JP2002042802A - Sealed nickel-hydrogen secondary battery - Google Patents

Sealed nickel-hydrogen secondary battery

Info

Publication number
JP2002042802A
JP2002042802A JP2000231559A JP2000231559A JP2002042802A JP 2002042802 A JP2002042802 A JP 2002042802A JP 2000231559 A JP2000231559 A JP 2000231559A JP 2000231559 A JP2000231559 A JP 2000231559A JP 2002042802 A JP2002042802 A JP 2002042802A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
hydrogen storage
storage alloy
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000231559A
Other languages
Japanese (ja)
Inventor
Masahiro Endo
賢大 遠藤
Yasushi Izumi
康士 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2000231559A priority Critical patent/JP2002042802A/en
Publication of JP2002042802A publication Critical patent/JP2002042802A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealed nickel-hydrogen secondary battery having a high capacity and a long charge/discharge cycle life. SOLUTION: The A-type sealed nickel-hydrogen secondary battery comprises a negative electrode containing a hydrogen storage alloy powder, a positive electrode containing nickel hydroxide as an active material, arranged on the negative electrode with a separator therebetween, an alkali electrolyte, and a case storing these members. The secondary battery has a capacity of 310 Wh/L or more and the hydrogen storage alloy in the negative electrode is represented by a general formula Ln1-xMxNiyTz, where Ln is lanthanoid element containing 75% or more by mass of La, M is one element selected from Mg, Ca and Sr, T is at least one element selected from Co, Mn, Al, V, etc., and x, y, z are 0.01<x<0.10, 3.4<=y<=4.8, 0.7<=z<=1.3, 4.7<=y+z<=5.5, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を含
む負極を改良した密閉型ニッケル水素二次電池に関す
る。
The present invention relates to a sealed nickel-metal hydride secondary battery having an improved negative electrode containing a hydrogen storage alloy.

【0002】[0002]

【従来の技術】密閉型ニッケル水素二次電池は、例えば
水酸化ニッケルを活物質として含むペースト式正極と水
素吸蔵合金を含むペースト式負極の間にセパレータを介
在させた電極群をアルカリ電解液と共に容器内に収納
し、密閉した構造を有する。このような密閉型ニッケル
水素二次電池は、携帯用電話機や携帯型撮像機などの各
種の電子機器の作動電源として広く実用化され、近年、
さらなる高容量化と長寿命化が要望されている。
2. Description of the Related Art A sealed nickel-metal hydride secondary battery is composed of a paste-type positive electrode containing nickel hydroxide as an active material and a paste-type negative electrode containing a hydrogen-absorbing alloy with an electrode group together with an alkaline electrolyte. It is housed in a container and has a closed structure. Such sealed nickel-metal hydride secondary batteries have been widely put into practical use as operating power supplies for various electronic devices such as portable telephones and portable imaging devices.
There is a demand for higher capacity and longer life.

【0003】ところで、密閉型ニッケル水素二次電池は
負極、正極および電解液のバランスに支配される特性を
有する。このため、高容量化するには高容量で長寿命の
水素吸蔵合金を負極成分として用いることが望まれてい
るが、従来の水素吸蔵合金は高容量化に伴なって、充放
電サイクル時の吸蔵放出反応に繰り返しにおいて割れを
生じ易く、新鮮な面を表出することによる腐食発生やそ
れに伴なう電解液の消費によりサイクル特性が低下する
という問題があった。
[0003] A sealed nickel-metal hydride secondary battery has characteristics that are governed by the balance between the negative electrode, the positive electrode, and the electrolyte. Therefore, in order to increase the capacity, it is desired to use a high-capacity, long-life hydrogen storage alloy as a negative electrode component. There has been a problem that cracks are liable to be repeatedly generated in the occlusion and release reaction, and the cycle characteristics are degraded due to the occurrence of corrosion due to the appearance of a fresh surface and the accompanying consumption of the electrolyte.

【0004】したがって、従来の技術ではエネルギー密
度が310Wh/L以上の高容量で、優れたサイクル特
性を有する密閉型ニッケル水素二次電池を作ることは困
難であった。
[0004] Therefore, it has been difficult to produce a sealed nickel-metal hydride secondary battery having a high energy density of 310 Wh / L or more and excellent cycle characteristics by the conventional technology.

【0005】[0005]

【発明が解決しようとする課題】本発明は、高容量で充
放電サイクル寿命の長い密閉型ニッケル水素二次電池を
提供しようとするものである。
An object of the present invention is to provide a sealed nickel-metal hydride secondary battery having a high capacity and a long charge / discharge cycle life.

【0006】[0006]

【課題を解決するための手段】本発明に係る密閉型ニッ
ケル水素二次電池は、水素吸蔵合金粉末を含む負極と、
この負極にセパレータを挟んで配置された水酸化ニッケ
ルを活物質として含む正極と、アルカリ電解液と、これ
ら部材を収納する容器とを具備したA系の密閉型ニッケ
ル水素二次電池であって、前記二次電池の容量は、31
0Wh/L以上であり、かつ前記負極中の水素吸蔵合金
は、一般式Ln1-xxNiyz(ただし、式中のLnは
Laを75質量%以上含むランタノイド元素,MはM
g,CaおよびSrから選ばれる少なくとも1つの元素
で、TはCo,Mn,Al,V,Nb,Ta,Cr,M
o,Fe,Ga,Zn,Sn,In,Cu,Si,Pお
よびBから選ばれる少なくとも1つの元素、x,y,z
はそれぞれ0.01<x<0.10,3.4≦y≦4.
8,0.7≦z≦1.3,4.7≦y+z≦5.5を示
す)にて表わされることを特徴とするものである。
A sealed nickel-metal hydride secondary battery according to the present invention comprises: a negative electrode containing a hydrogen storage alloy powder;
An A-type sealed nickel-metal hydride secondary battery including a positive electrode containing nickel hydroxide as an active material disposed on the negative electrode with a separator interposed therebetween, an alkaline electrolyte, and a container for storing these members, The capacity of the secondary battery is 31
0 Wh / L or more, and the hydrogen storage alloy in the negative electrode is a general formula Ln 1-x M x Ni y T z (where Ln is a lanthanoid element containing 75% by mass or more of La, and M is M
g, at least one element selected from Ca and Sr, wherein T is Co, Mn, Al, V, Nb, Ta, Cr, M
o, at least one element selected from Fe, Ga, Zn, Sn, In, Cu, Si, P and B, x, y, z
Are respectively 0.01 <x <0.10, 3.4 ≦ y ≦ 4.
8, 0.7 ≦ z ≦ 1.3, 4.7 ≦ y + z ≦ 5.5).

【0007】本発明に係る別の密閉型ニッケル水素二次
電池は、水素吸蔵合金粉末を含む負極と、この負極にセ
パレータを挟んで配置された水酸化ニッケルを活物質と
して含む正極と、アルカリ電解液と、これら部材を収納
する容器とを具備したAA系の密閉型ニッケル水素二次
電池であって、前記二次電池の容量は、230Wh/L
以上であり、かつ前記負極中の水素吸蔵合金は、一般式
Ln1-xxNiyz(ただし、式中のLnはLaを75
質量%以上含むランタノイド元素,MはMg,Caおよ
びSrから選ばれる少なくとも1つの元素で、TはC
o,Mn,Al,V,Nb,Ta,Cr,Mo,Fe,
Ga,Zn,Sn,In,Cu,Si,PおよびBから
選ばれる少なくとも1つの元素、x,y,zはそれぞれ
0.01<x<0.10,3.4≦y≦4.8,0.7
≦z≦1.3,4.7≦y+z≦5.5を示す)にて表
わされることを特徴とするものである。
Another sealed nickel-metal hydride secondary battery according to the present invention comprises a negative electrode containing a hydrogen storage alloy powder, a positive electrode containing nickel hydroxide as an active material and having a separator interposed therebetween, and an alkaline electrolytic cell. AA sealed nickel-metal hydride secondary battery comprising a liquid and a container for accommodating these members, wherein the capacity of the secondary battery is 230 Wh / L.
The hydrogen storage alloy in the negative electrode has a general formula of Ln 1-x M x Ni y T z (where Ln is 75
M is at least one element selected from Mg, Ca and Sr, and T is C
o, Mn, Al, V, Nb, Ta, Cr, Mo, Fe,
At least one element selected from Ga, Zn, Sn, In, Cu, Si, P and B, x, y and z are respectively 0.01 <x <0.10, 3.4 ≦ y ≦ 4.8, 0.7
.Ltoreq.z.ltoreq.1.3, 4.7.ltoreq.y + z.ltoreq.5.5).

【0008】本発明に係るさらに別の密閉型ニッケル水
素二次電池は、水素吸蔵合金粉末を含む負極と、この負
極にセパレータを挟んで配置された水酸化ニッケルを活
物質として含む正極と、アルカリ電解液と、これら部材
を収納する容器とを具備したAAA系の密閉型ニッケル
水素二次電池であって、前記二次電池の容量は、220
Wh/L以上であり、かつ前記負極中の水素吸蔵合金
は、一般式Ln1-xxNiyz(ただし、式中のLnは
Laを75質量%以上含むランタノイド元素,MはM
g,CaおよびSrから選ばれる少なくとも1つの元素
で、TはCo,Mn,Al,V,Nb,Ta,Cr,M
o,Fe,Ga,Zn,Sn,In,Cu,Si,Pお
よびBから選ばれる少なくとも1つの元素、x,y,z
はそれぞれ0.01<x<0.10,3.4≦y≦4.
8,0.7≦z≦1.3,4.7≦y+z≦5.5を示
す)にて表わされることを特徴とするものである。
[0008] Still another sealed nickel-metal hydride secondary battery according to the present invention comprises a negative electrode containing hydrogen-absorbing alloy powder, a positive electrode containing nickel hydroxide as an active material disposed on the negative electrode with a separator interposed therebetween, and an alkaline battery. An AAA-type sealed nickel-metal hydride secondary battery comprising an electrolytic solution and a container for accommodating these members, wherein the capacity of the secondary battery is 220
Wh / L or more, and the hydrogen storage alloy in the negative electrode is represented by a general formula Ln 1-x M x Ni y T z (where Ln is a lanthanoid element containing 75% by mass or more of La, and M is M
g, at least one element selected from Ca and Sr, wherein T is Co, Mn, Al, V, Nb, Ta, Cr, M
o, at least one element selected from Fe, Ga, Zn, Sn, In, Cu, Si, P and B, x, y, z
Are respectively 0.01 <x <0.10, 3.4 ≦ y ≦ 4.
8, 0.7 ≦ z ≦ 1.3, 4.7 ≦ y + z ≦ 5.5).

