JP3454574B2 - Manufacturing method of alkaline secondary battery - Google Patents

Manufacturing method of alkaline secondary battery

Info

Publication number
JP3454574B2
JP3454574B2 JP15864494A JP15864494A JP3454574B2 JP 3454574 B2 JP3454574 B2 JP 3454574B2 JP 15864494 A JP15864494 A JP 15864494A JP 15864494 A JP15864494 A JP 15864494A JP 3454574 B2 JP3454574 B2 JP 3454574B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
negative electrode
secondary battery
rare earth
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15864494A
Other languages
Japanese (ja)
Other versions
JPH0831415A (en
Inventor
和太 武野
宏一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP15864494A priority Critical patent/JP3454574B2/en
Publication of JPH0831415A publication Critical patent/JPH0831415A/en
Application granted granted Critical
Publication of JP3454574B2 publication Critical patent/JP3454574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、金属酸化物を含む正極
と水素吸蔵合金を含む負極を備えたアルカリ二次電池に
関し、特に負極の水素吸蔵合金を改良したアルカリ二次
電池に係わる。 【0002】 【従来の技術】アルカリ二次電池の一例であるニッケル
水素二次電池は、水酸化ニッケルを含む正極と水素吸蔵
合金を含む負極との間にセパレータを介装して渦巻状に
捲回された電極群をアルカリ電解液と共に容器内に収納
した構造を有する。前記ニッケル水素二次電池は、前記
水素吸蔵合金負極の代りにカドミウム負極を用いるニッ
ケルカドミウム二次電池に比べて高容量で、かつ高エネ
ルギー密度を有する。 【0003】前記ニッケル水素二次電池の負極の充電特
性や放電特性は、水素吸蔵合金の水素吸蔵放出特性によ
り決定される。このため、前記水素吸蔵合金を多元化し
て水素吸蔵放出特性を改善することが行われている。多
元化された水素吸蔵合金としては、LaNi5 系合金の
Ni成分がCo,Al,Mn,Fe,Cu等で置換され
たものや、前記LaNi5 系合金のLa成分がLa,C
e,Pr,Nd,Smなどのランタン系元素の混合物で
あるミッシュメタルで置換されたものが知られている。 【0004】前記水素吸蔵合金を含む負極を備えた二次
電池は、過充電時に前記正極から発生する酸素ガスを前
記負極に吸収させるノイマン方式により密閉化を図って
いる。しかしながら、このような方式の二次電池では前
記酸素ガス吸収反応が発熱反応であるため、過充電にな
ると前記二次電池の温度が上昇する。温度上昇に伴って
前記負極の水素吸蔵合金の水素吸蔵量は減少するため、
充電反応によって前記負極の水素吸蔵合金に吸蔵されな
い分の水素が前記電池内に遊離水素として存在する。そ
の結果、前記二次電池の内圧が上昇するため、サイクル
寿命が短くなるという問題点があった。 【0005】また、前記二次電池の保管時の電池内の水
素ガス圧力は、前記負極の水素吸蔵合金が十分な量の水
素を吸蔵放出するのに必要な平衡圧(以下、プラトー圧
と称す)と等しくなる。従って、前記二次電池を高温で
保管すると、前記負極の水素吸蔵合金のプラトー圧は上
昇し、これに伴って電池内の水素ガス圧力が上昇する。
増加された水素ガスは前記正極の充電生成物であるNi
OOHを還元し、放電反応を進行させるため、前記二次
電池は高温保管時の自己放電特性が低下するという問題
点があった。 【0006】更に、前述した組成の水素吸蔵合金を含む
負極を備えた二次電池は、前記負極が充放電サイクルの
進行に伴って微粉化され、前記負極が腐食されるため、
サイクル寿命が短くなるという問題点があった。また、
前記負極の充放電サイクルの進行に伴う微粉化の進行度
合いは前記水素吸蔵合金ロットごとに異なるため、前記
二次電池のサイクル寿命がばらつくという問題点があっ
た。前記微粉化の進行度合いの差異は、水素吸蔵合金中
の不純物、合金製造条件の変動による合金均質性のばら
つきなどの影響と考えられるが、現段階では明らかでは
ない。 【0007】 【発明が解決しようとする課題】本発明は従来の問題を
解決するためになされたもので、優れた水素吸蔵放出特
性を有し、かつ充放電サイクルの進行に伴う微粉化が抑
制された水素吸蔵合金を含む負極を備えたアルカリ二次
電池を提供しようとするものである。 【0008】 【課題を解決するための手段】本発明に係るアルカリ二
次電池の製造方法は、金属酸化物を含む正極と、負極
と、前記正極と前記負極との間に介装されるセパレータ
と、アルカリ電解液とを備えたアルカリ二次電池の製造
方法であって、 一般式LmNi w Co x Mn y Al z (但
し、LmはLaを含む希土類元素から選ばれる少なくと
も1種からなり、かつ原子比w、x、y、zの合計値は
5.1≦w+x+y+z≦5.4を示す)で表わされ、
かつ80℃の平衡圧−組成等温線の平衡圧が3atmの
時のH/M(水素と希土類系水素吸蔵合金の原子比)が
0.5以上であり、更に5〜30℃で、5〜10atm
の水素圧力下で1回水素化粉砕した際のBET法による
比表面積が0.04〜0.11m 2 /gになる希土類系
水素吸蔵合金を選択する工程と、 前記希土類系水素吸蔵
合金を含む負極を作製する工程とを具備することを特徴
とするものである。 【0009】前記水素と希土類系水素吸蔵合金の原子比
H/Mが0.5以上とは、前記希土類系水素吸蔵合金を
構成する金属1元素当り水素を0.5原子相当量以上吸
