作製した。このような各電極群を有底円筒状容器に収
納した後、水酸化カリウムからなる電解液を前記容器内
に注入し、封口等を行うことにより前述した図1に示す
構造を有する正極容量規制のAAサイズの円筒形ニッケ
ル水素二次電池を組み立てた。なお、電極群の直径は負
極の厚さの変化分を正極の厚さを変動させることにより
調節して一定にした。したがって、電池の容量はニッケ
ル粉末を20重量部以下添加したものではMmNi5
合金を含む負極を備える電池よりも高容量、ニッケル粉
末を30重量部添加したものではMmNi5 系合金を含
む負極を備える電池よりも低容量になった。
Next, a separator made of a nonwoven fabric made of a polypropylene fiber subjected to a hydrophilic treatment was interposed between each of the negative electrode and the positive electrode, and spirally wound to produce eleven kinds of electrode groups. After each of such electrode groups is housed in a cylindrical container having a bottom, an electrolytic solution made of potassium hydroxide is injected into the container, and the container is sealed and the like, whereby the positive electrode capacity regulation having the structure shown in FIG. AA size cylindrical nickel-metal hydride secondary battery was assembled. The diameter of the electrode group was made constant by adjusting the change in the thickness of the negative electrode by changing the thickness of the positive electrode. Thus, higher capacity than the battery comprising the negative electrode capacity of the battery is obtained by adding nickel powder 20 parts by weight or less, including a MmNi 5 system alloy, is obtained by adding 30 parts by weight of nickel powder a negative electrode containing a MmNi 5 system alloy The capacity is lower than the battery provided.

【0036】得られた各二次電池について、既存のニッ
ケル水素二次電池の処理手法にしたがって活性化し、1
00mAの電流で18時間充電し、30分間休止した
後、100mAの電流で電圧が1Vに低下するまで放電
する充放電サイクルを10回繰り返した。この後、10
0mAで18時間充電し、30分間休止した後、100
mAの放電電流で電圧が1Vに低下するまでの放電容量
を測定した。また、同条件で充電と休止を行った後、1
Aの放電電流で電圧が1Vに低下するまでの放電容量を
測定した。さらに、同条件で集電と休止を行った後、2
Aの放電電流で電圧が1Vに低下するまでの放電容量を
測定した。これらの結果を下記表1に示す。なお、下記
表1にはMm1.0 Ni4.0 Co0.4 Mn0.3 Al0.3
含む負極を備えた二次電池を参照例1、同合金およびニ
ッケル粉末を同合金100重量部に対し1重量部添加し
た負極を備えた二次電池を参照例2として併記した。
Each of the obtained secondary batteries is activated according to the existing nickel-metal hydride secondary battery processing method, and
After charging for 18 hours at a current of 00 mA and resting for 30 minutes, a charge / discharge cycle of discharging at a current of 100 mA until the voltage dropped to 1 V was repeated 10 times. After this, 10
After charging for 18 hours at 0 mA and resting for 30 minutes,
The discharge capacity was measured until the voltage dropped to 1 V at a discharge current of mA. After charging and pausing under the same conditions,
The discharge capacity until the voltage dropped to 1 V with the discharge current of A was measured. Furthermore, after collecting and suspending power under the same conditions,
The discharge capacity until the voltage dropped to 1 V with the discharge current of A was measured. The results are shown in Table 1 below. Incidentally, the negative electrode in the following Table 1 was added 1 part by weight relative to Mm 1.0 Ni 4.0 Co 0.4 Mn 0.3 see secondary battery comprising a negative electrode containing Al 0.3 Example 1, the alloys and the nickel powder same alloy 100 parts by weight The secondary battery provided with is also described as Reference Example 2.

【0037】[0037]

【表1】 [Table 1]

【0038】(実施例2−1〜2−8および比較例2−
1〜2−3)水素吸蔵合金としてLa0.7 Mg0.3 Ni
3.0 の組成のものを用いた以外、実施例1と同様な方法
によりAAサイズの円筒形ニッケル水素二次電池を組み
立てた。
(Examples 2-1 to 2-8 and Comparative Example 2-
1-2-3) La 0.7 Mg 0.3 Ni as hydrogen storage alloy
An AA-size cylindrical nickel-metal hydride secondary battery was assembled in the same manner as in Example 1 except that the one having a composition of 3.0 was used.