【0009】本発明に係るさらに別の密閉型ニッケル水
素二次電池は、水素吸蔵合金粉末を含む負極と、この負
極にセパレータを挟んで配置された水酸化ニッケルを活
物質として含む正極と、アルカリ電解液と、これら部材
を収納する容器とを具備した角型の密閉型ニッケル水素
二次電池であって、前記二次電池の容量は、220Wh
/L以上であり、かつ前記負極中の水素吸蔵合金は、一
般式Ln1-xxNiyz(ただし、式中のLnはLaを
75質量%以上含むランタノイド元素,MはMg,Ca
およびSrから選ばれる少なくとも1つの元素で、Tは
Co,Mn,Al,V,Nb,Ta,Cr,Mo,F
e,Ga,Zn,Sn,In,Cu,Si,PおよびB
から選ばれる少なくとも1つの元素、x,y,zはそれ
ぞれ0.01<x<0.10,3.4≦y≦4.8,
0.7≦z≦1.3,4.7≦y+z≦5.5を示す)
にて表わされることを特徴とするものである。
[0009] Still another sealed nickel-metal hydride secondary battery according to the present invention comprises a negative electrode containing a hydrogen storage alloy powder, a positive electrode containing nickel hydroxide as an active material and having a separator interposed therebetween. A square sealed nickel-metal hydride secondary battery comprising an electrolyte and a container for accommodating these members, wherein the capacity of the secondary battery is 220 Wh
/ L or more, and the hydrogen storage alloy in the negative electrode has a general formula Ln 1-x M x Ni y T z (where Ln is a lanthanoid element containing 75% by mass or more of La, M is Mg, Ca
And at least one element selected from Sr and Tr, where T is Co, Mn, Al, V, Nb, Ta, Cr, Mo, F
e, Ga, Zn, Sn, In, Cu, Si, P and B
At least one element selected from the group consisting of x, y, and z is 0.01 <x <0.10, 3.4 ≦ y ≦ 4.8,
0.7 ≦ z ≦ 1.3, 4.7 ≦ y + z ≦ 5.5.)
It is characterized by being represented by

【0010】なお、本発明に係る密閉型ニッケル水素二
次電池においてA系、AA系、AAA系は次のような寸
法、形態を意味する。A系とは、直径17mmと一定で
あるものの、長さが異なるものを包含する。AA系と
は、直径14.5mmと一定であるものの、長さが異な
るものを包含する。AAA系とは、直径10.5mmと
一定であるものの、長さが異なるものを包含する。
In the sealed nickel-metal hydride secondary battery according to the present invention, A type, AA type, and AAA type mean the following dimensions and forms. The A system includes those having a constant diameter of 17 mm but different lengths. The AA system includes those having a constant diameter of 14.5 mm but different lengths. The AAA system includes those having a constant diameter of 10.5 mm but different lengths.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る密閉型ニッケ
ル水素二次電池(例えば密閉型円筒形ニッケル水素二次
電池)を図1を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A sealed nickel-metal hydride secondary battery according to the present invention (for example, a sealed cylindrical nickel-metal hydride secondary battery) will be described below with reference to FIG.

【0012】有底円筒状の容器1内には、正極2とセパ
レータ3と負極4とを積層してスパイラル状に捲回する
ことにより作製された電極群5が収納されている。前記
負極4は、前記電極群5の最外周に配置されて前記容器
1と電気的に接触している。アルカリ電解液は、前記容
器1内に収容されている。中央に孔6を有する円形の封
口板7は、前記容器1の上部開口部に配置されている。
リング状の絶縁性ガスケット8は、前記封口板7の周縁
と前記容器1の上部開口部内面の間に配置され、前記上
部開口部を内側に縮径するカシメ加工により前記容器1
に前記封口板7を前記ガスケット8を介して気密に固定
している。正極リード9は、一端が前記正極2に接続、
他端が前記封口板7の下面に接続されている。帽子形状
をなす正極端子10は、前記封口板7上に前記孔6を覆
うように取り付けられている。ゴム製の安全弁11は、
前記封口板7と前記正極端子10で囲まれた空間内に前
記孔6を塞ぐように配置されている。中央に穴を有する
絶縁材料からなる円形の押え板12は、前記正極端子1
0上に前記正極端子10の突起部がその押え板12の前
記穴から突出されるように配置されている。外装チュー
ブ13は、前記押え板12の周縁、前記容器1の側面及
び前記容器1の底部周縁を被覆している。
An electrode group 5 formed by laminating a positive electrode 2, a separator 3, and a negative electrode 4 and winding them in a spiral shape is accommodated in a bottomed cylindrical container 1. The negative electrode 4 is arranged at the outermost periphery of the electrode group 5 and is in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1. A circular sealing plate 7 having a hole 6 in the center is arranged at the upper opening of the container 1.
The ring-shaped insulating gasket 8 is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the container 1 is formed by caulking to reduce the diameter of the upper opening inward.
The sealing plate 7 is hermetically fixed via the gasket 8. One end of the positive electrode lead 9 is connected to the positive electrode 2,
The other end is connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 having a hat shape is mounted on the sealing plate 7 so as to cover the hole 6. The rubber safety valve 11
The hole 6 is disposed in a space surrounded by the sealing plate 7 and the positive electrode terminal 10. The circular holding plate 12 made of an insulating material having a hole in the center is
The projecting portion of the positive electrode terminal 10 is disposed on the reference numeral 0 so as to project from the hole of the holding plate 12. The outer tube 13 covers the periphery of the holding plate 12, the side surface of the container 1, and the periphery of the bottom of the container 1.

【0013】次に、前記負極4、正極2、セパレータ3
および電解液について説明する。
Next, the negative electrode 4, the positive electrode 2, the separator 3
And the electrolyte will be described.

【0014】1)負極4 前記負極は、一般式Ln1-xxNiyz(ただし、式中
のLnはLaを75質量%以上含むランタノイド元素,
MはMg,CaおよびSrから選ばれる少なくとも1つ
の元素で、TはCo,Mn,Al,V,Nb,Ta,C
r,Mo,Fe,Ga,Zn,Sn,In,Cu,S
i,PおよびBから選ばれる少なくとも1つの元素、
x,y,zはそれぞれ0.01<x<0.10,3.4
≦y≦4.8,0.7≦z≦1.3,4.7≦y+z≦
5.5を示す)にて表わされる水素吸蔵合金を含有す
る。
1) Negative electrode 4 The negative electrode is represented by a general formula Ln 1-x M x Ni y T z (where Ln is a lanthanoid element containing 75% by mass or more of La,
M is at least one element selected from Mg, Ca and Sr, and T is Co, Mn, Al, V, Nb, Ta, C
r, Mo, Fe, Ga, Zn, Sn, In, Cu, S
at least one element selected from i, P and B;
x, y and z are 0.01 <x <0.10 and 3.4, respectively.
≦ y ≦ 4.8, 0.7 ≦ z ≦ 1.3, 4.7 ≦ y + z ≦
5.5) is contained.

【0015】前記一般式のLn中のLa量を75質量%
以上にすることによって、水素吸蔵合金の水素吸蔵量を
増大することができる。なお、Ln中のLa量が100
質量%未満の場合、前記La以外の成分としてPr、C
e、Ndから選ばれる少なくとも2種以上を用いること
が好ましい。
The amount of La in Ln of the above general formula is 75% by mass.
With the above, the hydrogen storage amount of the hydrogen storage alloy can be increased. The La content in Ln is 100
When the content is less than mass%, Pr, C
It is preferable to use at least two or more selected from e and Nd.

【0016】前記一般式のx(MgのようなM元素のL
nに対する置換量)を0.01モル比以下にすると、充
放電サイクル時の水素の吸蔵・放出の繰り返しにおける
水素吸蔵合金の微細化の進行を抑制することが困難にな
る。一方、xが0.10モル比以上にするとこれら元素
を主体とする偏析相の生成が顕著になり、水素吸蔵合金
の容量が低下する恐れがある。より好ましい一般式中の
xは、0.03≦x≦0.07てある。
In the above general formula, x (L of M element such as Mg)
If the substitution amount with respect to n) is 0.01 mole ratio or less, it becomes difficult to suppress the progress of miniaturization of the hydrogen storage alloy during the repeated storage and release of hydrogen during the charge and discharge cycle. On the other hand, when x is 0.10 mol ratio or more, generation of a segregation phase mainly composed of these elements becomes remarkable, and the capacity of the hydrogen storage alloy may be reduced. X in a more preferable general formula is 0.03 ≦ x ≦ 0.07.

【0017】前記一般式のT元素は、特にCo,Mn,
Alが好ましい。
The T element of the above general formula is particularly Co, Mn,
Al is preferred.

【0018】前記一般式のz(CoのようなT元素のN
iに対する置換量)を0.7モル比未満にすると、充放
電サイクル時の水素の吸蔵・放出の繰り返しにおける水
素吸蔵合金の微細化の進行を抑制することが困難にな
る。一方、zが1.3モル比を超えると水素吸蔵合金の
コストが上昇するのみならず、その容量が低下する恐れ
がある。
In the above general formula, N of T element such as z (Co)
When the ratio of (i) is less than 0.7 mole ratio, it is difficult to suppress the progress of miniaturization of the hydrogen storage alloy in the repetition of hydrogen storage and release during the charge / discharge cycle. On the other hand, when z exceeds 1.3 molar ratio, not only does the cost of the hydrogen storage alloy increase, but also its capacity may decrease.

【0019】前記負極4は、例えば前記水素吸蔵合金粉
末に導電材を添加し、高分子結着剤および水と共に混練
してペーストを調製し、このペーストを導電性基板に充
填し、乾燥した後、成形することにより作製される。
The negative electrode 4 is prepared, for example, by adding a conductive material to the hydrogen storage alloy powder, kneading the mixture with a polymer binder and water to prepare a paste, filling the paste into a conductive substrate, and drying the paste. , Formed by molding.

【0020】前記高分子結着剤としては、例えばカルボ
キシメチルセルロース、メチルセルロース、ポリアクリ
ル酸ナトリウム、ポリテトラフルオロエチレン等を挙げ
ることができる。
Examples of the polymer binder include carboxymethylcellulose, methylcellulose, sodium polyacrylate, polytetrafluoroethylene and the like.

【0021】前記導電材としては、例えばカーボンブラ
ック等を用いることができる。
As the conductive material, for example, carbon black or the like can be used.

【0022】前記導電性基板としては、パンチドメタ
ル、エキスパンデッドメタル、穿孔剛板、ニッケルネッ
トなどの二次元基板や、フェルト状金属多孔体や、スポ
ンジ状金属基板などの三次元基板を挙げることができ
る。
Examples of the conductive substrate include a two-dimensional substrate such as a punched metal, an expanded metal, a perforated rigid plate, and a nickel net, and a three-dimensional substrate such as a felt-like metal porous body and a sponge-like metal substrate. be able to.