蔵したことを意味する。なお、前記希土類系水素吸蔵合
金は、これを構成する金属1元素当り1原子相当量以上
の水素を吸蔵しない。 【0010】以下、本発明のアルカリ二次電池を図1に
示すニッケル水素二次電池を例にして説明する。水素吸
蔵合金負極1は、ニッケル正極2との間に合成樹脂繊維
製のセパレータ3を介在してスパイラル状に捲回され、
AAサイズの円筒形容器4内に収納されている。前記負
極1は作製された電極群の最外周に配置されて前記容器
4と電気的に接触している。アルカリ電解液は、前記容
器4内に収容されている。中央に穴5を有する円形の封
口板6は、前記容器4の上部開口部に配置されている。
リング状の絶縁性ガスケット7は、前記封口板6の周縁
と前記容器4の上部開口部内面の間に配置され、前記上
部開口部を内側に縮径するカシメ加工により前記容器4
に前記封口板6を気密に固定している。鍔部を有する正
極端子8はその鍔部の下面が前記封口板6にリング状の
スペーサ9を介して溶接されている。正極リード10
は、一端が前記正極2に接続され、他端が前記正極端子
8に接続されている。 【0011】前記負極1は、一般式LmNiw Cox
y Alz (但し、LmはLaを含む希土類元素から選
ばれる少なくとも1種からなり、かつ原子比w,x,
y,zの合計値は5.1≦w+x+y+z≦5.4を示
す)で表され、かつ80℃の平衡圧−組成等温線(以
下、PCT線と称す;なお、PCT線はPressur
eComposition Isotherm線を示
す)の平衡圧が3atmの時の水素と希土類系水素吸蔵
合金の原子比H/Mが0.5以上であり、更に5〜30
℃で、5〜10atmの水素圧力下で1回水素化粉砕し
た際のBET法による比表面積が0.040〜0.11
0m2 /gになる希土類系水素吸蔵合金を含む。 【0012】前記負極1は、次のような方法により製造
される。前記希土類系水素吸蔵合金を機械粉砕または水
素化粉砕して粉末状とする。つづいて、この粉末に、高
分子結着剤及び導電材粉末を添加し、水の存在下で混練
することによりペーストを調製する。ひきつづき、前記
ペーストを導電性基板に塗布し、乾燥した後、圧延する
ことにより前記負極1を製造する。 【0013】前記希土類系水素吸蔵合金の前記Laを含
む希土類元素としては、例えばLa,Ce,Pr,Nd
などを挙げることができる。前記希土類系水素吸蔵合金
の原子比w,x,y,zは、それぞれ3.1≦w≦4.
8,0.2≦x≦0.8,0.2≦y≦0.8,0.2
≦z≦0.8にすることが望ましい。 【0014】前記希土類系水素吸蔵合金の原子比の合計
値を前記範囲に限定したのは次のような理由によるもの
である。前記原子比の合計値を5.1未満にすると、前
記合金を含む負極を備えた二次電池のサイクル寿命が低
下する。一方、前記原子比の合計値が5.4を越える
と、前記合金の水素吸蔵量が低下すると共に前記合金を
含む負極が腐食する。 【0015】前記希土類系水素吸蔵合金の80℃のPC
T線は、日本工業規格により定められたJIS H 7
201法により測定することができる。かかるPCT線
の平衡圧が3atmの時の水素吸蔵量の指標である水素
と希土類系水素吸蔵合金の原子比H/Mが0.5を越え
ると、前記合金の高温時の水素吸蔵量が低下する。 【0016】前記希土類系水素吸蔵合金の前述した条件
で水素化粉砕した際のBET法による比表面積を前記範
囲に限定したのは次のような理由によるものである。前
記比表面積を0.040m2 /g未満にすると、前記合
金を含む負極を備えた二次電池は初回の充電により前記
合金が粉砕されて活性化されるが、この時に得られた合
金粉末の反応面積が小さくなるため、前記二次電池の充
放電サイクル初期の放電容量及び放電電圧が低下する。
前記比表面積が0.110m2 /gを越えると、前記合
金を含む負極が充放電サイクルの進行に伴って微粉化さ
れるため、前記負極を備えた二次電池のサイクル寿命が
低下する。 【0017】前記導電材粉末としては、例えばカーボン
ブラック、黒鉛等を挙げることができる。前記高分子結
着剤としては、例えばポリアクリル酸ナトリウム、ポリ
テトラフルオロエチレン(PTFE)、カルボキシメチ
ルセルロース及びその塩(CMC)等を挙げることがで
きる。 【0018】前記導電性基板としては、例えばパンチド
メタル、エキスパンドメタル、金網等の二次元構造のも
の、発泡メタル、網状焼結金属繊維などの三次元構造の
もの等を挙げることができる。 【0019】前記正極2は、活物質である水酸化ニッケ
ル粉末に導電材料を添加し、高分子結着剤及び水と共に
混練してペーストを調製し、前記ペーストを導電性基板
に充填し、乾燥した後、成形することにより製造され
る。 【0020】前記導電材料としては、例えば酸化コバル
ト、水酸化コバルト等のコバルト化合物を挙げることが
できる。前記高分子結着剤としては、前記負極1と同様
なものを挙げることができる。 【0021】前記導電性基板としては、例えばニッケル
繊維焼結体、フェルト状ニッケル多孔体、スポンジ状ニ
ッケル多孔体等の三次元構造を有する多孔体基板を挙げ
ることができる。 【0022】前記セパレータ3としては、例えば、ポリ
アミド繊維製不織布、ポリエチレンやポリプロピレンな
どのポリオレフィン繊維製不織布に親水性官能基を付与
したものを挙げることができる。 【0023】前記アルカリ電解液としては、例えば水酸
化カリウムと水酸化ナトリウムと水酸化リチウムの混合
液、水酸化カリウムと水酸化リチウムの混合液等を用い
ることができる。 【0024】 【作用】本発明のアルカリ二次電池によれば、80℃の
PCT線の平衡圧が3atmの時の水素と希土類系水素
吸蔵合金の原子比H/Mが0.5以上である希土類系水
素吸蔵合金を含む負極を備えることによって、前記負極
の水素吸蔵合金は常温から高温領域において高い水素吸
蔵量を維持することができるため、前記負極を備えた二
次電池が過充電されて温度が上昇した際に電池内に遊離
水素が発生するのを防止することができる。従って、前
記二次電池の内圧が上昇するのを抑制することができる
ため、サイクル寿命を向上することができる。また、前
記負極に含まれ、前記特定の組成を有すると共に前記H
/Mが前記範囲に規定された水素吸蔵合金は高温時にお
けるプラトー圧が低いため、前記二次電池を高温で保管
した際に電池内の水素ガス圧力が増加するのを抑制でき
る。その結果、正極の充電生成物であるNiOOHの前
記水素ガスによる還元反応、つまり自己放電反応を抑制
することができる。 【0025】また、前記希土類系水素吸蔵合金として前