【0039】得られた各二次電池について、100mA
の放電電流,1Aの放電電流および2Aの放電電流での
放電容量をそれぞれ測定した。これらの結果を下記表2
に示す。
For each of the obtained secondary batteries, 100 mA
, A discharge current of 1 A, and a discharge capacity at a discharge current of 2 A, respectively. The results are shown in Table 2 below.
Shown in

【0040】[0040]

【表2】 [Table 2]

【0041】(実施例3−1〜3−8および比較例3−
1〜3−3)導電性金属小片として厚さ1μm,長径1
0μmのフレーク状ニッケルを用いたい外、実施例1と
同様な方法によりAAサイズの円筒形ニッケル水素二次
電池を組み立てた。
(Examples 3-1 to 3-8 and Comparative Example 3-
1-3-3) 1 μm thick and 1 long diameter as conductive metal pieces
An AA-size cylindrical nickel-metal hydride secondary battery was assembled in the same manner as in Example 1 except that flake nickel of 0 μm was desired to be used.

【0042】得られた各二次電池について、実施例1と
同様に100mAの放電電流,1Aの放電電流および2
Aの放電電流での放電容量をそれぞれ測定した。これら
の結果を下記表3に示す。
For each of the obtained secondary batteries, a discharge current of 100 mA, a discharge current of 1 A,
The discharge capacity at the discharge current of A was measured. The results are shown in Table 3 below.

【0043】[0043]

【表3】 [Table 3]

【0044】(実施例4−1〜4−8および比較例4−
1〜4−3)導電性金属小片として厚さ1μm,長径1
0μmのフレーク状銅を用いたい外、実施例1と同様な
方法によりAAサイズの円筒形ニッケル水素二次電池を
組み立てた。
(Examples 4-1 to 4-8 and Comparative Example 4-
1-4-4) 1 μm thick, major axis 1 as conductive metal pieces
An AA-size cylindrical nickel-metal hydride secondary battery was assembled in the same manner as in Example 1, except that 0 μm flake copper was desired to be used.

【0045】得られた各二次電池について、実施例1と
同様に100mAの放電電流,1Aの放電電流および2
Aの放電電流での放電容量をそれぞれ測定した。これら
の結果を下記表4に示す。
For each of the obtained secondary batteries, a discharge current of 100 mA, a discharge current of 1 A,
The discharge capacity at the discharge current of A was measured. The results are shown in Table 4 below.

【0046】[0046]

【表4】 [Table 4]

【0047】(実施例5−1〜5−8および比較例5−
1〜5−3) <負極の作製>実施例1と同様な混合物100重量部に
ポリアクリル酸ナトリウム0.4重量部、カルボキシメ
チルセルロース(CMC)0.1重量部、ポリテトラフ
ルオロエチレンのディスパージョン(比重1.5、固形
分60重量%)2.5重量部を加えて混練することによ
り11種のペーストを調製した。ひきつづき、これらの
ペーストを厚さ60μmのニッケルメッキ鉄からなる穴
明き基板に両面が均等になるように厚さを変えて塗布
し、プレス成形して11種の負極を作製した。この時、
単位体積当りの水素吸蔵合金の充填量がMmNi5 系で
あるMm1.0 Ni4.0 Co0.4 Mn0.3 Al0.3 を含む
負極(参照例1)に対比して体積比で20%減になるよ
うに初期の塗布量およびプレス圧を調節した。なお、得
られた各負極のうちニッケル粉末を20重量部以下添加
した負極はMmNi5 系合金を含む負極より薄く、ニッ
ケル粉末を30重量部添加した負極はMmNi5 系合金
を含む負極より厚くなった。
(Examples 5-1 to 5-8 and Comparative Example 5-
1-5-3) <Preparation of Negative Electrode> Dispersion of sodium polyacrylate 0.4 part by weight, carboxymethyl cellulose (CMC) 0.1 part by weight, and polytetrafluoroethylene in 100 parts by weight of the same mixture as in Example 1 (Specific gravity 1.5, solid content 60% by weight) 2.5 parts by weight were added and kneaded to prepare 11 kinds of pastes. Subsequently, these pastes were applied to a perforated substrate made of nickel-plated iron having a thickness of 60 μm and having different thicknesses so that both surfaces became uniform, and press-molded to produce 11 types of negative electrodes. At this time,
Filling amount of the hydrogen storage alloy per unit volume Mm 1.0 Ni 4.0 Co 0.4 Mn 0.3 Al 0.3 to containing negative electrode (see Example 1) at a volume ratio versus initial to be reduced by 20 percent in a 5 system MmNi The coating amount and press pressure were adjusted. Among the obtained negative electrodes, the negative electrode to which nickel powder was added in an amount of 20 parts by weight or less was thinner than the negative electrode containing MmNi 5 -based alloy, and the negative electrode to which 30 parts by weight of nickel powder was added was thicker than the negative electrode containing MmNi 5 -based alloy. Was.