【0023】2)正極2 この正極2は、活物質である水酸化ニッケル粒子、導電
材料および高分子結着剤を含む正極材料を導電性基板に
担持した構造を有する。
2) Positive Electrode 2 The positive electrode 2 has a structure in which a positive electrode material containing nickel hydroxide particles as an active material, a conductive material and a polymer binder is supported on a conductive substrate.

【0024】前記水酸化ニッケル粒子としては、例えば
単一の水酸化ニッケル粒子、または亜鉛、コバルト、ビ
スマス、銅のような金属が共晶された水酸化ニッケル粒
子を用いることができる。特に、後者の水酸化ニッケル
粒子を含む正極は、高温状態における充電効率をより一
層向上することが可能になる。
As the nickel hydroxide particles, for example, single nickel hydroxide particles or nickel hydroxide particles in which a metal such as zinc, cobalt, bismuth or copper is eutectic can be used. In particular, the latter positive electrode containing nickel hydroxide particles can further improve the charging efficiency in a high-temperature state.

【0025】前記導電材料としては、例えば金属コバル
ト、コバルト酸化物、コバルト水酸化物等を挙げること
ができる。
Examples of the conductive material include metal cobalt, cobalt oxide, cobalt hydroxide and the like.

【0026】前記高分子結着剤としては、例えばカルボ
キシメチルセルロース、メチルセルロース、ポリアクリ
ル酸ナトリウム、ポリテトラフルオロエチレン等を挙げ
ることができる。
Examples of the polymer binder include carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, polytetrafluoroethylene and the like.

【0027】前記導電性基板としては、例えばニッケ
ル、ステンレスまたはニッケルメッキが施された金属か
ら形成された網状、スポンジ状、繊維状、もしくはフェ
ルト状の金属多孔体等を挙げることができる。
Examples of the conductive substrate include a mesh-like, sponge-like, fiber-like, or felt-like porous metal body made of nickel, stainless steel, or nickel-plated metal.

【0028】この正極2は、例えば活物質である水酸化
ニッケル粒子に導電材料を添加し、高分子結着剤および
水と共に混練してペーストを調製し、このペーストを導
電性基板に充填し、乾燥した後、成形することにより作
製される。
The positive electrode 2 is prepared, for example, by adding a conductive material to nickel hydroxide particles as an active material, kneading the mixture with a polymer binder and water to prepare a paste, filling the paste into a conductive substrate, After drying, it is produced by molding.

【0029】3)セパレータ3 このセパレータ3としては、例えばポリアミド繊維製不
織布、ポリエチレン、ポリプロピレンなどのポリオレフ
ィン繊維製不織布、またはこれらの不織布に親水性官能
基を付与したものを挙げることができる。
3) Separator 3 Examples of the separator 3 include a nonwoven fabric made of polyamide fiber, a nonwoven fabric made of polyolefin fiber such as polyethylene and polypropylene, or a nonwoven fabric provided with a hydrophilic functional group.

【0030】4)アルカリ電解液 このアルカリ電解液としては、例えば水酸化ナトリウム
(NaOH)と水酸化リチウム(LiOH)の混合液、
水酸化カリウム(KOH)とLiOHの混合液、KOH
とLiOHとNaOHの混合液等を用いることができ
る。
4) Alkaline Electrolyte As the alkaline electrolyte, for example, a mixed solution of sodium hydroxide (NaOH) and lithium hydroxide (LiOH),
A mixture of potassium hydroxide (KOH) and LiOH, KOH
And a mixed solution of LiOH and NaOH.

【0031】前記二次電池すなわちA系、AA系および
AAA系の二次電池は、容量がそれぞれ310Wh/L
以上、230Wh/L以上、220Wh/L以上であ
る。この容量C(Wh/L)[体積エネルギー密度]
は、次式で定義される。
The secondary batteries, ie, the A type, AA type and AAA type secondary batteries each have a capacity of 310 Wh / L.
As mentioned above, it is 230 Wh / L or more and 220 Wh / L or more. This capacity C (Wh / L) [volume energy density]
Is defined by the following equation:

【0032】C=(CT ×Z)/V…(1) ここで、CT (Ah)は二次電池の理論容量、Z(V)
は二次電池の電圧、V(l)は二次電池の容積(容器の
内容積)を示す。
C = (C T × Z) / V (1) where C T (Ah) is the theoretical capacity of the secondary battery, Z (V)
Represents the voltage of the secondary battery, and V (l) represents the volume of the secondary battery (the internal volume of the container).

【0033】以上説明した本発明に係るA系の密閉型ニ
ッケル水素二次電池は、水素吸蔵合金粉末を含む負極
と、この負極にセパレータを挟んで配置された水酸化ニ
ッケルを活物質として含む正極と、アルカリ電解液と、
これら部材を収納する容器とを具備した密閉型ニッケル
水素二次電池であって、310Wh/L以上の容量を有
し、かつ前記負極中の水素吸蔵合金が一般式Ln1-xx
Niyz(ただし、式中のLnはLaを75質量%以上
含むランタノイド元素,MはMg,CaおよびSrから
選ばれる少なくとも1つの元素で、TはCo,Mn,A
l,V,Nb,Ta,Cr,Mo,Fe,Ga,Zn,
Sn,In,Cu,Si,PおよびBから選ばれる少な
くとも1つの元素、x,y,zはそれぞれ0.01<x
<0.10,3.4≦y≦4.8,0.7≦z≦1.
3,4.7≦y+z≦5.5を示す)にて表わされる。
The A-type sealed nickel-metal hydride secondary battery according to the present invention described above comprises a negative electrode containing hydrogen-absorbing alloy powder and a positive electrode containing nickel hydroxide as an active material disposed on the negative electrode with a separator interposed therebetween. And an alkaline electrolyte,
A sealed nickel-metal hydride secondary battery comprising a container for accommodating these members, wherein the battery has a capacity of 310 Wh / L or more, and the hydrogen storage alloy in the negative electrode has a general formula Ln 1-x M x
Ni y T z (where Ln is a lanthanoid element containing 75% by mass or more of La, M is at least one element selected from Mg, Ca and Sr, and T is Co, Mn, A
1, V, Nb, Ta, Cr, Mo, Fe, Ga, Zn,
At least one element selected from Sn, In, Cu, Si, P and B, x, y and z are each 0.01 <x
<0.10, 3.4 ≦ y ≦ 4.8, 0.7 ≦ z ≦ 1.
3,4.7 ≦ y + z ≦ 5.5).

【0034】このような構成の二次電池は、310Wh
/L以上の高い容量を有するとともに、優れた充放電サ
イクル特性を有する。
The secondary battery having such a configuration has a capacity of 310 Wh.
/ L and high charge / discharge cycle characteristics.

【0035】すなわち、水素吸蔵合金を含む負極を備え
たニッケル水素二次電池において、負極の単位体積当り
の容量を増大させることにより正極に対する一定量以上
の予備充電量を負極で確保でき、結果として高容量化が
可能になる。
That is, in a nickel-metal hydride secondary battery provided with a negative electrode containing a hydrogen storage alloy, by increasing the capacity per unit volume of the negative electrode, it is possible to secure a predetermined amount or more of precharge to the positive electrode at the negative electrode. High capacity can be achieved.

【0036】負極の単位体積当りの容量を増大させるた
めには、負極中に含有される水素吸蔵合金の水素吸蔵量
を増大させることが必要である。前記一般式に示す水素
吸蔵合金のLnの中で親水素性の高いLaの含有量を増
大(75質量%以上)させることによって、水素吸蔵合
金の水素吸蔵量を増大できる。
In order to increase the capacity per unit volume of the negative electrode, it is necessary to increase the hydrogen storage amount of the hydrogen storage alloy contained in the negative electrode. The hydrogen storage amount of the hydrogen storage alloy can be increased by increasing the content of La having a high lipophilic property among Ln of the hydrogen storage alloy represented by the general formula (75 mass% or more).

【0037】しかしながら、水素吸蔵合金中のLnの占
めるLa量を増加させると、充放電サイクル時の水素の
吸蔵・放出の繰り返しにおいて水素吸蔵合金の微粉化が
促進されて水素吸蔵合金が腐蝕され易くなる。
However, when the amount of La occupied by Ln in the hydrogen storage alloy is increased, the powdering of the hydrogen storage alloy is promoted in the repetition of hydrogen storage and release during the charge / discharge cycle, and the hydrogen storage alloy is easily corroded. Become.

【0038】このようなことから、前記一般式で表わさ
れる水素吸蔵合金のLnの置換元素であるMgのような
M元素の置換量(x)を0.01<x<0.10に規定
することによって、充放電サイクル時の水素の吸蔵・放
出の繰り返しにおいて水素吸蔵合金の微粉化を抑制する
ことができる。さらに、前記一般式で表わされる水素吸
蔵合金のNiの置換元素であるCoのようなT元素の置
換量(z)を0.7≦z≦1.30に規定することによ
って、充放電サイクル時の水素の吸蔵・放出の繰り返し
において水素吸蔵合金の微粉化を抑制することができ
る。その結果、これら水素吸蔵合金を構成するM元素お
よびT元素の置換量(x),(z)の規定によりLnに
占めるLa量が75質量%以上と極めて多い水素吸蔵合
金を用いてもその腐食を防止することができる。
Accordingly, the substitution amount (x) of the M element such as Mg, which is a substitution element of Ln, of the hydrogen storage alloy represented by the above general formula is defined as 0.01 <x <0.10. Thus, it is possible to suppress the pulverization of the hydrogen storage alloy during the repeated storage and release of hydrogen during the charge / discharge cycle. Further, by defining the substitution amount (z) of a T element such as Co, which is a substitution element of Ni, of the hydrogen storage alloy represented by the general formula as 0.7 ≦ z ≦ 1.30, the charge / discharge cycle can be reduced. It is possible to suppress the pulverization of the hydrogen storage alloy in the repetition of the storage and release of hydrogen. As a result, even if a hydrogen storage alloy having an extremely large La content in Ln of 75% by mass or more according to the provisions of the substitution amounts (x) and (z) of the M element and the T element constituting these hydrogen storage alloys is used, the corrosion is prevented. Can be prevented.

【0039】したがって、310Wh/L以上の高容量
で、充放電サイクル寿命の長い高容量のA系の密閉型ニ
ッケル水素二次電池を得ることができる。
Accordingly, it is possible to obtain a high-capacity A-type sealed nickel-metal hydride secondary battery having a high capacity of 310 Wh / L or more and a long charge / discharge cycle life.

【0040】また、本発明によれば前述した水素吸蔵合
金を含む負極を備え、230Wh/L以上の高容量で、
充放電サイクル寿命の長い高容量のAA系の密閉型ニッ
ケル水素二次電池を得ることができる。
Further, according to the present invention, a negative electrode containing the above-mentioned hydrogen storage alloy is provided, and has a high capacity of 230 Wh / L or more.
A high-capacity AA sealed nickel-metal hydride secondary battery having a long charge / discharge cycle life can be obtained.