述した特定の組成を有し、かつ前述した条件で水素化粉
砕した際のBET法による比表面積が0.040〜0.
110m2 /gであるものを用いることによって、前記
希土類系水素吸蔵合金を含む負極の充放電サイクルの進
行に伴う微粉化を抑制することができる。その結果、前
記負極の腐食を抑制することができるため、前記負極を
備えた二次電池の充放電サイクル寿命を更に向上するこ
とができる。 【0026】 【実施例】以下、本発明の実施例を前述した図面を参照
して詳細に説明する。 実施例1〜4 まず、ランタン、セリウム、ネオジウム、プラセオジウ
ムを主成分とするミッシュメタル(Lm)と、ニッケ
ル、コバルト、アルミニウム、マンガンを下記表1に示
す原子比で混合し、これらをアルゴンガス雰囲気中の高
周波溶解炉で溶解させることにより希土類系水素吸蔵合
金を作製した。この合金をアルゴンガス雰囲気中で10
00℃で10時間熱処理した。 【0027】得られた合金について10℃、10atm
の水素圧力下で1回水素化粉砕を行い、BET法により
比表面積を測定し、比表面積が下記表1に示す値である
希土類系水素吸蔵合金を選択した。 【0028】次いで、これらの合金を機械粉砕して粒径
が74μmの希土類系水素吸蔵合金粉末を得た。得られ
た各合金粉末の80℃におけるPCT特性をJIS H
7201法により測定し、平衡圧が3atmの時の水
素と希土類系水素吸蔵合金の原子比H/Mを求め、前記
H/Mが下記表2に示す値である8種類の希土類系水素
吸蔵合金粉末を選択した。つづいて、選択した各合金粉
末について80℃におけるプラトー圧を求め、その結果
を下記表2に併記する。 【0029】次いで、これらの希土類系水素吸蔵合金粉
末100重量部に高分子結着剤としてポリテトラフルオ
ロエチレン1.5重量部と、ポリアクリル酸ナトリウム
0.5重量部と、カルボキシメチルセルロース0.12
5重量部とを添加し、更に導電材粉末としてカーボンブ
ラック1重量部と、水50重量部を添加し、これらを混
練してペーストを調製した。前記ペーストを導電性基板
としてのパンチドメタルに塗布した後、乾燥、プレス、
裁断することにより8種類の負極を作製した。 【0030】また、水酸化ニッケル粉末90重量部及び
酸化コバルト粉末10重量部からなる混合粉体に、前記
水酸化ニッケル粉末に対してカルボキシメチルセルロー
ス3重量部、ポリテトラフルオロエチレン5重量部を添
加し、更にこれらに純水を45重量部添加して混練する
ことによりペーストを調製した。このペーストを焼結繊
維基板内へ充填した後、更にその両表面に前記ペースト
を塗布し、乾燥してローラプレスによって圧延すること
によりペースト式ニッケル正極を作製した。 【0031】次いで、前記各負極と前記正極との間に親
水性官能基が付与されたポリプロピレン製不織布からな
るセパレータを介装し、渦巻状に捲回して電極群を作製
した。これらの電極群を水酸化カリウムを主体とするア
ルカリ電解液と共に容器内に収納して前述した図1に示
す構造を有し、かつ容量が1200mAhのAAサイズ
のニッケル水素二次電池を組み立てた。 【0032】得られた実施例1〜4及び比較例1〜3の
二次電池について、1.2Aの電流で90分間充電した
後、1.2Aの電流で終止電圧1.0Vまで放電する充
放電サイクル試験を行い、電池容量がサイクル初期の8
0%に減少するのに要したサイクル数を測定し、その結
果を下記表2に併記する。 【0033】また、実施例1〜4及び比較例1〜3の二
次電池について、360mAの電流で5時間充電した
後、1.2Aの電流で終止電圧1.0Vまで放電した際
の電池容量(初期容量)を測定した。つづいて、360
mAの電流で5時間充電した後、45℃の高温で30日
間保管した。その後、1.2Aの電流で終止電圧1.0
Vまで放電した際の電池容量を測定し、得られた電池容
量から残存容量比(前記初期容量を基準にする)を求
め、その結果を下記表2に併記する。 【0034】 【表1】 【0035】 【表2】【0036】表1及び表2から明らかなように、組成が
前述した式LmNiw Cox MnyAlz で表され、か
つ80℃における平衡圧が3atmの時の水素と希土類
系水素吸蔵合金の原子比H/Mが0.5以上であり、更
に10℃、10atmの水素圧力下で1回水素化粉砕し
た際のBET法による比表面積が0.040〜0.11
0m2 /gになる希土類系水素吸蔵合金を含む負極を備
えた実施例1〜4の二次電池は、前記水素吸蔵合金の8
0℃におけるプラトー圧が1.78〜2.80atmと
低く、かつサイクル寿命が300〜470と長く、更に
高温保管時の残存容量比が35〜45以上と多いことが
わかる。 【0037】これに対し、前記H/Mは0.77である
が、組成が式LmNi4.0 Co0.4Mn0.3 Al0.3
表され、かつ前記比表面積が0.130m2 /gになる
希土類系水素吸蔵合金を含む負極を備えた比較例1の二
次電池は、前記プラトー圧が1.24atmと低く、高
温保管時の残存容量比が50と高いものの、サイクル寿
命が150と極めて短いことがわかる。また、組成が実
施例1〜4と同様な一般式で表され、かつ前記比表面積
が0.040m2 /gであるが、前記H/Mが0.48
である希土類系水素吸蔵合金を含む負極を備えた比較例
2の二次電池は、前記プラトー圧が3.20atmと高
く、高温保管時の残存容量比が20と低く、サイクル寿
命が230と短いことがわかる。一方、組成が式LmN
4.35Co0.4 Mn0.3 Al0.3 で表され、かつ前記H
/Mが0.38で、更に前記比表面積が0.038m2
/gになる希土類系水素吸蔵合金を含む負極を備えた比
較例3の二次電池は、前記プラトー圧が4.60atm
と高く、高温保管時の残存容量比が10と極めて低く、
サイクル寿命が180と短いことがわかる。 【0038】 【発明の効果】以上詳述したように本発明のアルカリ二
次電池によれば、常温から高温領域において高い水素吸
蔵量を有し、かつ高温時におけるプラトー圧が低く、更
に充放電サイクルの進行に伴う微粉化が抑制された希土
類系水素吸蔵合金を含む負極を備え、サイクル寿命及び
高温保管時の自己放電特性を向上することができる等の