【0048】次いで、前記各負極と実施例1と同様な正
極との間に親水化処理を施したポリプロピレン繊維製不
織布からなるセパレータを介装し、渦巻状に捲回して1
1種の電極群を作製した。このような各電極群を有底円
筒状容器に収納した後、水酸化カリウムからなる電解液
を前記容器内に注入し、封口等を行うことにより前述し
た図1に示す構造を有する正極容量規制のAAサイズの
円筒形ニッケル水素二次電池を組み立てた。なお、電極
群の直径は負極の厚さの変化分を正極の厚さを変動させ
ることにより調節して一定にした。したがって、電池の
容量はニッケル粉末を20重量部以下添加したものでは
MmNi5 系合金を含む負極を備える電池よりも高容
量、ニッケル粉末を30重量部添加したものではMmN
5 系合金を含む負極を備える電池よりも低容量になっ
た。
Next, a separator made of a nonwoven fabric made of a polypropylene fiber subjected to a hydrophilic treatment was interposed between each of the negative electrodes and the positive electrode similar to that in Example 1, and spirally wound to form a nonwoven fabric.
One kind of electrode group was produced. After each of such electrode groups is housed in a cylindrical container having a bottom, an electrolytic solution made of potassium hydroxide is injected into the container, and the container is sealed and the like, whereby the positive electrode capacity regulation having the structure shown in FIG. AA size cylindrical nickel-metal hydride secondary battery was assembled. The diameter of the electrode group was made constant by adjusting the change in the thickness of the negative electrode by changing the thickness of the positive electrode. Therefore, the capacity of the battery is higher than that of the battery including the negative electrode containing the MmNi 5 -based alloy when the nickel powder is added in an amount of 20 parts by weight or less, and the capacity of the battery is equal to or less than 30% by weight.
It became lower capacity than the battery comprising a negative electrode containing i 5 alloy.

【0049】得られた各二次電池について、実施例1と
同様に100mAの放電電流,1Aの放電電流および2
Aの放電電流での放電容量をそれぞれ測定した。これら
の結果を下記表5に示す。
For each of the obtained secondary batteries, a discharge current of 100 mA, a discharge current of 1 A,
The discharge capacity at the discharge current of A was measured. The results are shown in Table 5 below.

【0050】[0050]

【表5】 [Table 5]

【0051】前記表1〜表5から明らかなように特定の
組成を持つ水素吸蔵合金とこの水素吸蔵合金100重量
部に対して0.3〜20重量部の割合で添加した導電性
金属小片とを含有する負極を備えた各実施例の二次電池
は、100mAの比較的小さい電流による放電での高容
量化に加え、MmNi5 系合金を含む負極を備える参照
例1の二次電池に比較して1A放電および2A放電のい
ずれにもおいても高容量が得られることがわかる。
As is clear from Tables 1 to 5, a hydrogen storage alloy having a specific composition, and a conductive metal piece added in a ratio of 0.3 to 20 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy, The secondary battery of each of the examples provided with the negative electrode containing Ni was compared with the secondary battery of Reference Example 1 provided with the negative electrode containing the MmNi 5 -based alloy in addition to increasing the capacity by discharging with a relatively small current of 100 mA. This shows that a high capacity can be obtained in both the 1A discharge and the 2A discharge.

【0052】これに対し、水素吸蔵合金とこの水素吸蔵
合金100重量部に対して20重量部を越える割合で添
加した導電性金属小片を含有する負極を備えた比較例1
−3〜5−3の二次電池は、100mAの比較的小さい
電流による放電での容量がMmNi5 系合金を含む負極
を備える参照例1の二次電池のそれを下回り、高容量化
の利点が損なわれることがわかる。
On the other hand, Comparative Example 1 provided with a negative electrode containing a hydrogen storage alloy and a conductive metal piece added in a ratio exceeding 20 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy
The secondary batteries of -3 to 5-3 have lower capacities in discharging with a relatively small current of 100 mA than those of the secondary battery of Reference Example 1 including the negative electrode including the MmNi 5 -based alloy, and have an advantage of higher capacity. Is found to be impaired.

【0053】また、前記各実施例から添加する導電性金
属小片の形状に左右されず同様な高い放電容量を示すこ
とがわかる。ただし、導電性金属小片としてニッケルを
用いた実施例3−1〜3−8の場合には導電性金属小片
として銅を用いた実施例4−1〜4−8に比べて100
mA放電時の容量が高くなることがわかる。
Further, it can be seen from the above examples that the same high discharge capacity is exhibited without being influenced by the shape of the conductive metal piece added. However, in the case of Examples 3-1 to 3-8 using nickel as the conductive metal piece, the case of Example 3-1 to 3-8 using copper as the conductive metal piece was 100 times smaller.
It turns out that the capacity at the time of mA discharge becomes high.

【0054】なお、MmNi5 系合金を含む負極を備え
た参照例1および同合金にニッケル粉末を添加した負極
を備えた参照例2の二次電池を対比すれば明らかなよう
に、この合金系を含む二次電池ではニッケル粉末の添加
有無がその大電流放電特性に殆ど関与しないことがわか
る。
As is clear from comparison between the secondary batteries of Reference Example 1 provided with a negative electrode containing an MmNi 5 -based alloy and Reference Example 2 provided with a negative electrode obtained by adding nickel powder to the same alloy, this alloy-based It can be seen that the presence or absence of nickel powder has little effect on the large current discharge characteristics of the secondary battery containing.

【0055】[0055]

【発明の効果】以上詳述したように本発明によれば、従
来のマグネシウム、ニッケルおよび希土類元素を主要構
成元素とする水素吸蔵合金を含む負極を備えた二次電池
と比較して容量的に同等以上で、かつ優れた高率充放電
特性を有するニッケル水素二次電池を提供できる
As described above in detail, according to the present invention, the capacity of the secondary battery is smaller than that of a conventional secondary battery having a negative electrode containing a hydrogen storage alloy containing magnesium, nickel and a rare earth element as main constituent elements. It is possible to provide a nickel-metal hydride secondary battery that is equal to or higher and has excellent high-rate charge / discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる円筒形ニッケル水素二次電池を
示す部分切欠斜視図。
FIG. 1 is a partially cutaway perspective view showing a cylindrical nickel-metal hydride secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…容器、 2…正極、 4…負極、 5…電極群、 7…封口板。 DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Positive electrode, 4 ... Negative electrode, 5 ... Electrode group, 7 ... Sealing plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲田 周介 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 酒井 勲 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 河野 龍興 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 吉田 秀紀 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 稲葉 隆道 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 神田 基 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shusuke Inada 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Kawasaki Office (72) Inventor Isao Sakai 72-Horikawa-cho, Sachi-ku, Kawasaki-shi, Kanagawa Pref. Inside the Toshiba Kawasaki Plant (72) Inventor Ryuko Kono 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Kawasaki Plant (72) Inventor Hideki Yoshida 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Co., Ltd. Inside Toshiba Kawasaki Office (72) Takamichi Inaba Inventor 72, Horikawacho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Inside Toshiba Kawasaki Office (72) Inventor Motoi Kanda 72, Horikawacho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Toshiba Kawasaki Corporation In business office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式 (R1-x Mgx )Niyz
(ただし、Rはイットリウムを含む希土類元素、Ca、
ZrおよびTiから選ばれる少なくとも1つの元素、A
はCo,Mn,Fe,V,Cr,Nb,Al,Ga,Z
n,Sn,Cu,Si,PおよびBから選ばれる少なく
とも1つの元素であり、x、y、zはそれぞれ0<x<
1、0≦z≦1.5,2.5≦y+z<4.5を示
す。)で表される水素吸蔵合金と、この水素吸蔵合金1
00重量部に対して0.3〜20重量部添加される導電
性金属小片とを含む負極;および水酸化ニッケルを活物
質として含む正極;を具備したことを特徴とするニッケ
ル水素二次電池。
1. A compound of the general formula (R 1-x Mg x ) Ni y A z
(Where R is a rare earth element containing yttrium, Ca,
At least one element selected from Zr and Ti, A
Are Co, Mn, Fe, V, Cr, Nb, Al, Ga, Z
n, Sn, Cu, Si, P, and at least one element selected from B and x, y, and z are each 0 <x <
1, 0 ≦ z ≦ 1.5, 2.5 ≦ y + z <4.5. ) And the hydrogen storage alloy 1
A nickel-hydrogen secondary battery, comprising: a negative electrode including a conductive metal piece added in an amount of 0.3 to 20 parts by weight with respect to 00 parts by weight; and a positive electrode including nickel hydroxide as an active material.
【請求項2】 前記導電性金属小片は、ニッケルである
ことを特徴とする請求項1記載のニッケル水素二次電
池。
2. The nickel-metal hydride secondary battery according to claim 1, wherein the conductive metal pieces are nickel.
JP9329213A 1997-11-28 1997-11-28 Nickel-hydrogen secondary battery Pending JPH11162459A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9329213A JPH11162459A (en) 1997-11-28 1997-11-28 Nickel-hydrogen secondary battery
KR1019980051649A KR100276018B1 (en) 1997-11-28 1998-11-26 Ni-MH Secondary Battery
US09/200,464 US6248475B1 (en) 1997-11-28 1998-11-27 Nickel-hydrogen secondary battery
US09/475,037 US6268084B1 (en) 1997-11-28 1999-12-30 Hydrogen-absorbing alloy and secondary battery
US09/871,941 US6703164B2 (en) 1997-11-28 2001-06-04 Hydrogen-absorbing alloy, secondary battery, hybrid car and electromobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9329213A JPH11162459A (en) 1997-11-28 1997-11-28 Nickel-hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JPH11162459A true JPH11162459A (en) 1999-06-18