【0041】さらに、本発明によれば前述した水素吸蔵
合金を含む負極を備え、220Wh/L以上の高容量
で、充放電サイクル寿命の長い高容量のAAA系の密閉
型ニッケル水素二次電池を得ることができる。
According to the present invention, there is further provided a sealed AAA-type nickel-metal hydride secondary battery having a high capacity of 220 Wh / L or more and a long charge / discharge cycle life, comprising a negative electrode containing the above-mentioned hydrogen storage alloy. Obtainable.

【0042】次に、本発明に係る角型の密閉型ニッケル
水素二次電池を詳細に説明する。
Next, the sealed nickel-metal hydride secondary battery according to the present invention will be described in detail.

【0043】この角型の密閉型ニッケル水素二次電池
は、有底角筒状の容器内に正極とセパレータと負極をこ
の順序で積層した電極群を収納し、かつ前記容器の開口
部に矩形上の封口板を絶縁ガスケットを介してかしめ加
工された構造を有する。この二次電池の容量は、220
Wh/L以上である。前記正極、セパレータおよび負極
は、前記円筒型の密閉型ニッケル水素二次電池と同様な
ものが用いられる。
This rectangular sealed nickel-metal hydride secondary battery has an electrode group in which a positive electrode, a separator and a negative electrode are laminated in this order in a bottomed rectangular cylindrical container, and a rectangular shape is formed in the opening of the container. It has a structure in which the upper sealing plate is swaged via an insulating gasket. The capacity of this secondary battery is 220
Wh / L or more. As the positive electrode, the separator, and the negative electrode, the same ones as those of the cylindrical sealed nickel-metal hydride secondary battery are used.

【0044】このような本発明によれば、前述した水素
吸蔵合金を含む負極を備え、220Wh/L以上の高容
量で、充放電サイクル寿命の長い高容量の角型の密閉型
ニッケル水素二次電池を得ることができる。
According to the present invention, a rectangular sealed nickel-hydrogen secondary battery having a high capacity of 220 Wh / L or more and having a long charge / discharge cycle life, comprising a negative electrode containing the above-mentioned hydrogen storage alloy. You can get a battery.

【0045】[0045]

【実施例】以下、本発明の好ましい実施例を図面を参照
して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0046】(実施例1〜6) <負極の作製>La,Ce,Pr,Nd,Mg,Ni,
Co,Mn,Alの各元素をアーク用回路に入れて10
-4〜10-5torrまで真空にした後、アルゴン雰囲気
中でアーク放電し、加熱溶解し、さらに冷却することに
より下記表1に示す組成を有する水素吸蔵合金を製造し
た。
(Examples 1 to 6) <Preparation of negative electrode> La, Ce, Pr, Nd, Mg, Ni,
Put each element of Co, Mn and Al in the arc circuit and put
After evacuating to -4 to 10 -5 torr, arc discharge was performed in an argon atmosphere, and the mixture was heated and melted, and then cooled to produce a hydrogen storage alloy having the composition shown in Table 1 below.

【0047】次いで、前記各水素吸蔵合金を粗粉砕し、
さらにボールミルで粉砕し、篩分けを行って平均粒径3
5μmの水素吸蔵合金粉末を得た。得られた各水素吸蔵
合金粉末100質量部にポリアクリル酸ナトリウム0.
5質量部、カルボキシメチルセルロース(CMC)0.
12質量部、ポリテトラフルオロエチレンのディスパー
ジョン(比重1.5、固形分60質量%)を固形分換算
で1.0質量部、および導電性材料としてのカーボンブ
ラック1.0質量部を添加し、水30質量部と共に混合
することによりペーストを調製した。これらのペースト
を導電性基板としてのパンチドメタルに塗布、乾燥し、
さらにプレスして6種の負極を作製した。
Next, each of the hydrogen storage alloys is roughly pulverized,
Furthermore, it is pulverized by a ball mill and sieved to obtain an average particle size of 3
A 5 μm hydrogen storage alloy powder was obtained. Sodium polyacrylate was added to 100 parts by mass of each of the obtained hydrogen storage alloy powders.
5 parts by mass, carboxymethylcellulose (CMC)
12 parts by mass, 1.0 part by mass of a polytetrafluoroethylene dispersion (specific gravity 1.5, solid content 60% by mass) in terms of solid content, and 1.0 part by mass of carbon black as a conductive material were added. And 30 parts by weight of water to prepare a paste. These pastes are applied to punched metal as a conductive substrate, dried,
Further pressing was performed to produce six types of negative electrodes.

【0048】<正極の作製>水酸化ニッケル粉末90質
量部および一酸化コバルト粉末10質量部からなる混合
粉体に、カルボキシメチルセルロース(CMC)0.3
質量部、ポリテトラフルオロエチレンのディスパージョ
ン(比重1.5、固形分60質量%)を固形分換算で
0.5質量部を添加し、純水45質量部と共に混合する
ことによりペーストを調製した。つづいて、このペース
トを発泡ニッケル基板内に充填し、乾燥した後、ローラ
プレスを行って圧延することにより正極を作製した。
<Preparation of Positive Electrode> A mixed powder consisting of 90 parts by mass of nickel hydroxide powder and 10 parts by mass of cobalt monoxide powder was mixed with 0.3 part of carboxymethyl cellulose (CMC).
A paste was prepared by adding 0.5 parts by mass of a dispersion of polytetrafluoroethylene (specific gravity: 1.5, solid content: 60% by mass) in terms of solid content and mixing with 45 parts by mass of pure water. . Subsequently, the paste was filled in a foamed nickel substrate, dried, and then rolled by roller pressing to produce a positive electrode.

【0049】次いで、前記各負極と前記正極との間にグ
ラフト重合処理したポリプロピレン繊維製不織布からな
る厚さ0.2mmセパレータを介装し、渦巻状に捲回し
て電極群を作製した。このような電極群を直径17.0
mmの有底円筒状容器に収納した後、7Nの水酸化カリ
ウムおよび1Nの水酸化リチウムからなる電解液を収容
し、封口等を行うことにより前述した図1に示す構造を
有し、理論容量が4000mAh(容量320Wh/
L)である4/3Aサイズの密閉型円筒状ニッケル水素
二次電池(総高さ67mm)を組み立てた。
Next, a 0.2-mm-thick separator made of a nonwoven fabric made of polypropylene fiber subjected to graft polymerization was interposed between the negative electrode and the positive electrode, and spirally wound to form an electrode group. Such an electrode group has a diameter of 17.0.
After having been stored in a cylindrical container having a bottom having a diameter of 7 mm, an electrolytic solution composed of 7N potassium hydroxide and 1N lithium hydroxide was stored therein, and the structure shown in FIG. Is 4000 mAh (capacity 320 Wh /
L), a sealed cylindrical nickel-metal hydride secondary battery of 4/3 A size (total height: 67 mm) was assembled.

【0050】(比較例1〜14)下記表1に示す組成の
水素吸蔵合金を用い、かつ理論容量が2800mAh
(容量220Wh/L)、理論容量が3500mAh
(容量280Wh/L)および理論容量が4000mA
h(容量320Wh/L)である以外、実施例1と同様
な4/3Aサイズの密閉型円筒状ニッケル水素二次電池
を組み立てた。
(Comparative Examples 1 to 14) A hydrogen storage alloy having the composition shown in Table 1 below was used, and the theoretical capacity was 2800 mAh.
(Capacity 220 Wh / L), theoretical capacity 3500 mAh
(Capacity: 280 Wh / L) and theoretical capacity: 4000 mA
A sealed cylindrical nickel-metal hydride secondary battery having a size of 4 / 3A similar to that of Example 1 except that the capacity was 320 Wh / L (height: 320 Wh / L) was assembled.

【0051】得られた実施例1〜6および比較例1〜1
6の二次電池について、20℃、0.1CmAで15時
間充電し、0.2CmA、1.0Vで放電する初期活性
を行なった後、45℃で3A、90分間充電し、3Aで
終始電圧1.0Vまで放電する充放電を繰り返した。こ
のような充放電において、放電容量が初期値の80%以
下になった時の充放電サイクル数を求めた。その結果を
下記表1に併記する。
The obtained Examples 1 to 6 and Comparative Examples 1 to 1
The secondary battery of No. 6 was charged at 20 ° C. and 0.1 CmA for 15 hours, and was initially activated to be discharged at 0.2 CmA and 1.0 V, then charged at 45 ° C. for 3 A for 90 minutes, and charged at 3 A throughout the voltage. The charge / discharge for discharging to 1.0 V was repeated. In such charge and discharge, the number of charge and discharge cycles when the discharge capacity became 80% or less of the initial value was determined. The results are shown in Table 1 below.

【0052】[0052]

【表1】 [Table 1]

【0053】前記表1から明らかなように容量が310
Wh/L以上のニッケル水素二次電池において、Ln中
に占めるLa量が75質量%以上でMgの置換量(x)
が0.01<x<0.10、Co,MnおよびAlの量
(z)が0.7≦z≦1.3である水素吸蔵合金を含有
する負極を備えた実施例1〜6の二次電池は330〜3
50サイクルと長い充放電サイクル寿命を有することが
わかる。
As is apparent from Table 1, the capacity is 310.
In the nickel-metal hydride secondary battery of Wh / L or more, the substitution amount of Mg (x) when the La content in Ln is 75% by mass or more.
Examples 1 to 6 provided with a negative electrode containing a hydrogen-absorbing alloy in which 0.01 <x <0.10 and the amounts (z) of Co, Mn and Al are 0.7 ≦ z ≦ 1.3. The next battery is 330-3
It can be seen that the battery has a long charge and discharge cycle life of 50 cycles.

【0054】これに対し、Ln中に占めるLa量が75
質量%未満の水素吸蔵合金を含有する負極を備えた二次
電池において、容量が310Wh/L未満の二次電池
(比較例1,2;220Wh/L、比較例4,5;28
0Wh/L)では、充放電サイクル寿命が長いものの、
310Wh/L以上の二次電池(比較例7,8;320
Wh/L)では240サイクル,170サイクルと本実
施例1〜6の二次電池に比べて著しくサイクル特性が低
くなることがわかる。
On the other hand, the La content in Ln is 75%.
In a secondary battery provided with a negative electrode containing less than mass% of a hydrogen storage alloy, a secondary battery having a capacity of less than 310 Wh / L (Comparative Examples 1 and 2; 220 Wh / L, Comparative Examples 4 and 5; 28)
0Wh / L), although the charge / discharge cycle life is long,
310 Wh / L or higher secondary battery (Comparative Examples 7, 8; 320
(Wh / L), 240 cycles and 170 cycles, which are markedly lower in cycle characteristics than the secondary batteries of Examples 1 to 6.