顕著な効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline secondary battery provided with a positive electrode containing a metal oxide and a negative electrode containing a hydrogen storage alloy, and more particularly, to a method for manufacturing a negative electrode hydrogen storage alloy. The present invention relates to an improved alkaline secondary battery. 2. Description of the Related Art A nickel-hydrogen secondary battery, which is an example of an alkaline secondary battery, is wound spirally with a separator interposed between a positive electrode containing nickel hydroxide and a negative electrode containing a hydrogen storage alloy. It has a structure in which the turned electrode group is housed in a container together with the alkaline electrolyte. The nickel-hydrogen secondary battery has a higher capacity and a higher energy density than a nickel-cadmium secondary battery using a cadmium negative electrode instead of the hydrogen storage alloy negative electrode. The charge characteristics and discharge characteristics of the negative electrode of the nickel-metal hydride secondary battery are determined by the hydrogen storage and release characteristics of the hydrogen storage alloy. For this reason, the hydrogen storage alloy is diversified to improve the hydrogen storage and release characteristics. Examples of the multiplexed hydrogen storage alloy include those in which the Ni component of a LaNi 5 -based alloy is replaced with Co, Al, Mn, Fe, Cu, or the like, or the La component of the LaNi 5 -based alloy in which La
It is known that the metal is replaced with a misch metal which is a mixture of lanthanum elements such as e, Pr, Nd, and Sm. A secondary battery provided with a negative electrode containing the above-mentioned hydrogen storage alloy is hermetically sealed by a Neumann system in which oxygen gas generated from the positive electrode during overcharge is absorbed by the negative electrode. However, since the oxygen gas absorption reaction is an exothermic reaction in such a secondary battery, the temperature of the secondary battery increases when overcharge occurs. Since the hydrogen storage amount of the hydrogen storage alloy of the negative electrode decreases with increasing temperature,
Hydrogen not stored in the hydrogen storage alloy of the negative electrode due to the charge reaction exists as free hydrogen in the battery. As a result, the internal pressure of the secondary battery rises, so that the cycle life is shortened. The hydrogen gas pressure in the battery during storage of the secondary battery is an equilibrium pressure (hereinafter referred to as a plateau pressure) required for the hydrogen storage alloy of the negative electrode to store and release a sufficient amount of hydrogen. ). Therefore, when the secondary battery is stored at a high temperature, the plateau pressure of the hydrogen storage alloy of the negative electrode increases, and the hydrogen gas pressure in the battery increases accordingly.