Family

ID=18218926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9329213A Pending JPH11162459A (en) 1997-11-28 1997-11-28 Nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JPH11162459A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268084B1 (en) 1997-11-28 2001-07-31 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy and secondary battery
US6703164B2 (en) 1997-11-28 2004-03-09 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy, secondary battery, hybrid car and electromobile
JP2005108816A (en) * 2003-09-12 2005-04-21 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline accumulator, its manufacturing method and alkaline accumulator
JP2008192320A (en) * 2007-01-31 2008-08-21 Sanyo Electric Co Ltd Hydrogen occlusive alloy electrode, manufacturing method therefor, and alkali storage battery
US8105715B2 (en) 2007-08-30 2012-01-31 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy and nickel-metal hydride storage battery
US8257862B2 (en) 2005-09-21 2012-09-04 Sanyo Electric Co., Ltd. Alkaline storage battery
CN113363411A (en) * 2021-05-31 2021-09-07 中国科学技术大学 Positive electrode for nickel-hydrogen secondary battery, preparation method of positive electrode and nickel-hydrogen secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268084B1 (en) 1997-11-28 2001-07-31 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy and secondary battery
US6703164B2 (en) 1997-11-28 2004-03-09 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy, secondary battery, hybrid car and electromobile
JP2005108816A (en) * 2003-09-12 2005-04-21 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline accumulator, its manufacturing method and alkaline accumulator
JP4663275B2 (en) * 2003-09-12 2011-04-06 三洋電機株式会社 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
US8257862B2 (en) 2005-09-21 2012-09-04 Sanyo Electric Co., Ltd. Alkaline storage battery
JP2008192320A (en) * 2007-01-31 2008-08-21 Sanyo Electric Co Ltd Hydrogen occlusive alloy electrode, manufacturing method therefor, and alkali storage battery
US8105715B2 (en) 2007-08-30 2012-01-31 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy and nickel-metal hydride storage battery
CN113363411A (en) * 2021-05-31 2021-09-07 中国科学技术大学 Positive electrode for nickel-hydrogen secondary battery, preparation method of positive electrode and nickel-hydrogen secondary battery
CN113363411B (en) * 2021-05-31 2022-07-15 中国科学技术大学 Positive electrode for nickel-hydrogen secondary battery, preparation method of positive electrode and nickel-hydrogen secondary battery

Similar Documents

Publication Publication Date Title
JPH11162505A (en) Nickel-hydrogen battery
JP2000021439A (en) Nickel hydrogen secondary battery
JPH11162459A (en) Nickel-hydrogen secondary battery
JP2000311704A (en) Sealed nickel hydrogen secondary battery
JPH11162468A (en) Alkaline secondary battery
JPH11162503A (en) Nickel-hydrogen secondary battery
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JP2001223000A (en) Alkaline secondary battery
JP3392700B2 (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH1196999A (en) Sealed nickel-hydrogen secondary battery
JP2002042802A (en) Sealed nickel-hydrogen secondary battery
JP2000265228A (en) Hydrogen storage alloy and secondary battery
JPH10334941A (en) Alkaline secondary battery
JP2001006721A (en) Alkaline secondary battery
JPH0541210A (en) Enclosed type alkaline storage battery negative electrode
JPH11260395A (en) Sealed nickel hydrogen secondary battery
JP2002042803A (en) Sealed nickel-hydrogen secondary battery
JP2000200599A (en) Alkaline secondary battery
JP2001006727A (en) Alkali secondary battery
JP2000200601A (en) Alkaline secondary battery
JP2001052689A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060511

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060602