【0055】また、Ln中に占めるLa量が75質量%
以上であってもMgの置換量(x)が0である水素吸蔵
合金を含有する負極を備えた二次電池において、容量が
310Wh/L未満の二次電池(比較例3;220Wh
/L、比較例6;280Wh/L)では、充放電サイク
ル寿命が長いものの、310Wh/L以上の二次電池
(比較例9;320Wh/L)では250サイクルと本
実施例1〜6の二次電池に比べて著しくサイクル特性が
低くなることがわかる。
The La content in Ln is 75% by mass.
Even with the above, in a secondary battery including a negative electrode containing a hydrogen storage alloy having a substitution amount (x) of Mg of 0, a secondary battery having a capacity of less than 310 Wh / L (Comparative Example 3; 220 Wh
/ L, Comparative Example 6; 280 Wh / L) has a long charge / discharge cycle life, but a secondary battery of 310 Wh / L or more (Comparative Example 9; 320 Wh / L) has 250 cycles, It can be seen that the cycle characteristics are significantly lower than that of the secondary battery.

【0056】さらに、Ln中に占めるLa量が75質量
%以上であってもMgの置換量(x)が0.01<x<
0.10の範囲を外れる水素吸蔵合金を含有する負極を
備えた容量が320Wh/Lの二次電池(比較例10〜
12)では260,245,180サイクルと本実施例
1〜6の二次電池に比べて著しくサイクル特性が低くな
ることがわかる。
Further, even when the La content in Ln is 75% by mass or more, the substitution amount (x) of Mg is 0.01 <x <
A secondary battery having a capacity of 320 Wh / L and having a negative electrode containing a hydrogen storage alloy out of the range of 0.10 (Comparative Examples 10 to 10)
In the case of 12), it can be seen that the cycle characteristics are 260, 245, and 180 cycles, which are significantly lower than those of the secondary batteries of Examples 1 to 6.

【0057】さらに、Ln中に占めるLa量が75質量
%以上であってもCo,Mn,Alの量(z)が0.7
≦z≦1.3の範囲を外れる水素吸蔵合金を含有する負
極を備えた容量が320Wh/Lの二次電池(比較例1
3,14)では280サイクル,220サイクルと本実
施例1〜6の二次電池に比べて著しくサイクル特性が低
くなることがわかる。
Further, even when the La content in Ln is 75% by mass or more, the amount (z) of Co, Mn, and Al is 0.7%.
A secondary battery having a capacity of 320 Wh / L including a negative electrode containing a hydrogen storage alloy out of the range of ≦ z ≦ 1.3 (Comparative Example 1
3, 14) indicate that the cycle characteristics are 280 cycles and 220 cycles, which are markedly lower than those of the secondary batteries of Examples 1 to 6.

【0058】(実施例7〜12) <負極の作製>La,Ce,Pr,Nd,Mg,Ni,
Co,Mn,Alの各元素をアーク用回路に入れて10
-4〜10-5torrまで真空にした後、アルゴン雰囲気
中でアーク放電し、加熱溶解し、さらに冷却することに
より下記表2に示す組成を有する水素吸蔵合金を製造し
た。
(Examples 7 to 12) <Preparation of Negative Electrode> La, Ce, Pr, Nd, Mg, Ni,
Put each element of Co, Mn and Al in the arc circuit and put
After evacuating to -4 to 10 -5 torr, arc discharge was performed in an argon atmosphere, and the mixture was heated and melted, and further cooled to produce a hydrogen storage alloy having a composition shown in Table 2 below.

【0059】次いで、前記各水素吸蔵合金を粗粉砕し、
さらにボールミルで粉砕し、篩分けを行って平均粒径3
5μmの水素吸蔵合金粉末を得た。得られた各水素吸蔵
合金粉末100質量部にポリアクリル酸ナトリウム0.
5質量部、カルボキシメチルセルロース(CMC)0.
12質量部、ポリテトラフルオロエチレンのディスパー
ジョン(比重1.5、固形分60質量%)を固形分換算
で1.0質量部、および導電性材料としてのカーボンブ
ラック1.0質量部を添加し、水30質量部と共に混合
することによりペーストを調製した。これらのペースト
を導電性基板としてのパンチドメタルに塗布、乾燥し、
さらにプレスして6種の負極を作製した。
Next, each of the hydrogen storage alloys is roughly pulverized,
Furthermore, it is pulverized by a ball mill and sieved to obtain an average particle size of 3
A 5 μm hydrogen storage alloy powder was obtained. Sodium polyacrylate was added to 100 parts by mass of each of the obtained hydrogen storage alloy powders.
5 parts by mass, carboxymethylcellulose (CMC)
12 parts by mass, 1.0 part by mass of a polytetrafluoroethylene dispersion (specific gravity 1.5, solid content 60% by mass) in terms of solid content, and 1.0 part by mass of carbon black as a conductive material were added. And 30 parts by weight of water to prepare a paste. These pastes are applied to punched metal as a conductive substrate, dried,
Further pressing was performed to produce six types of negative electrodes.

【0060】次いで、前記各負極と実施例1と同様な正
極との間にグラフト重合処理したポリプロピレン繊維製
不織布からなる厚さ0.2mmセパレータを介装し、渦
巻状に捲回して電極群を作製した。このような電極群を
直径14.5mmの有底円筒状容器に収納した後、7N
の水酸化カリウムおよび1Nの水酸化リチウムからなる
電解液を収容し、封口等を行うことにより理論容量が1
600mAh(容量240Wh/L)であるAAサイズ
の密閉型円筒状ニッケル水素二次電池(総高さ50m
m)を組み立てた。
Next, a 0.2-mm-thick separator made of a nonwoven fabric made of a polypropylene fiber subjected to graft polymerization was interposed between each of the negative electrodes and the positive electrode as in Example 1, and wound spirally to form an electrode group. Produced. After storing such an electrode group in a bottomed cylindrical container having a diameter of 14.5 mm, 7N
Of potassium hydroxide and 1N lithium hydroxide, and sealing is performed so that the theoretical capacity becomes 1
AA size sealed cylindrical nickel-metal hydride secondary battery of 600 mAh (capacity 240 Wh / L) (total height 50 m
m) was assembled.

【0061】(比較例15〜25)下記表2に示す組成
の水素吸蔵合金を用い、かつ理論容量が1200mAh
(容量180Wh/L)および理論容量が1600mA
h(容量240Wh/L)である以外、実施例7と同様
なAAサイズの密閉型円筒状ニッケル水素二次電池を組
み立てた。
(Comparative Examples 15 to 25) A hydrogen storage alloy having the composition shown in Table 2 below was used, and the theoretical capacity was 1200 mAh.
(Capacity: 180 Wh / L) and theoretical capacity: 1600 mA
A sealed cylindrical nickel-metal hydride secondary battery having the same AA size as in Example 7 except that the capacity was 240 h / h (240 Wh / L) was assembled.

【0062】得られた実施例7〜12および比較例15
〜25の二次電池について、20℃、0.1CmAで1
5時間充電し、0.2CmA、1.0Vで放電する初期
活性を行なった後、45℃で3A、90分間充電し、3
Aで終始電圧1.0Vまで放電する充放電を繰り返し
た。このような充放電において、放電容量が初期値の8
0%以下になった時の充放電サイクル数を求めた。その
結果を下記表2に併記する。
The obtained Examples 7 to 12 and Comparative Example 15
~ 25 secondary batteries at 20 ° C and 0.1 CmA
After charging for 5 hours and performing initial activity of discharging at 0.2 CmA and 1.0 V, the battery was charged at 45 ° C. for 3 minutes at 90 A for 3 minutes.
The charge / discharge of discharging the battery to A at 1.0 A was repeated. In such charge / discharge, the discharge capacity is set to the initial value of 8
The number of charge / discharge cycles when the value became 0% or less was determined. The results are shown in Table 2 below.

【0063】[0063]

【表2】 [Table 2]

【0064】前記表2から明らかなように容量が230
Wh/L以上で、Ln中に占めるLa量が75質量%以
上でMgの置換量(x)が0.01<x<0.10、C
o,MnおよびAlの量(z)が0.7≦z≦1.3で
ある水素吸蔵合金を含有する負極を備えた実施例7〜1
2のAAサイズのニッケル水素二次電池は380〜43
0サイクルと長い充放電サイクル寿命を有することがわ
かる。
As is apparent from Table 2, the capacity is 230
Wh / L or more, La content in Ln is 75% by mass or more, and Mg substitution amount (x) is 0.01 <x <0.10, C
Examples 7-1 provided with a negative electrode containing a hydrogen storage alloy in which the amounts (z) of o, Mn and Al are 0.7 ≦ z ≦ 1.3.
AA size nickel-metal hydride secondary battery of 380-43
It can be seen that the charge / discharge cycle life is as long as 0 cycles.

【0065】これに対し、Ln中に占めるLa量が75
質量%未満の水素吸蔵合金を含有する負極を備えたAA
サイズの二次電池において、容量が230Wh/L未満
(180Wh/L)の二次電池(比較例15,16)で
は、充放電サイクル寿命が長いものの、230Wh/L
以上の二次電池(比較例18,19)では285サイク
ル,205サイクルと本実施例7〜12の二次電池に比
べて著しくサイクル特性が低くなることがわかる。
On the other hand, the La content in Ln is 75%.
AA with negative electrode containing less than 5% by mass of hydrogen storage alloy
Regarding the size of the secondary battery, the secondary battery having a capacity of less than 230 Wh / L (180 Wh / L) (Comparative Examples 15 and 16) has a long charge-discharge cycle life, but 230 Wh / L.
It can be seen that the cycle characteristics of the above secondary batteries (Comparative Examples 18 and 19) are 285 cycles and 205 cycles, which are significantly lower than those of the secondary batteries of Examples 7 to 12.

【0066】また、Ln中に占めるLa量が75質量%
以上であってもMgの置換量(x)が0である水素吸蔵
合金を含有する負極を備えたAAサイズの二次電池にお
いて、容量が230Wh/L未満(180Wh/L)の
比較例17の二次電池では、充放電サイクル寿命が長い
ものの、230Wh/L以上の比較例20の二次電池で
は295サイクルと本実施例7〜12の二次電池に比べ
て著しくサイクル特性が低くなることがわかる。
The La content in Ln is 75% by mass.
Even in the above, in the AA size secondary battery including the negative electrode containing the hydrogen storage alloy having the substitution amount (x) of Mg of 0, the capacity of Comparative Example 17 having a capacity of less than 230 Wh / L (180 Wh / L) is obtained. Although the charge / discharge cycle life of the secondary battery is long, the cycle characteristics of the secondary battery of Comparative Example 20 of 230 Wh / L or more are 295 cycles, which is significantly lower than that of the secondary batteries of Examples 7 to 12. Understand.