The increased hydrogen gas is Ni, which is a charge product of the positive electrode.
Since the OOH is reduced and the discharge reaction proceeds, the secondary battery has a problem that the self-discharge characteristic during high-temperature storage is deteriorated. Further, in a secondary battery provided with a negative electrode containing a hydrogen storage alloy having the above-described composition, the negative electrode is pulverized as the charge / discharge cycle proceeds, and the negative electrode is corroded.
There was a problem that the cycle life was shortened. Also,
Since the degree of pulverization with the progress of the charge / discharge cycle of the negative electrode differs for each hydrogen storage alloy lot, there is a problem that the cycle life of the secondary battery varies. The difference in the degree of progress of the pulverization is considered to be due to the influence of impurities in the hydrogen storage alloy, variations in alloy homogeneity due to variations in alloy manufacturing conditions, and the like, but is not clear at this stage. SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems, has excellent hydrogen storage and release characteristics, and suppresses pulverization accompanying progress of a charge / discharge cycle. It is an object of the present invention to provide an alkaline secondary battery provided with a negative electrode containing the hydrogen storage alloy. [0008] According to the present invention, there is provided an alkaline secondary battery according to the present invention.
Method for producing a next cell, the production of alkaline secondary battery provided with a separator interposed, the alkaline electrolyte between a positive electrode including a metal oxide, a negative electrode, the positive electrode and the negative electrode
A method, formula LmNi w Co x Mn y Al z ( however
And Lm is at least selected from rare earth elements including La.
And the total value of the atomic ratios w, x, y, and z is
5.1 ≦ w + x + y + z ≦ 5.4)
And the equilibrium pressure of the composition isotherm at 80 ° C. is 3 atm.
H / M (atomic ratio between hydrogen and rare earth hydrogen storage alloy)
0.5 or more, and at 5 to 30 ° C., 5 to 10 atm
BET method when hydrogenated and pulverized once under hydrogen pressure
Rare earth system with specific surface area of 0.04 to 0.11 m 2 / g
Selecting a hydrogen storage alloy, and the rare earth hydrogen storage
Producing a negative electrode containing an alloy.
It is assumed that. [0009] The atomic ratio H / M of hydrogen and the rare earth-based hydrogen storage alloy of 0.5 or more means that at least 0.5 atoms of hydrogen are stored per metal element constituting the rare-earth-based hydrogen storage alloy. Means The rare earth-based hydrogen storage alloy does not store hydrogen in an amount equivalent to one atom or more per one metal element constituting the alloy. Hereinafter, the alkaline secondary battery of the present invention will be described with reference to the nickel-metal hydride secondary battery shown in FIG. The hydrogen storage alloy negative electrode 1 is spirally wound with a separator 3 made of synthetic resin fiber interposed between the negative electrode 1 and the nickel positive electrode 2.
It is stored in a cylindrical container 4 of AA size. The negative electrode 1 is arranged at the outermost periphery of the prepared electrode group and is in electrical contact with the container 4. The alkaline electrolyte is contained in the container 4. A circular sealing plate 6 having a hole 5 in the center is arranged at the upper opening of the container 4.
The ring-shaped insulating gasket 7 is disposed between the peripheral edge of the sealing plate 6 and the inner surface of the upper opening of the container 4, and is formed by caulking to reduce the diameter of the upper opening inward.
The sealing plate 6 is hermetically fixed. The lower surface of the flange portion of the positive electrode terminal 8 having a flange portion is welded to the sealing plate 6 via a ring-shaped spacer 9. Positive electrode lead 10
Has one end connected to the positive electrode 2 and the other end connected to the positive electrode terminal 8. The negative electrode 1 has a general formula of LmNi w Co x M
ny Al z (where Lm is at least one selected from rare earth elements including La, and the atomic ratio w, x,
The sum of y and z is represented by 5.1 ≦ w + x + y + z ≦ 5.4, and the equilibrium pressure at 80 ° C.-composition isotherm (hereinafter referred to as PCT line; PCT line is Pressur)
When the equilibrium pressure of the e-composition isotherm is 3 atm, the atomic ratio H / M between hydrogen and the rare earth-based hydrogen storage alloy is 0.5 or more, and 5 to 30
Specific surface area by BET method when hydrogenated and pulverized once under a hydrogen pressure of 5 to 10 atm at 0.040 to 0.11
Rare earth hydrogen storage alloys containing 0 m 2 / g are included. The negative electrode 1 is manufactured by the following method. The rare earth-based hydrogen storage alloy is pulverized by mechanical pulverization or hydrogenation pulverization. Subsequently, a paste is prepared by adding a polymer binder and a conductive material powder to the powder and kneading the mixture in the presence of water. Subsequently, the paste is applied to a conductive substrate, dried, and then rolled to produce the negative electrode 1. The rare earth element containing La in the rare earth hydrogen storage alloy is, for example, La, Ce, Pr, Nd.
And the like. The atomic ratio w, x, y, z of the rare earth hydrogen storage alloy is 3.1 ≦ w ≦ 4.
8, 0.2 ≦ x ≦ 0.8, 0.2 ≦ y ≦ 0.8, 0.2
It is desirable to satisfy ≦ z ≦ 0.8. The total value of the atomic ratio of the rare earth-based hydrogen storage alloy is limited to the above range for the following reason. When the total value of the atomic ratios is less than 5.1, the cycle life of the secondary battery including the negative electrode including the alloy decreases. On the other hand, when the total value of the atomic ratios exceeds 5.4, the hydrogen storage capacity of the alloy decreases, and the negative electrode containing the alloy is corroded. PC of 80 ° C. of the rare earth hydrogen storage alloy
The T line is JIS H7 defined by Japanese Industrial Standards.
It can be measured by the 201 method. When the atomic ratio H / M of hydrogen and the rare earth-based hydrogen storage alloy, which is an index of the hydrogen storage amount when the equilibrium pressure of the PCT line is 3 atm, exceeds 0.5, the hydrogen storage amount of the alloy at high temperature decreases. I do. The specific surface area by the BET method when the rare earth-based hydrogen storage alloy is hydrogenated and pulverized under the aforementioned conditions is limited to the above range for the following reason. When the specific surface area is less than 0.040 m 2 / g, the secondary battery provided with the negative electrode containing the alloy is activated by crushing the alloy by the first charge. Since the reaction area is small, the discharge capacity and discharge voltage of the secondary battery at the beginning of the charge / discharge cycle are reduced.
If the specific surface area exceeds 0.110 m 2 / g, the negative electrode containing the alloy is pulverized as the charge / discharge cycle progresses, so that the cycle life of the secondary battery including the negative electrode decreases. Examples of the conductive material powder include carbon black and graphite. Examples of the polymer binder include sodium polyacrylate, polytetrafluoroethylene (PTFE), carboxymethyl cellulose and its salt (CMC). Examples of the conductive substrate include those having a two-dimensional structure such as punched metal, expanded metal, and wire mesh, and those having a three-dimensional structure such as foamed metal and reticulated sintered metal fibers. The positive electrode 2 is prepared by adding a conductive material to nickel hydroxide powder as an active material, kneading the mixture with a polymer binder and water to prepare a paste, filling the paste into a conductive substrate, and drying the paste. After that, it is manufactured by molding. Examples of the conductive material include cobalt compounds such as cobalt oxide and cobalt hydroxide. Examples of the polymer binder include those similar to the negative electrode 1. Examples of the conductive substrate include a porous substrate having a three-dimensional structure such as a nickel fiber sintered body, a felt-like porous nickel body, and a sponge-like porous nickel body. Examples of the separator 3 include a nonwoven fabric made of a polyamide fiber and a nonwoven fabric made of a polyolefin fiber such as polyethylene and polypropylene provided with a hydrophilic functional group. As the alkaline electrolyte, for example, a mixed solution of potassium hydroxide, sodium hydroxide and lithium hydroxide, a mixed solution of potassium hydroxide and lithium hydroxide and the like can be used. According to the alkaline secondary battery of the present invention, when the equilibrium pressure of the PCT wire at 80 ° C. is 3 atm, the atomic ratio H / M of hydrogen and the rare-earth hydrogen storage alloy is 0.5 or more. By providing the negative electrode including the rare earth-based hydrogen storage alloy, the hydrogen storage alloy of the negative electrode can maintain a high hydrogen storage amount in a high temperature region from room temperature, so that the secondary battery including the negative electrode is overcharged. Free hydrogen can be prevented from being generated in the battery when the temperature rises. Therefore, an increase in the internal pressure of the secondary battery can be suppressed, and the cycle life can be improved. Further, the negative electrode has the specific composition and the H
Since the hydrogen storage alloy whose / M is specified in the above range has a low plateau pressure at a high temperature, an increase in the hydrogen gas pressure in the battery when the secondary battery is stored at a high temperature can be suppressed. As a result, a reduction reaction of NiOOH, which is a charge product of the positive electrode, with the hydrogen gas, that is, a self-discharge reaction can be suppressed. The rare earth-based hydrogen storage alloy has the specific composition described above, and has a specific surface area of 0.040-0.
By using a material having a power of 110 m 2 / g, it is possible to suppress the pulverization of the negative electrode containing the rare earth-based hydrogen storage alloy as the charge / discharge cycle proceeds. As a result, corrosion of the negative electrode can be suppressed, so that the charge / discharge cycle life of a secondary battery including the negative electrode can be further improved. Embodiments of the present invention will be described below in detail with reference to the drawings. Examples 1 to 4 First, a misch metal (Lm) mainly containing lanthanum, cerium, neodymium, and praseodymium, and nickel, cobalt, aluminum, and manganese were mixed at an atomic ratio shown in Table 1 below, and these were mixed in an argon gas atmosphere. A rare earth hydrogen storage alloy was prepared by melting in a high frequency melting furnace. This alloy is placed in an argon gas atmosphere for 10 minutes.