【0067】さらに、Ln中に占めるLa量が75質量
%以上であってもMgの置換量(x)が0.01<x<
0.10の範囲を外れる水素吸蔵合金を含有する負極を
備えた容量が240Wh/LのAAサイズの二次電池
(比較例21〜23)では280サイクル,290サイ
クル,210サイクルと本実施例7〜12の二次電池に
比べて著しくサイクル特性が低くなることがわかる。
Further, even when the La content in Ln is 75% by mass or more, the substitution amount (x) of Mg is 0.01 <x <
In the AA size secondary batteries (Comparative Examples 21 to 23) each having a capacity of 240 Wh / L and having a negative electrode containing a hydrogen storage alloy out of the range of 0.10. It can be seen that the cycle characteristics are significantly lower than those of the secondary batteries of Nos. To 12.

【0068】さらに、Ln中に占めるLa量が75質量
%以上であってもCo,Mn,Alの量(z)が0.7
≦z≦1.3の範囲を外れる水素吸蔵合金を含有する負
極を備えた容量が240Wh/LのAAサイズの二次電
池(比較例24,25)では290サイクル,265サ
イクルと本実施例7〜12の二次電池に比べて著しくサ
イクル特性が低くなることがわかる。
Further, even when the La content in Ln is 75% by mass or more, the amount (z) of Co, Mn, Al is 0.7%.
In the case of a secondary battery of AA size having a capacity of 240 Wh / L (Comparative Examples 24 and 25) provided with a negative electrode containing a hydrogen storage alloy out of the range of ≦ z ≦ 1.3 (Comparative Examples 24 and 25), the number of cycles was 290 and 265. It can be seen that the cycle characteristics are significantly lower than those of the secondary batteries of Nos. To 12.

【0069】(実施例13〜18) <負極の作製>La,Ce,Pr,Nd,Mg,Ni,
Co,Mn,Alの各元素をアーク用回路に入れて10
-4〜10-5torrまで真空にした後、アルゴン雰囲気
中でアーク放電し、加熱溶解し、さらに冷却することに
より下記表3に示す組成を有する水素吸蔵合金を製造し
た。
(Examples 13 to 18) <Preparation of Negative Electrode> La, Ce, Pr, Nd, Mg, Ni,
Put each element of Co, Mn and Al in the arc circuit and put
After evacuating to -4 to 10 -5 torr, arc discharge was performed in an argon atmosphere, and the mixture was heated and melted, and then cooled to produce a hydrogen storage alloy having the composition shown in Table 3 below.

【0070】次いで、前記各水素吸蔵合金を粗粉砕し、
さらにボールミルで粉砕し、篩分けを行って平均粒径3
5μmの水素吸蔵合金粉末を得た。得られた各水素吸蔵
合金粉末100質量部にポリアクリル酸ナトリウム0.
5質量部、カルボキシメチルセルロース(CMC)0.
12質量部、ポリテトラフルオロエチレンのディスパー
ジョン(比重1.5、固形分60質量%)を固形分換算
で1.0質量部、および導電性材料としてのカーボンブ
ラック1.0質量部を添加し、水30質量部と共に混合
することによりペーストを調製した。これらのペースト
を導電性基板としてのパンチドメタルに塗布、乾燥し、
さらにプレスして6種の負極を作製した。
Next, each of the hydrogen storage alloys is roughly pulverized,
Furthermore, it is pulverized by a ball mill and sieved to obtain an average particle size of 3
A 5 μm hydrogen storage alloy powder was obtained. Sodium polyacrylate was added to 100 parts by mass of each of the obtained hydrogen storage alloy powders.
5 parts by mass, carboxymethylcellulose (CMC)
12 parts by mass, 1.0 part by mass of a polytetrafluoroethylene dispersion (specific gravity 1.5, solid content 60% by mass) in terms of solid content, and 1.0 part by mass of carbon black as a conductive material were added. And 30 parts by weight of water to prepare a paste. These pastes are applied to punched metal as a conductive substrate, dried,
Further pressing was performed to produce six types of negative electrodes.

【0071】次いで、前記各負極と実施例1と同様な正
極との間にグラフト重合処理したポリプロピレン繊維製
不織布からなる厚さ0.2mmセパレータを介装し、渦
巻状に捲回して電極群を作製した。このような電極群を
直径10.5mmの有底円筒状容器に収納した後、7N
の水酸化カリウムおよび1Nの水酸化リチウムからなる
電解液を収容し、封口等を行うことにより理論容量が7
00mAh(容量230Wh/L)であるAAAサイズ
の密閉型円筒状ニッケル水素二次電池(総高さ43.6
mm)を組み立てた。
Next, a separator having a thickness of 0.2 mm made of a nonwoven fabric made of a polypropylene fiber subjected to graft polymerization was interposed between each of the negative electrodes and the positive electrode as in Example 1, and wound spirally to form an electrode group. Produced. After storing such an electrode group in a bottomed cylindrical container having a diameter of 10.5 mm, 7N
Of potassium hydroxide and 1N lithium hydroxide, and the capacities are 7
AAA size sealed cylindrical nickel-metal hydride secondary battery with a capacity of 00 mAh (capacity 230 Wh / L) (total height 43.6
mm) was assembled.

【0072】(比較例26〜36)下記表3に示す組成
の水素吸蔵合金を用い、かつ理論容量が550mAh
(容量180Wh/L)および理論容量が700mAh
(容量230Wh/L)である以外、実施例13と同様
なAAAサイズの密閉型円筒状ニッケル水素二次電池を
組み立てた。
(Comparative Examples 26 to 36) A hydrogen storage alloy having the composition shown in Table 3 below was used, and the theoretical capacity was 550 mAh.
(Capacity 180 Wh / L) and theoretical capacity 700 mAh
A sealed cylindrical nickel-metal hydride secondary battery having the same AAA size as in Example 13 except that the capacity was 230 Wh / L was assembled.

【0073】得られた実施例13〜18および比較例2
6〜36の二次電池について、20℃、0.1CmAで
15時間充電し、0.2CmA、1.0Vで放電する初
期活性を行なった後、45℃で3A、90分間充電し、
3Aで終始電圧1.0Vまで放電する充放電を繰り返し
た。このような充放電において、放電容量が初期値の8
0%以下になった時の充放電サイクル数を求めた。その
結果を下記表3に併記する。
The obtained examples 13 to 18 and comparative example 2
The secondary batteries of Nos. 6 to 36 were charged at 20 ° C. and 0.1 CmA for 15 hours, and then subjected to initial activity of discharging at 0.2 CmA and 1.0 V, and then charged at 45 ° C. and 3 A for 90 minutes.
The charge / discharge in which the voltage was constantly discharged to 1.0 V at 3 A was repeated. In such charge / discharge, the discharge capacity is set to the initial value of 8
The number of charge / discharge cycles when the value became 0% or less was determined. The results are shown in Table 3 below.

【0074】[0074]

【表3】 [Table 3]

【0075】前記表3から明らかなように容量が220
Wh/L以上で、Ln中に占めるLa量が75質量%以
上でMgの置換量(x)が0.01<x<0.10、C
o,MnおよびAlの量(z)が0.7≦z≦1.3で
ある水素吸蔵合金を含有する負極を備えた実施例13〜
18のAAAサイズのニッケル水素二次電池は340〜
380サイクルと長い充放電サイクル寿命を有すること
がわかる。
As is apparent from Table 3, the capacity is 220
Wh / L or more, La content in Ln is 75% by mass or more, and Mg substitution amount (x) is 0.01 <x <0.10, C
Examples 13 to 15 provided with a negative electrode containing a hydrogen storage alloy in which the amounts (z) of o, Mn, and Al are 0.7 ≦ z ≦ 1.3.
18 AAA size nickel metal hydride rechargeable batteries
It can be seen that the battery has a long charge and discharge cycle life of 380 cycles.

【0076】これに対し、Ln中に占めるLa量が75
質量%未満の水素吸蔵合金を含有する負極を備えたAA
Aサイズの二次電池において、容量が220Wh/L未
満(180Wh/L)の二次電池(比較例26,27)
では、充放電サイクル寿命が長いものの、220Wh/
L以上の二次電池(比較例29,30)では250サイ
クル,265サイクルと本実施例13〜18の二次電池
に比べて著しくサイクル特性が低くなることがわかる。
On the other hand, the La content in Ln is 75%.
AA with negative electrode containing less than 5% by mass of hydrogen storage alloy
A size secondary battery having a capacity of less than 220 Wh / L (180 Wh / L) (Comparative Examples 26 and 27)
Although the charging / discharging cycle life is long, 220 Wh /
It can be seen that the cycle characteristics of the secondary batteries of L or more (Comparative Examples 29 and 30) are 250 cycles and 265 cycles, which are significantly lower than those of the secondary batteries of Examples 13 to 18.

【0077】また、Ln中に占めるLa量が75質量%
以上であってもMgの置換量(x)が0である水素吸蔵
合金を含有する負極を備えたAAAサイズの二次電池に
おいて、容量が220Wh/L未満(180Wh/L)
の比較例28の二次電池では、充放電サイクル寿命が長
いものの、220Wh/L以上の比較例31の二次電池
では280サイクルと本実施例13〜18の二次電池に
比べて著しくサイクル特性が低くなることがわかる。
The La content in Ln is 75% by mass.
Even in the above case, in the AAA size secondary battery including the negative electrode containing the hydrogen storage alloy having the Mg substitution amount (x) of 0, the capacity is less than 220 Wh / L (180 Wh / L).
Although the secondary battery of Comparative Example 28 has a long charge / discharge cycle life, the secondary battery of Comparative Example 31 having 220 Wh / L or more has 280 cycles, which is significantly higher than the secondary batteries of Examples 13 to 18. It turns out that becomes low.

【0078】さらに、Ln中に占めるLa量が75質量
%以上であってもMgの置換量(x)が0.01<x<
0.10の範囲を外れる水素吸蔵合金を含有する負極を
備えた容量が220Wh/LのAAAサイズの二次電池
(比較例32〜34)では245サイクル,230サイ
クル,170サイクルと本実施例13〜18の二次電池
に比べて著しくサイクル特性が低くなることがわかる。
Further, even when the La content in Ln is 75% by mass or more, the substitution amount (x) of Mg is 0.01 <x <
In the case of a secondary battery of a AAA size having a capacity of 220 Wh / L (Comparative Examples 32-34) having a negative electrode containing a hydrogen storage alloy out of the range of 0.10, 245 cycles, 230 cycles, and 170 cycles, and this Example 13 It can be seen that the cycle characteristics are significantly lower than those of the secondary batteries of Nos. 18 to 18.

【0079】さらに、Ln中に占めるLa量が75質量
%以上であってもCo,Mn,Alの量(z)が0.7
≦z≦1.3の範囲を外れる水素吸蔵合金を含有する負
極を備えた容量が220Wh/LのAAAサイズの二次
電池(比較例35,36)では250サイクル,180
サイクルと本実施例13〜18の二次電池に比べて著し
くサイクル特性が低くなることがわかる。
Further, even when the La content in Ln is 75% by mass or more, the amount (z) of Co, Mn, and Al is 0.7% or more.
A secondary battery of a AAA size with a capacity of 220 Wh / L (comparative examples 35 and 36) including a negative electrode containing a hydrogen storage alloy out of the range of ≦ z ≦ 1.3 (comparative examples 35 and 36) had a cycle of 180 cycles.
It can be seen that the cycle characteristics are significantly lower than those of the secondary batteries of Examples 13 to 18.

【0080】(実施例19〜24) <負極の作製>La,Ce,Pr,Nd,Mg,Ni,
Co,Mn,Alの各元素をアーク用回路に入れて10
-4〜10-5torrまで真空にした後、アルゴン雰囲気
中でアーク放電し、加熱溶解し、さらに冷却することに
より下記表4に示す組成を有する水素吸蔵合金を製造し
た。
(Examples 19 to 24) <Preparation of negative electrode> La, Ce, Pr, Nd, Mg, Ni,
Put each element of Co, Mn and Al in the arc circuit and put
After evacuating to -4 to 10 -5 torr, arc discharge was performed in an argon atmosphere, and the mixture was heated and melted, and then cooled to produce a hydrogen storage alloy having a composition shown in Table 4 below.

【0081】次いで、前記各水素吸蔵合金を粗粉砕し、
さらにボールミルで粉砕し、篩分けを行って平均粒径3
5μmの水素吸蔵合金粉末を得た。得られた各水素吸蔵
合金粉末100質量部にポリアクリル酸ナトリウム0.
5質量部、カルボキシメチルセルロース(CMC)0.
12質量部、ポリテトラフルオロエチレンのディスパー
ジョン(比重1.5、固形分60質量%)を固形分換算
で1.0質量部、および導電性材料としてのカーボンブ
ラック1.0質量部を添加し、水30質量部と共に混合
することによりペーストを調製した。これらのペースト
を導電性基板としてのパンチドメタルに塗布、乾燥し、
さらにプレスして6種の負極を作製した。
Next, each of the hydrogen storage alloys is roughly pulverized,
Furthermore, it is pulverized by a ball mill and sieved to obtain an average particle size of 3
A 5 μm hydrogen storage alloy powder was obtained. Sodium polyacrylate was added to 100 parts by mass of each of the obtained hydrogen storage alloy powders.
5 parts by mass, carboxymethylcellulose (CMC)
12 parts by mass, 1.0 part by mass of a polytetrafluoroethylene dispersion (specific gravity 1.5, solid content 60% by mass) in terms of solid content, and 1.0 part by mass of carbon black as a conductive material were added. And 30 parts by weight of water to prepare a paste. These pastes are applied to punched metal as a conductive substrate, dried,
Further pressing was performed to produce six types of negative electrodes.

【0082】次いで、前記各負極、実施例1と同様な正
極およびグラフト重合処理したポリプロピレン繊維製不
織布からなる厚さ0.2mmセパレータを用い、負極−
セパレータ−正極−セパレータ−負極の順序で複数枚積
層することにより電極群を作製した。このような電極群
を胴部の長さ17mm、幅6.1mmの有底角型容器に
収納した後、7Nの水酸化カリウムおよび1Nの水酸化
リチウムからなる電解液を収容し、封口等を行うことに
より理論容量が850mAh(容量230Wh/L)で
あるF6サイズの密閉角型ニッケル水素二次電池(総高
さ48mm)を組み立てた。
Next, each negative electrode, the same positive electrode as in Example 1, and a 0.2-mm-thick separator made of a nonwoven fabric made of polypropylene fiber subjected to graft polymerization were used.
An electrode group was prepared by laminating a plurality of sheets in the order of separator-positive electrode-separator-negative electrode. After storing such an electrode group in a bottomed rectangular container having a body length of 17 mm and a width of 6.1 mm, an electrolytic solution composed of 7N potassium hydroxide and 1N lithium hydroxide is accommodated, and a seal or the like is sealed. As a result, an F6 sealed square nickel-metal hydride secondary battery (total height: 48 mm) having a theoretical capacity of 850 mAh (capacity: 230 Wh / L) was assembled.

【0083】(比較例37〜47)下記表4に示す組成
の水素吸蔵合金を用い、かつ理論容量が650mAh
(容量180Wh/L)および理論容量が850mAh
(容量230Wh/L)である以外、実施例19と同様
なF6サイズの密閉角型ニッケル水素二次電池を組み立
てた。
(Comparative Examples 37 to 47) A hydrogen storage alloy having the composition shown in Table 4 below was used, and the theoretical capacity was 650 mAh.
(Capacity 180 Wh / L) and theoretical capacity 850 mAh
A sealed square nickel-metal hydride secondary battery of F6 size similar to that of Example 19 except that the capacity was 230 Wh / L was assembled.

【0084】得られた実施例19〜24および比較例3
7〜47の二次電池について、20℃、0.1CmAで
15時間充電し、0.2CmA、1.0Vで放電する初
期活性を行なった後、45℃で3A、90分間充電し、
3Aで終始電圧1.0Vまで放電する充放電を繰り返し
た。このような充放電において、放電容量が初期値の8
0%以下になった時の充放電サイクル数を求めた。その
結果を下記表4に併記する。
Examples 19 to 24 and Comparative Example 3
The secondary batteries of Nos. 7 to 47 were charged at 20 ° C. and 0.1 CmA for 15 hours, and then subjected to initial activity of discharging at 0.2 CmA and 1.0 V, and then charged at 45 ° C. and 3 A for 90 minutes.
The charge / discharge in which the voltage was constantly discharged to 1.0 V at 3 A was repeated. In such charge / discharge, the discharge capacity is set to the initial value of 8
The number of charge / discharge cycles when the value became 0% or less was determined. The results are shown in Table 4 below.

【0085】[0085]

【表4】 [Table 4]

【0086】前記表4から明らかなように容量が220
Wh/L以上で、Ln中に占めるLa量が75質量%以
上でMgの置換量(x)が0.01<x<0.10、C
o,MnおよびAlの量(z)が0.7≦z≦1.3で
ある水素吸蔵合金を含有する負極を備えた実施例19〜
24の密閉角型ニッケル水素二次電池は380〜410
サイクルと長い充放電サイクル寿命を有することがわか
る。
As is apparent from Table 4, the capacity was 220
Wh / L or more, La content in Ln is 75% by mass or more, and Mg substitution amount (x) is 0.01 <x <0.10, C
Examples 19 to 19 provided with a negative electrode containing a hydrogen storage alloy in which the amounts (z) of o, Mn and Al are 0.7 ≦ z ≦ 1.3.
24 sealed square nickel-metal hydride rechargeable batteries are 380 to 410
It can be seen that the battery has a long charge and discharge cycle life.

【0087】これに対し、Ln中に占めるLa量が75
質量%未満の水素吸蔵合金を含有する負極を備えた密閉
角型ニッケル水素二次電池において、容量が220Wh
/L未満(180Wh/L)の二次電池(比較例37,
38)では、充放電サイクル寿命が長いものの、220
Wh/L以上の二次電池(比較例40,41)では28
0サイクル,200サイクルと本実施例19〜24の二
次電池に比べて著しくサイクル特性が低くなることがわ
かる。
On the other hand, when the La content in Ln is 75%
A sealed rectangular nickel-metal hydride secondary battery provided with a negative electrode containing less than 5% by mass of a hydrogen storage alloy has a capacity of 220 Wh.
/ L (180 Wh / L) (Comparative Example 37,
38), the charge / discharge cycle life is long, but 220
In the case of the secondary batteries of Wh / L or more (Comparative Examples 40 and 41), 28
It can be seen that the cycle characteristics are significantly lower than those of the secondary batteries of Examples 19 to 24, ie, 0 cycle and 200 cycles.

【0088】また、Ln中に占めるLa量が75質量%
以上であってもMgの置換量(x)が0である水素吸蔵
合金を含有する負極を備えた密閉角型ニッケル水素二次
電池において、容量が220Wh/L未満(180Wh
/L)の比較例39の二次電池では、充放電サイクル寿
命が長いものの、220Wh/L以上の比較例42の二
次電池では280サイクルと本実施例19〜24の二次
電池に比べて著しくサイクル特性が低くなることがわか
る。
The La content in Ln is 75% by mass.
Even with the above, in a sealed rectangular nickel-metal hydride secondary battery provided with a negative electrode containing a hydrogen storage alloy having a substitution amount (x) of Mg of 0, the capacity is less than 220 Wh / L (180 Wh / L).
/ L) of the secondary battery of Comparative Example 39 has a long charge / discharge cycle life, but the secondary battery of Comparative Example 42 having 220 Wh / L or more has 280 cycles, which is larger than the secondary batteries of Examples 19 to 24. It can be seen that the cycle characteristics are significantly reduced.

【0089】さらに、Ln中に占めるLa量が75質量
%以上であってもMgの置換量(x)が0.01<x<
0.10の範囲を外れる水素吸蔵合金を含有する負極を
備えた容量が230Wh/Lの密閉角型ニッケル水素二
次電池(比較例43〜45)では270サイクル,28
0サイクル,200サイクルと本実施例19〜24の二
次電池に比べて著しくサイクル特性が低くなることがわ
かる。
Further, even when the La content in Ln is 75% by mass or more, the substitution amount (x) of Mg is 0.01 <x <
In a sealed square nickel-metal hydride secondary battery (comparative examples 43 to 45) having a capacity of 230 Wh / L and having a negative electrode containing a hydrogen storage alloy out of the range of 0.10.
It can be seen that the cycle characteristics are significantly lower than those of the secondary batteries of Examples 19 to 24, ie, 0 cycle and 200 cycles.

【0090】さらに、Ln中に占めるLa量が75質量
%以上であってもCo,Mn,Alの量(z)が0.7
≦z≦1.3の範囲を外れる水素吸蔵合金を含有する負
極を備えた容量が230Wh/Lの密閉角型ニッケル水
素二次電池(比較例46,47)では280サイクル,
250サイクルと本実施例19〜24の二次電池に比べ
て著しくサイクル特性が低くなることがわかる。
Further, even when the La content in Ln is 75% by mass or more, the amount (z) of Co, Mn, Al is 0.7%.
A sealed square nickel-metal hydride secondary battery (comparative examples 46 and 47) having a capacity of 230 Wh / L and having a negative electrode containing a hydrogen storage alloy out of the range of ≦ z ≦ 1.3 (Comparative Examples 46 and 47) has 280 cycles,
It can be seen that the cycle characteristics are significantly lower than those of the secondary batteries of Examples 19 to 24 at 250 cycles.