Heat treatment was performed at 00 ° C. for 10 hours. The obtained alloy was heated at 10 ° C. and 10 atm.
Was hydrogenated and pulverized once under hydrogen pressure, and the specific surface area was measured by the BET method. A rare earth-based hydrogen storage alloy having a specific surface area shown in Table 1 below was selected. Next, these alloys were mechanically pulverized to obtain a rare earth hydrogen storage alloy powder having a particle size of 74 μm. The PCT characteristics at 80 ° C. of each of the obtained alloy powders were measured by JIS H
The atomic ratio H / M of hydrogen and the rare earth hydrogen storage alloy at an equilibrium pressure of 3 atm was determined by the method of 7201. Eight kinds of rare earth hydrogen storage alloys in which the H / M is the value shown in Table 2 below Powder was selected. Subsequently, the plateau pressure at 80 ° C. was determined for each of the selected alloy powders, and the results are shown in Table 2 below. Next, 1.5 parts by weight of polytetrafluoroethylene, 0.5 parts by weight of sodium polyacrylate, and 0.12 parts by weight of carboxymethyl cellulose were added to 100 parts by weight of the rare earth hydrogen storage alloy powder as a polymer binder.
5 parts by weight, 1 part by weight of carbon black as a conductive material powder and 50 parts by weight of water were further added, and these were kneaded to prepare a paste. After applying the paste to a punched metal as a conductive substrate, drying, pressing,
By cutting, eight kinds of negative electrodes were produced. To a mixed powder comprising 90 parts by weight of nickel hydroxide powder and 10 parts by weight of cobalt oxide powder, 3 parts by weight of carboxymethyl cellulose and 5 parts by weight of polytetrafluoroethylene were added to the nickel hydroxide powder. Further, a paste was prepared by adding 45 parts by weight of pure water thereto and kneading them. After filling this paste into a sintered fiber substrate, the paste was further applied to both surfaces thereof, dried, and rolled by a roller press to produce a paste-type nickel positive electrode. Next, a separator made of a polypropylene nonwoven fabric provided with a hydrophilic functional group was interposed between each of the negative electrode and the positive electrode, and spirally wound to form an electrode group. These electrode groups were housed in a container together with an alkaline electrolyte mainly composed of potassium hydroxide to assemble an AA-size nickel-metal hydride secondary battery having a structure shown in FIG. 1 and a capacity of 1200 mAh. The obtained secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were charged at a current of 1.2 A for 90 minutes, and then discharged at a current of 1.2 A to a final voltage of 1.0 V. A discharge cycle test was performed, and the battery capacity was 8 at the beginning of the cycle.
The number of cycles required to reduce to 0% was measured, and the results are also shown in Table 2 below. The battery capacities of the secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were charged at a current of 360 mA for 5 hours and then discharged at a current of 1.2 A to a final voltage of 1.0 V. (Initial capacity) was measured. Next, 360
After charging at a current of mA for 5 hours, the battery was stored at a high temperature of 45 ° C. for 30 days. After that, a cut-off voltage of 1.0 with a current of 1.2 A is applied.
The battery capacity at the time of discharging to V was measured, and the remaining capacity ratio (based on the initial capacity) was determined from the obtained battery capacity. The results are also shown in Table 2 below. [Table 1] [Table 2] As is apparent from Table 1 and Table 2, the composition is represented by Formula LmNi w Co x Mn y Al z described above, and the equilibrium pressure at 80 ° C. is hydrogen and the rare earth-based hydrogen storage alloy when the 3atm The atomic ratio H / M is 0.5 or more, and the specific surface area by the BET method when hydrogenated and pulverized once at 10 ° C. under a hydrogen pressure of 10 atm is 0.040 to 0.11.
The secondary batteries of Examples 1 to 4 each provided with a negative electrode containing a rare earth-based hydrogen storage alloy of 0 m 2 / g,
It can be seen that the plateau pressure at 0 ° C. is as low as 1.78 to 2.80 atm, the cycle life is as long as 300 to 470, and the residual capacity ratio at high temperature storage is as large as 35 to 45 or more. On the other hand, the above H / M is 0.77, but the rare earth hydrogen whose composition is represented by the formula LmNi 4.0 Co 0.4 Mn 0.3 Al 0.3 and whose specific surface area is 0.130 m 2 / g. The secondary battery of Comparative Example 1 including the negative electrode containing the storage alloy has a low plateau pressure of 1.24 atm and a high residual capacity ratio of 50 at high temperature storage, but has a very short cycle life of 150. . The composition is represented by the same general formula as in Examples 1 to 4, and the specific surface area is 0.040 m 2 / g, but the H / M is 0.48.