【0091】[0091]

【発明の効果】以上説明したように本発明によれば、高
容量で充放電サイクル寿命が長く、携帯用電話機や携帯
型撮像機などの各種電子機器の作動電源として好適な密
閉型ニッケル水素二次電池を提供することができる。
As described above, according to the present invention, a sealed nickel-metal hydride battery having a high capacity and a long charge / discharge cycle life and suitable as an operating power source for various electronic devices such as a portable telephone and a portable image pickup device. A secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる密閉型円筒状ニッケル水素二次
電池を示す斜視図。
FIG. 1 is a perspective view showing a sealed cylindrical nickel-metal hydride secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…容器、 2…正極、 3…セパレータ、 4…負極、 5…電極群、 7…封口板、 8…絶縁ガスケット。 DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode, 5 ... Electrode group, 7 ... Sealing plate, 8 ... Insulating gasket.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H028 AA01 EE01 HH00 5H050 AA07 AA08 BA14 CA03 CB17 EA10 EA23 EA24 FA17 HA02 HA19  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H028 AA01 EE01 HH00 5H050 AA07 AA08 BA14 CA03 CB17 EA10 EA23 EA24 FA17 HA02 HA19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末を含む負極と、この負
極にセパレータを挟んで配置された水酸化ニッケルを活
物質として含む正極と、アルカリ電解液と、これら部材
を収納する容器とを具備したA系の密閉型ニッケル水素
二次電池であって、 前記二次電池の容量は、310Wh/L以上であり、か
つ前記負極中の水素吸蔵合金は、一般式Ln1-xxNi
yz(ただし、式中のLnはLaを75質量%以上含む
ランタノイド元素,MはMg,CaおよびSrから選ば
れる少なくとも1つの元素で、TはCo,Mn,Al,
V,Nb,Ta,Cr,Mo,Fe,Ga,Zn,S
n,In,Cu,Si,PおよびBから選ばれる少なく
とも1つの元素、x,y,zはそれぞれ0.01<x<
0.10,3.4≦y≦4.8,0.7≦z≦1.3,
4.7≦y+z≦5.5を示す)にて表わされることを
特徴とする密閉型ニッケル水素二次電池。
1. A negative electrode containing a hydrogen storage alloy powder, a positive electrode containing nickel hydroxide as an active material and having a separator interposed between the negative electrode, an alkaline electrolyte, and a container for accommodating these members. An A-type sealed nickel-metal hydride secondary battery, wherein the capacity of the secondary battery is 310 Wh / L or more, and the hydrogen storage alloy in the negative electrode is a general formula Ln 1-x M x Ni
y T z (where Ln is a lanthanoid element containing 75% by mass or more of La, M is at least one element selected from Mg, Ca and Sr, and T is Co, Mn, Al,
V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, S
At least one element selected from n, In, Cu, Si, P and B, x, y and z are each 0.01 <x <
0.10, 3.4 ≦ y ≦ 4.8, 0.7 ≦ z ≦ 1.3,
4.7 ≦ y + z ≦ 5.5).
【請求項2】 水素吸蔵合金粉末を含む負極と、この負
極にセパレータを挟んで配置された水酸化ニッケルを活
物質として含む正極と、アルカリ電解液と、これら部材
を収納する容器とを具備したAA系の密閉型ニッケル水
素二次電池であって、 前記二次電池の容量は、230Wh/L以上であり、か
つ前記負極中の水素吸蔵合金は、一般式Ln1-xxNi
yz(ただし、式中のLnはLaを75質量%以上含む
ランタノイド元素,MはMg,CaおよびSrから選ば
れる少なくとも1つの元素で、TはCo,Mn,Al,
V,Nb,Ta,Cr,Mo,Fe,Ga,Zn,S
n,In,Cu,Si,PおよびBから選ばれる少なく
とも1つの元素、x,y,zはそれぞれ0.01<x<
0.10,3.4≦y≦4.8,0.7≦z≦1.3,
4.7≦y+z≦5.5を示す)にて表わされることを
特徴とする密閉型ニッケル水素二次電池。
2. A negative electrode containing a hydrogen storage alloy powder, a positive electrode containing nickel hydroxide as an active material disposed with a separator interposed between the negative electrode, an alkaline electrolyte, and a container for accommodating these members. AA-based sealed nickel-metal hydride secondary battery, wherein the capacity of the secondary battery is 230 Wh / L or more, and the hydrogen storage alloy in the negative electrode has a general formula of Ln 1-x M x Ni
y T z (where Ln is a lanthanoid element containing 75% by mass or more of La, M is at least one element selected from Mg, Ca and Sr, and T is Co, Mn, Al,
V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, S
At least one element selected from n, In, Cu, Si, P and B, x, y and z are each 0.01 <x <
0.10, 3.4 ≦ y ≦ 4.8, 0.7 ≦ z ≦ 1.3,
4.7 ≦ y + z ≦ 5.5).
【請求項3】 水素吸蔵合金粉末を含む負極と、この負
極にセパレータを挟んで配置された水酸化ニッケルを活
物質として含む正極と、アルカリ電解液と、これら部材
を収納する容器とを具備したAAA系の密閉型ニッケル
水素二次電池であって、 前記二次電池の容量は、220Wh/L以上であり、か
つ前記負極中の水素吸蔵合金は、一般式Ln1-xxNi
yz(ただし、式中のLnはLaを75質量%以上含む
ランタノイド元素,MはMg,CaおよびSrから選ば
れる少なくとも1つの元素で、TはCo,Mn,Al,
V,Nb,Ta,Cr,Mo,Fe,Ga,Zn,S
n,In,Cu,Si,PおよびBから選ばれる少なく
とも1つの元素、x,y,zはそれぞれ0.01<x<
0.10,3.4≦y≦4.8,0.7≦z≦1.3,
4.7≦y+z≦5.5を示す)にて表わされることを
特徴とする密閉型ニッケル水素二次電池。
3. A negative electrode containing a hydrogen storage alloy powder, a positive electrode containing nickel hydroxide as an active material and having a separator interposed therebetween, an alkaline electrolyte, and a container for accommodating these members. An AAA-type sealed nickel-metal hydride secondary battery, wherein the capacity of the secondary battery is 220 Wh / L or more, and the hydrogen storage alloy in the negative electrode is a general formula Ln 1-x M x Ni
y T z (where Ln is a lanthanoid element containing 75% by mass or more of La, M is at least one element selected from Mg, Ca and Sr, and T is Co, Mn, Al,
V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, S
At least one element selected from n, In, Cu, Si, P and B, x, y and z are each 0.01 <x <
0.10, 3.4 ≦ y ≦ 4.8, 0.7 ≦ z ≦ 1.3,
4.7 ≦ y + z ≦ 5.5).
【請求項4】 水素吸蔵合金粉末を含む負極と、この負
極にセパレータを挟んで配置された水酸化ニッケルを活
物質として含む正極と、アルカリ電解液と、これら部材
を収納する容器とを具備した角型の密閉型ニッケル水素
二次電池であって、 前記二次電池の容量は、220Wh/L以上であり、か
つ前記負極中の水素吸蔵合金は、一般式Ln1-xxNi
yz(ただし、式中のLnはLaを75質量%以上含む
ランタノイド元素,MはMg,CaおよびSrから選ば
れる少なくとも1つの元素で、TはCo,Mn,Al,
V,Nb,Ta,Cr,Mo,Fe,Ga,Zn,S
n,In,Cu,Si,PおよびBから選ばれる少なく
とも1つの元素、x,y,zはそれぞれ0.01<x<
0.10,3.4≦y≦4.8,0.7≦z≦1.3,
4.7≦y+z≦5.5を示す)にて表わされることを
特徴とする密閉型ニッケル水素二次電池。
4. A negative electrode containing a hydrogen storage alloy powder, a positive electrode containing nickel hydroxide as an active material disposed with a separator interposed between the negative electrode, an alkaline electrolyte, and a container for accommodating these members. A rectangular sealed nickel-metal hydride secondary battery, wherein the capacity of the secondary battery is 220 Wh / L or more, and the hydrogen storage alloy in the negative electrode is a general formula Ln 1-x M x Ni
y T z (where Ln is a lanthanoid element containing 75% by mass or more of La, M is at least one element selected from Mg, Ca and Sr, and T is Co, Mn, Al,
V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, S
At least one element selected from n, In, Cu, Si, P and B, x, y and z are each 0.01 <x <
0.10, 3.4 ≦ y ≦ 4.8, 0.7 ≦ z ≦ 1.3,
4.7 ≦ y + z ≦ 5.5).
JP2000231559A 2000-07-31 2000-07-31 Sealed nickel-hydrogen secondary battery Pending JP2002042802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231559A JP2002042802A (en) 2000-07-31 2000-07-31 Sealed nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231559A JP2002042802A (en) 2000-07-31 2000-07-31 Sealed nickel-hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JP2002042802A true JP2002042802A (en) 2002-02-08

Family

ID=18724383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231559A Pending JP2002042802A (en) 2000-07-31 2000-07-31 Sealed nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2002042802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013848A1 (en) 2007-07-24 2009-01-29 Panasonic Corporation Negative-electrode material for nickel hydrogen battery, method of treating the same, and nickel hydrogen battery
CN115807180A (en) * 2022-12-19 2023-03-17 包头稀土研究院 Hydrogen storage alloy containing yttrium and its preparation process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013848A1 (en) 2007-07-24 2009-01-29 Panasonic Corporation Negative-electrode material for nickel hydrogen battery, method of treating the same, and nickel hydrogen battery
US8202650B2 (en) 2007-07-24 2012-06-19 Panasonic Corporation Negative electrode material for nickel-metal hydride battery and treatment method thereof, and nickel-metal hydride battery
CN115807180A (en) * 2022-12-19 2023-03-17 包头稀土研究院 Hydrogen storage alloy containing yttrium and its preparation process

Similar Documents

Publication Publication Date Title
JP2000311704A (en) Sealed nickel hydrogen secondary battery
JP2001325957A (en) Alkaline secondary cell
JPH11162459A (en) Nickel-hydrogen secondary battery
JPH11162468A (en) Alkaline secondary battery
JP2002042802A (en) Sealed nickel-hydrogen secondary battery
JP3352338B2 (en) Manufacturing method of alkaline storage battery
JPH11288735A (en) Alkaline secondary battery
JP3392700B2 (en) Alkaline secondary battery
JP2001223000A (en) Alkaline secondary battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JP2002042803A (en) Sealed nickel-hydrogen secondary battery
JPH1040950A (en) Alkaline secondary battery
JP2000021398A (en) Alkaline secondary battery
JP2001307722A (en) Alkaline secondary battery
JPH11354124A (en) Alkaline secondary battery
JP2002042804A (en) Sealed nickel-hydrogen secondary battery
JPH10255789A (en) Nickel hydrogen secondary battery
JPH11329480A (en) Alkaline secondary battery
JPH1196999A (en) Sealed nickel-hydrogen secondary battery
JPH10334941A (en) Alkaline secondary battery
JP2001052689A (en) Alkaline secondary battery
JP2000188106A (en) Alkaline secondary battery
JP2000277101A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JPH10255788A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JPH11260395A (en) Sealed nickel hydrogen secondary battery