The secondary battery of Comparative Example 2 provided with a negative electrode containing a rare earth-based hydrogen storage alloy having a high plateau pressure of 3.20 atm, a low residual capacity ratio at high temperature storage of 20 and a short cycle life of 230. You can see that. On the other hand, when the composition is represented by the formula LmN
i 4.35 Co 0.4 Mn 0.3 Al 0.3
/ M is 0.38 and the specific surface area is 0.038 m 2
The secondary battery of Comparative Example 3 provided with a negative electrode containing a rare earth-based hydrogen storage alloy having a plateau pressure of 4.60 atm / g
And the remaining capacity ratio at high temperature storage is as extremely low as 10,
It can be seen that the cycle life is as short as 180. As described in detail above, according to the alkaline secondary battery of the present invention, it has a high hydrogen storage capacity in a range from room temperature to a high temperature, has a low plateau pressure at a high temperature, and further has a high charge / discharge rate. A negative electrode containing a rare earth-based hydrogen storage alloy in which pulverization accompanying the progress of a cycle is suppressed is provided, and remarkable effects such as improvement in cycle life and self-discharge characteristics during high-temperature storage can be achieved.

【図面の簡単な説明】 【図1】本発明に係るアルカリ二次電池の一例であるニ
ッケル水素二次電池を示す断面図。 【符号の説明】 1…負極、2…正極、3…セパレータ、4…有底円筒形
容器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a nickel-metal hydride secondary battery as an example of an alkaline secondary battery according to the present invention. [Description of Signs] 1 ... negative electrode, 2 ... positive electrode, 3 ... separator, 4 ... bottomed cylindrical container.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/38 ──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/38

Claims (1)

(57)【特許請求の範囲】 【請求項1】金属酸化物を含む正極と、負極と、前記正
極と前記負極との間に介装されるセパレータと、アルカ
リ電解液とを備えたアルカリ二次電池の製造方法であっ
て、 一般式LmNi w Co x Mn y Al z (但し、LmはLaを
含む希土類元素から選ばれる少なくとも1種からなり、
かつ原子比w、x、y、zの合計値は5.1≦w+x+
y+z≦5.4を示す)で表わされ、かつ80℃の平衡
圧−組成等温線の平衡圧が3atmの時のH/M(水素
と希土類系水素吸蔵合金の原子比)が0.5以上であ
り、更に5〜30℃で、5〜10atmの水素圧力下で
1回水素化粉砕した際のBET法による比表面積が0.
04〜0.11m 2 /gになる希土類系水素吸蔵合金を
選択する工程と、 前記希土類系水素吸蔵合金を含む負極を作製する工程と
を具備することを特徴とするアルカリ二次電池の製造方
法。
(57) Claims 1. An alkaline battery comprising a positive electrode containing a metal oxide, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an alkaline electrolyte. Secondary battery manufacturing method
Te, formula LmNi w Co x Mn y Al z ( where, Lm is the La
Comprising at least one selected from rare earth elements,
And the sum of the atomic ratios w, x, y, z is 5.1 ≦ w + x +
y + z ≦ 5.4) and equilibrium at 80 ° C.
H / M (hydrogen) when the equilibrium pressure of the pressure-composition isotherm is 3 atm
And the atomic ratio of the rare earth hydrogen storage alloy) is 0.5 or more.
At 5-30 ° C. under 5-10 atm hydrogen pressure
The specific surface area by the BET method when hydrogenated and ground once is 0.
Rare earth hydrogen storage alloys with a capacity of 0.4 to 0.11 m 2 / g
Selecting, and preparing a negative electrode containing the rare earth-based hydrogen storage alloy
A method for producing an alkaline secondary battery, comprising:
Law.
JP15864494A 1994-07-11 1994-07-11 Manufacturing method of alkaline secondary battery Expired - Fee Related JP3454574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15864494A JP3454574B2 (en) 1994-07-11 1994-07-11 Manufacturing method of alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15864494A JP3454574B2 (en) 1994-07-11 1994-07-11 Manufacturing method of alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH0831415A JPH0831415A (en) 1996-02-02
JP3454574B2 true JP3454574B2 (en) 2003-10-06

Family

ID=15676217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15864494A Expired - Fee Related JP3454574B2 (en) 1994-07-11 1994-07-11 Manufacturing method of alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP3454574B2 (en)

Also Published As

Publication number Publication date
JPH0831415A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
JP3805876B2 (en) Nickel metal hydride battery
JP3247933B2 (en) Hydrogen storage alloy, method for producing hydrogen storage alloy, and alkaline secondary battery
JP2001316744A (en) Hydrogen storage alloy and alkali secondary battery
JPH11162459A (en) Nickel-hydrogen secondary battery
JPH11162468A (en) Alkaline secondary battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JP2001118597A (en) Alkaline secondary cell
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3392700B2 (en) Alkaline secondary battery
JP2001223000A (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JP3377591B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JP2000090921A (en) Alkaline secondary battery
JPH10172554A (en) Alkaline secondary battery
JP2000021398A (en) Alkaline secondary battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JP3727360B2 (en) Method for producing metal oxide / hydrogen secondary battery
JP3504350B2 (en) Manufacturing method of alkaline secondary battery
JP2000188106A (en) Alkaline secondary battery
JPH1197003A (en) Nickel hydrogen secondary cell
JP2000200601A (en) Alkaline secondary battery
JPH10334941A (en) Alkaline secondary battery
JPH0896804A (en) Nickel hydrogen secondary battery
JP2000113879A (en) Metal oxide-hydrogen storage battery
JP2000123833A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees