JP5769028B2 - Nickel metal hydride storage battery - Google Patents

Nickel metal hydride storage battery Download PDF

Info

Publication number
JP5769028B2
JP5769028B2 JP2012027619A JP2012027619A JP5769028B2 JP 5769028 B2 JP5769028 B2 JP 5769028B2 JP 2012027619 A JP2012027619 A JP 2012027619A JP 2012027619 A JP2012027619 A JP 2012027619A JP 5769028 B2 JP5769028 B2 JP 5769028B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
nickel
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012027619A
Other languages
Japanese (ja)
Other versions
JP2013164991A (en
Inventor
学 金本
金本  学
忠司 掛谷
忠司 掛谷
綿田 正治
正治 綿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2012027619A priority Critical patent/JP5769028B2/en
Publication of JP2013164991A publication Critical patent/JP2013164991A/en
Application granted granted Critical
Publication of JP5769028B2 publication Critical patent/JP5769028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、ニッケル水素蓄電池に関するものである。   The present invention relates to a nickel metal hydride storage battery.

ニッケル水素蓄電池は、高エネルギー密度を有することから、デジタルカメラ、ノート型パソコン等の小型電子機器類の電源として、また、作動電圧がアルカリマンガン電池等の一次電池と同等で互換性があることから、当該一次電池の代替品として広く利用されており、その需要は拡大の一途をたどっている。   Nickel metal hydride storage batteries have high energy density, so they are used as power sources for small electronic devices such as digital cameras and notebook computers, and because the operating voltage is equivalent to and compatible with primary batteries such as alkaline manganese batteries. It is widely used as an alternative to the primary battery, and its demand is constantly expanding.

このようなニッケル水素蓄電池は、水素吸蔵合金を負極活物質とするものであるが、当該水素吸蔵合金としては、従来、CaCu型結晶構造を有するAB型希土類−Ni系合金が実用化されている。 Such a nickel-metal hydride storage battery uses a hydrogen storage alloy as a negative electrode active material. As the hydrogen storage alloy, an AB 5 type rare earth-Ni alloy having a CaCu 5 type crystal structure has been put into practical use. ing.

一方、新たな水素吸蔵合金として、例えば、PuNi型結晶構造を有するAB型希土類−Mg−Ni系合金(特許文献1)が開発され、これらの合金を電極材として用いることでAB型合金を上回る放電容量が得られることが報告されている。 On the other hand, as a new hydrogen storage alloy, for example, an AB 3 type rare earth-Mg—Ni based alloy having a PuNi 3 type crystal structure (Patent Document 1) has been developed, and by using these alloys as an electrode material, an AB 5 type is developed. It has been reported that a discharge capacity exceeding that of the alloy can be obtained.

特開平11−217643号公報JP-A-11-217643

AB型合金はサイクル特性に優れるものの長期保存性能に問題がある。これは、微粉化抑制等のために合金中に含有されるCoが保存中に溶出し、セパレータや正極表面に析出して、微少短絡を引き起こすためである。 Although AB type 5 alloy is excellent in cycle characteristics, it has a problem in long-term storage performance. This is because Co contained in the alloy for suppressing pulverization elutes during storage and precipitates on the surface of the separator or the positive electrode, causing a slight short circuit.

一方、希土類−Mg−Ni系水素吸蔵合金は耐微粉化特性に優れることから必ずしもCo等の溶出元素を必要とせず、また、平衡水素圧を低く設計することによって、自己放電性能に優れた電池を構成することができる。しかしながら、その場合、La量やMg量が増加するために合金が腐食しやすくなり、また、一部で水素誘起アモルファス相が形成され、容量劣化が大きくなるという問題がある。腐食を防ぐには合金粒子の反応面積を小さくする必要があり、初期の粒径を大きく設定することが有効である。また、アルカリ処理を行うことで表面にNiリッチな層を形成して、腐食を防ぐ方法がある。   On the other hand, rare earth-Mg-Ni-based hydrogen storage alloys do not necessarily require an elution element such as Co because they are excellent in pulverization resistance, and the battery has excellent self-discharge performance by designing a low equilibrium hydrogen pressure. Can be configured. However, in that case, the amount of La and Mg increases, so that the alloy is easily corroded, and a hydrogen-induced amorphous phase is partially formed, resulting in a large capacity deterioration. In order to prevent corrosion, it is necessary to reduce the reaction area of the alloy particles, and it is effective to set the initial particle size large. In addition, there is a method for preventing corrosion by forming a Ni-rich layer on the surface by performing an alkali treatment.

そこで本発明は、上記現状に鑑み、長期保存後の回復性能に優れたニッケル水素蓄電池を提供すべく図ったものである。   In view of the above, the present invention is intended to provide a nickel-metal hydride storage battery that is excellent in recovery performance after long-term storage.

本発明者は、鋭意検討の結果、希土類−Mg−Ni系水素吸蔵合金及びAB型合金の結晶構造の異なる2種類の合金を所定の比率で混合したものを負極活物質として用いることにより、ニッケル水素蓄電池の長期保存後の回復性能が向上することを見出し、当該知見に基づき本発明を完成させるに至った。 As a result of intensive studies, the inventor has used, as a negative electrode active material, a mixture of two kinds of rare earth-Mg—Ni hydrogen storage alloys and AB 5 type alloys having different crystal structures in a predetermined ratio. It has been found that the recovery performance after long-term storage of the nickel-metal hydride storage battery is improved, and the present invention has been completed based on this finding.

すなわち本発明に係るニッケル水素蓄電池は、希土類−Mg−Ni系水素吸蔵合金(A)と、希土類−Ni系水素吸蔵合金(B)とを含有する負極を備えたニッケル水素蓄電池であって、前記負極における前記希土類−Mg−Ni系水素吸蔵合金(A)と前記希土類−Ni系水素吸蔵合金(B)との含有量の合計に対する、前記希土類−Mg−Ni系水素吸蔵合金(A)の含有量の比率が、30〜70質量%であることを特徴とする。   That is, the nickel-metal hydride storage battery according to the present invention is a nickel-metal hydride storage battery including a negative electrode containing a rare earth-Mg-Ni-based hydrogen storage alloy (A) and a rare-earth-Ni-based hydrogen storage alloy (B), Inclusion of the rare earth-Mg-Ni hydrogen storage alloy (A) relative to the total content of the rare earth-Mg-Ni hydrogen storage alloy (A) and the rare earth-Ni hydrogen storage alloy (B) in the negative electrode The amount ratio is 30 to 70% by mass.

本発明に係るニッケル水素蓄電池では、前記希土類−Mg−Ni系水素吸蔵合金(A)の平均粒径(D50)が、前記希土類−Ni系水素吸蔵合金(B)の平均粒径(D50)以上であることが好ましい。前記希土類−Ni系水素吸蔵合金(B)は希土類−Mg−Ni系水素吸蔵合金(A)と比較して、合金が硬いため、電極プレス時にNiメッキした穿孔鋼鈑からなる集電基材(以下、NPPS(Nickel Plated Punched Steel)集電基材という。)を傷める恐れがある。それにより、Niメッキが損傷し、NPPS集電基材からFeが溶出する。溶出したFeは正極中に移動し、正極の充電効率低下を招く。放電末期の状態のときは、充電状態のときと比較して、Feの溶出が加速されることから、特に、放電末期放置のとき、回復後の充電効率が大きく低下する。以上のことから、前記希土類−Ni系水素吸蔵合金(B)は希土類−Mg−Ni系水素吸蔵合金(A)の平均粒径(D50)以下であることが好ましい。   In the nickel metal hydride storage battery according to the present invention, the rare earth-Mg—Ni-based hydrogen storage alloy (A) has an average particle size (D50) that is equal to or greater than the average particle size (D50) of the rare-earth-Ni-based hydrogen storage alloy (B). It is preferable that Since the rare earth-Ni-based hydrogen storage alloy (B) is harder than the rare earth-Mg-Ni-based hydrogen storage alloy (A), a current collecting base material made of a perforated steel plate plated with Ni during electrode pressing ( Hereinafter, there is a risk of damage to an NPPS (Nickel Plated Punched Steel) current collector base material). Thereby, the Ni plating is damaged, and Fe is eluted from the NPPS current collecting base material. The eluted Fe moves into the positive electrode and causes a decrease in charging efficiency of the positive electrode. Since the elution of Fe is accelerated in the end-of-discharge state as compared with the charged state, the charging efficiency after recovery is greatly reduced particularly when left at the end of discharge. From the above, it is preferable that the rare earth-Ni-based hydrogen storage alloy (B) has an average particle size (D50) or less of the rare earth-Mg-Ni-based hydrogen storage alloy (A).

また、前記希土類−Mg−Ni系水素吸蔵合金(A)の80℃での平衡水素圧(水素吸蔵量H/M=0.4における放出圧)は、0.05MPa以下であり、前記希土類−Ni系水素吸蔵合金(B)の80℃での平衡水素圧(水素吸蔵量H/M=0.4における放出圧)は、0.1MPa以上であることが好ましい。   The rare earth-Mg—Ni-based hydrogen storage alloy (A) has an equilibrium hydrogen pressure at 80 ° C. (a release pressure at a hydrogen storage amount H / M = 0.4) of 0.05 MPa or less. It is preferable that the equilibrium hydrogen pressure at 80 ° C. of the Ni-based hydrogen storage alloy (B) (discharge pressure at a hydrogen storage amount H / M = 0.4) is 0.1 MPa or more.

本発明は、上述した構成よりなるので、長期保存後のニッケル水素蓄電池の回復性能を向上することができる。   Since this invention consists of the structure mentioned above, the recovery performance of the nickel-metal hydride storage battery after a long-term storage can be improved.

以下に、本発明に係るニッケル水素蓄電池の実施形態について説明する。   Below, embodiment of the nickel metal hydride storage battery which concerns on this invention is described.

本発明に係るニッケル水素蓄電池は、例えば、水素吸蔵合金を負極活物質として含有する負極と、水酸化ニッケルを主成分とする正極活物質を含有する正極(ニッケル電極)と、セパレータと、アルカリ電解液と、を備えているものである。   The nickel metal hydride storage battery according to the present invention includes, for example, a negative electrode containing a hydrogen storage alloy as a negative electrode active material, a positive electrode (nickel electrode) containing a positive electrode active material mainly composed of nickel hydroxide, a separator, and alkaline electrolysis. And a liquid.

本発明において、前記負極は、希土類−Mg−Ni系水素吸蔵合金(A)(以下、水素吸蔵合金(A)という。)と、AB型合金である希土類−Ni系水素吸蔵合金(B)(以下、水素吸蔵合金(B)という。)とを負極活物質として含有するものである。ここで、前記水素吸蔵合金(A)とは、より詳細には、複数のABユニットとAユニットがC軸方向に積層した結晶構造の水素吸蔵合金であり、PuNi、CeNi、GdCo、PrCo19、CeCo19等の結晶構造を有する水素吸蔵合金が挙げられる。 In the present invention, the negative electrode includes a rare earth-Mg-Ni hydrogen storage alloy (A) (hereinafter referred to as a hydrogen storage alloy (A)) and a rare earth-Ni hydrogen storage alloy (B) which is an AB type 5 alloy. (Hereinafter referred to as a hydrogen storage alloy (B)) as a negative electrode active material. Here, the hydrogen storage alloy (A) is more specifically a hydrogen storage alloy having a crystal structure in which a plurality of AB 5 units and A 2 B 4 units are laminated in the C-axis direction. PuNi 3 , Ce 2 Examples thereof include hydrogen storage alloys having a crystal structure such as Ni 7 , Gd 2 Co 7 , Pr 5 Co 19 , and Ce 5 Co 19 .

前記水素吸蔵合金(A)は、実質的に一般式R1R2R3(式中、R1はYを含む希土類元素からなる群より選択される少なくとも1種の元素であり、R2はMgを必須とし、更にCa、Sr及びBaからなる群より選択される少なくとも1種の元素が含まれていてもよく、R3はNiを必須とし、更にCo、Mn、Al、Cr、Fe、Cu、Zn、Si、Sn、V、Nb、Ta、Ti、Zr及びHfからなる群より選択される少なくとも1種の元素が含まれていてもよく、a、b及びcは、a+b+c=100(原子%)とすると、10≦a≦30、1≦b≦10、65≦c≦90、及び、3.0≦c/(a+b)≦4.0を満たす値である。)で表される組成を有する合金からなるものであることが好ましい。ここで、実質的に一般式R1R2R3で表される組成を有する合金は、その構成元素のうち、80%以上、好ましくは90%以上、より好ましくは95%以上を、R1、R2及びR3が占めるものであるが、本合金の構成元素の全て(100%)をR1、R2及びR3が占めてもよく、又は、これらの元素以外に、本合金の特性が損なわれない限りにおいて、他の元素が含まれていてもよい。 The hydrogen storage alloy (A) is substantially represented by the general formula R1 a R2 b R3 c (wherein R1 is at least one element selected from the group consisting of rare earth elements including Y, and R2 represents Mg. It may be essential and may further contain at least one element selected from the group consisting of Ca, Sr and Ba, R3 must be Ni, and Co, Mn, Al, Cr, Fe, Cu, Zn , Si, Sn, V, Nb, Ta, Ti, Zr, and Hf may be included, and a, b, and c are a + b + c = 100 (atomic%) Then, 10 ≦ a ≦ 30, 1 ≦ b ≦ 10, 65 ≦ c ≦ 90, and 3.0 ≦ c / (a + b) ≦ 4.0. It is preferably made of an alloy. Here, an alloy having substantially the composition represented by the general formula R1 a R2 b R3 c, of its constituent elements, more than 80%, preferably 90% or more, more preferably more than 95%, R1, R2 and R3 occupy, but R1, R2 and R3 may occupy all (100%) of the constituent elements of the alloy, or other than these elements, unless the characteristics of the alloy are impaired. In the above, other elements may be contained.

前記水素吸蔵合金(A)の80℃での平衡水素圧(水素吸蔵量H/M=0.4における放出圧)は、0.05MPa以下であることが好ましい。当該平衡水素圧が0.05MPa以下であると、水素の放出が充分に抑えられるので、充電末期の保存性能(充電末期の残存容量)に優れたニッケル水素蓄電池が得られる。   The hydrogen storage alloy (A) preferably has an equilibrium hydrogen pressure at 80 ° C. (hydrogen storage amount H / M = release pressure at 0.4) of 0.05 MPa or less. When the equilibrium hydrogen pressure is 0.05 MPa or less, the release of hydrogen is sufficiently suppressed, so that a nickel-metal hydride storage battery having excellent storage performance at the end of charging (remaining capacity at the end of charging) can be obtained.

前記水素吸蔵合金(B)は、実質的に一般式R1R4(式中、R1はYを含む希土類元素からなる群より選択される少なくとも1種の元素であり、R4はNi、Co、Mn及びAlを必須とし、更にCr、Fe、Cu、Zn、Si、Sn、V、Nb、Ta、Ti、Zr、Hf及びMgからなる群より選択される少なくとも1種の元素が含まれていてもよく、d及びeは、d+e=100(原子%)とすると、15≦d≦18、82≦e≦85、及び、4.7≦e/d≦5.5を満たす値である。)で表される組成を有する合金からなるものであることが好ましい。ここで、実質的に一般式R1R4で表される組成を有する合金は、その構成元素のうち、80%以上、好ましくは90%以上、より好ましくは95%以上を、R1及びR4が占めるものであるが、本合金の構成元素の全て(100%)をR1及びR4が占めてもよく、又は、これらの元素以外に、本合金の特性が損なわれない限りにおいて、他の元素が含まれていてもよい。 The hydrogen storage alloy (B) is substantially the general formula R1 d R4 e (wherein R1 is at least one element selected from the group consisting of rare earth elements including Y, and R4 is Ni, Co, Mn and Al are essential, and at least one element selected from the group consisting of Cr, Fe, Cu, Zn, Si, Sn, V, Nb, Ta, Ti, Zr, Hf and Mg is included. D and e are values satisfying 15 ≦ d ≦ 18, 82 ≦ e ≦ 85, and 4.7 ≦ e / d ≦ 5.5, where d + e = 100 (atomic%). It is preferable that it consists of an alloy which has a composition represented by these. Here, the alloy having a composition substantially represented by the general formula R1 d R4 e is 80% or more, preferably 90% or more, more preferably 95% or more, among the constituent elements, R1 and R4 being Although R1 and R4 may occupy all (100%) of the constituent elements of the alloy, or other elements other than these elements, as long as the properties of the alloy are not impaired. It may be included.

前記水素吸蔵合金(B)の80℃での平衡水素圧(水素吸蔵量H/M=0.4における放出圧)は0.1MPa以上であってもよい。前記水素吸蔵合金(B)の平衡水素圧が高めであっても、上述のとおり、前記水素吸蔵合金(A)として平衡水素圧が低い合金を用いることにより、ニッケル水素蓄電池の充電末期の保存性能を充分高い水準に維持することができる。また、このように前記水素吸蔵合金(A)として平衡水素圧が低い合金を用いることによって、充電末期の保存性能をあまり考慮せずに、前記水素吸蔵合金(B)として他の性能に優れたものを用いることができるので、前記水素吸蔵合金(B)の選択の幅が広がる。   The hydrogen storage alloy (B) may have an equilibrium hydrogen pressure at 80 ° C. (hydrogen storage amount H / M = release pressure at 0.4) of 0.1 MPa or more. Even if the equilibrium hydrogen pressure of the hydrogen storage alloy (B) is high, as described above, by using an alloy having a low equilibrium hydrogen pressure as the hydrogen storage alloy (A), the storage performance at the end of charging of the nickel hydrogen storage battery Can be maintained at a sufficiently high level. In addition, by using an alloy having a low equilibrium hydrogen pressure as the hydrogen storage alloy (A) in this way, the hydrogen storage alloy (B) is superior in other performance without much consideration of storage performance at the end of charging. Since a thing can be used, the selection range of the said hydrogen storage alloy (B) spreads.

本発明において、前記負極における前記水素吸蔵合金(A)と前記水素吸蔵合金(B)との含有比率は、前記負極における前記水素吸蔵合金(A)と前記水素吸蔵合金(B)との含有量の合計に対する、前記水素吸蔵合金(A)の含有量の比率が、30〜70質量%となるように調整される。前記水素吸蔵合金(A)の含有量の比率がこの範囲内であると、長期保存後の回復性能に優れたニッケル水素蓄電池を得ることができる。また、コスト面を考慮すると前記水素吸蔵合金(A)の含有比率は50質量%以下であることがより好ましい。   In the present invention, the content ratio of the hydrogen storage alloy (A) and the hydrogen storage alloy (B) in the negative electrode is the content of the hydrogen storage alloy (A) and the hydrogen storage alloy (B) in the negative electrode. The ratio of the content of the hydrogen storage alloy (A) to the total is adjusted to be 30 to 70% by mass. When the content ratio of the hydrogen storage alloy (A) is within this range, a nickel metal hydride storage battery having excellent recovery performance after long-term storage can be obtained. In view of cost, the content ratio of the hydrogen storage alloy (A) is more preferably 50% by mass or less.

前記水素吸蔵合金(A)及び前記水素吸蔵合金(B)の製造方法としては特に限定されず、例えば、メルトスピニング法、アーク溶解法、鋳造法、ガスアトマイズ法等が挙げられ、これらを適宜選択して用いることにより前記水素吸蔵合金(A)及び前記水素吸蔵合金(B)を製造することができる。   The method for producing the hydrogen storage alloy (A) and the hydrogen storage alloy (B) is not particularly limited, and examples thereof include a melt spinning method, an arc melting method, a casting method, a gas atomizing method, and the like. By using these, the hydrogen storage alloy (A) and the hydrogen storage alloy (B) can be produced.

前記水素吸蔵合金(A)及び前記水素吸蔵合金(B)は、粉末化された状態で負極中に配合されることが好ましい。この際、前記水素吸蔵合金(A)の平均粒径(D50)は、前記水素吸蔵合金(B)の平均粒径(D50)以上(前記水素吸蔵合金(B)の平均粒径(D50)≦前記水素吸蔵合金(A)の平均粒径(D50))であることが好ましく、前記水素吸蔵合金(B)の平均粒径(D50)≦45μm≦前記水素吸蔵合金(A)の平均粒径(D50)であることがより好ましい。負極の耐久性の観点から言えば、合金の粒径は大きい方(比表面積が小さい方)が好ましいが、本発明者らが検討したところ、前記水素吸蔵合金(A)の平均粒径(D50)が前記水素吸蔵合金(B)の平均粒径(D50)と同じであるか又はより大きければ充分な耐久性が負極に付与されることが判明した。   The hydrogen storage alloy (A) and the hydrogen storage alloy (B) are preferably blended in the negative electrode in a powdered state. At this time, the average particle diameter (D50) of the hydrogen storage alloy (A) is equal to or greater than the average particle diameter (D50) of the hydrogen storage alloy (B) (average particle diameter (D50) of the hydrogen storage alloy (B) ≦ The average particle diameter (D50) of the hydrogen storage alloy (A) is preferable, the average particle diameter (D50) of the hydrogen storage alloy (B) ≦ 45 μm ≦ the average particle diameter of the hydrogen storage alloy (A) ( D50) is more preferable. From the viewpoint of durability of the negative electrode, it is preferable that the alloy has a larger particle size (smaller specific surface area). However, when the present inventors have studied, the average particle size of the hydrogen storage alloy (A) (D50) ) Is equal to or larger than the average particle diameter (D50) of the hydrogen storage alloy (B), it has been found that sufficient durability is imparted to the negative electrode.

前記負極は、前記水素吸蔵合金(A)及び前記水素吸蔵合金(B)に加えて、導電剤、結着剤(増粘剤を含む。)等を含有していてもよい。   The negative electrode may contain a conductive agent, a binder (including a thickener), and the like in addition to the hydrogen storage alloy (A) and the hydrogen storage alloy (B).

前記導電剤としては、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウィスカー、炭素繊維、気相成長炭素等の炭素系導電剤;ニッケル、コバルト、銅等の金属の粉末や繊維等からなる金属系導電剤;酸化イットリウム等が挙げられる。これらの導電剤は、単独で用いられてもよく、2種以上が併用されてもよい。また、防食剤として酸化イットリウム等の希土類酸化物を含有していてもよい。   Examples of the conductive agent include natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, vapor-grown carbon, etc. Examples thereof include metal-based conductive agents; metal-based conductive agents composed of powders or fibers of metals such as nickel, cobalt, copper, etc .; These electrically conductive agents may be used independently and 2 or more types may be used together. Moreover, you may contain rare earth oxides, such as an yttrium oxide, as a corrosion inhibitor.

前記導電剤の配合量は、前記水素吸蔵合金(A)及び前記水素吸蔵合金(B)の合計100質量部に対して、0.1〜10質量部であることが好ましく、より好ましくは0.2〜5質量部である。前記導電剤の配合量が0.1質量部未満であると、充分な導電性を得ることが難しく、一方、前記導電剤の配合量が10質量部を超えると、放電容量の向上効果が不充分となることがある。   The blending amount of the conductive agent is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of the hydrogen storage alloy (A) and the hydrogen storage alloy (B). 2 to 5 parts by mass. When the blending amount of the conductive agent is less than 0.1 parts by mass, it is difficult to obtain sufficient conductivity. On the other hand, when the blending amount of the conductive agent exceeds 10 parts by mass, the effect of improving the discharge capacity is not good. May be sufficient.

前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルフォン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、キサンタンガム等が挙げられる。これらの結着剤は、単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the binder include polytetrafluoroethylene (PTFE), polyolefin resins such as polyethylene and polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), and fluorine rubber. , Polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, xanthan gum and the like. These binders may be used independently and 2 or more types may be used together.

前記結着剤の配合量は、前記水素吸蔵合金(A)及び前記水素吸蔵合金(B)の合計100質量部に対して、0.1〜0.5質量部であることが好ましく、より好ましくは0.1〜0.3質量部である。前記結着剤の配合量が0.1質量部未満であると、充分な増粘性が得られにくく、一方、前記結着剤の配合量が0.5質量部を超えると、電極の性能が低下してしまうことがある。   The amount of the binder is preferably 0.1 to 0.5 parts by mass, more preferably 100 parts by mass in total of the hydrogen storage alloy (A) and the hydrogen storage alloy (B). Is 0.1 to 0.3 parts by mass. When the blending amount of the binder is less than 0.1 parts by mass, sufficient thickening is difficult to be obtained. On the other hand, when the blending amount of the binder exceeds 0.5 parts by mass, the performance of the electrode is improved. May fall.

前記正極としては、例えば、主成分である水酸化ニッケルに水酸化亜鉛や水酸化コバルトが混合されてなる水酸化ニッケル複合酸化物が正極活物質として配合された電極等が挙げられる。当該水酸化ニッケル複合酸化物としては、共沈法によって均一分散されたものが好適に用いられる。   Examples of the positive electrode include an electrode in which a nickel hydroxide composite oxide obtained by mixing zinc hydroxide or cobalt hydroxide with nickel hydroxide as a main component is blended as a positive electrode active material. As the nickel hydroxide composite oxide, those uniformly dispersed by a coprecipitation method are preferably used.

前記正極は、前記水酸化ニッケル複合酸化物に加えて電極性能を改善するための添加剤を含有していることが好ましい。前記添加剤としては、例えば、水酸化コバルト、酸化コバルト等の導電改質剤が挙げられ、また、前記水酸化ニッケル複合酸化物に水酸化コバルトがコートされたものや、前記水酸化ニッケル複合酸化物の一部が、酸素又は酸素含有気体、K、次亜塩素酸等によって酸化されていてもよい。 The positive electrode preferably contains an additive for improving electrode performance in addition to the nickel hydroxide composite oxide. Examples of the additive include conductive modifiers such as cobalt hydroxide and cobalt oxide, and the nickel hydroxide composite oxide coated with cobalt hydroxide, and the nickel hydroxide composite oxide. Part of the product may be oxidized with oxygen or oxygen-containing gas, K 2 S 2 O 8 , hypochlorous acid, or the like.

前記添加剤としては、Y、Yb等の希土類元素を含む化合物や、Ca化合物等の酸素過電圧を向上させる物質を用いることもできる。Y、Yb等の希土類元素は、その一部が溶解して、負極表面に配置されるため、負極活物質の腐食を抑制する効果も期待できる。   As said additive, the compound containing rare earth elements, such as Y and Yb, and the substance which improves oxygen overvoltages, such as Ca compound, can also be used. Since some of rare earth elements such as Y and Yb are dissolved and disposed on the negative electrode surface, an effect of suppressing corrosion of the negative electrode active material can be expected.

前記正極は、更に、前記負極と同様に、上述の導電剤、結着剤等を含有していてもよい。   The positive electrode may further contain the above-described conductive agent, binder and the like, similarly to the negative electrode.

このような正極及び負極は、各活物質に、必要に応じて上述の導電剤、結着剤等を加えた上で、これらを水又はアルコールやトルエン等の有機溶媒と共に混練して得られたペーストを、導電性支持体に塗布し、乾燥させた後、圧延成形すること等により製造することができる。   Such a positive electrode and a negative electrode were obtained by kneading these with water or an organic solvent such as alcohol or toluene after adding the above-mentioned conductive agent, binder, or the like to each active material as necessary. The paste can be produced by applying it to a conductive support and drying it, followed by rolling.

前記導電性支持体としては、例えば、鋼板、鋼板にニッケル等の金属材料からなるメッキが施されたメッキ鋼板等が挙げられる。前記導電性支持体の形状としては、例えば、発泡体、繊維群の成形体、凹凸加工を施した3次元基材;パンチング板等の2次元基材が挙げられる。これらの導電性支持体のうち、正極用としては、アルカリに対する耐食性と耐酸化性に優れたニッケルを材料とし、集電性に優れた構造である多孔体構造からなる発泡体が好ましい。一方、負極用としては、安価で、かつ、導電性に優れる鉄箔に、ニッケルメッキを施したパンチング板が好ましい。   Examples of the conductive support include a steel plate and a plated steel plate obtained by plating a steel plate with a metal material such as nickel. Examples of the shape of the conductive support include a foam, a molded product of a fiber group, a three-dimensional base material subjected to unevenness processing, and a two-dimensional base material such as a punching plate. Of these conductive supports, for the positive electrode, a foam made of nickel having excellent corrosion resistance and oxidation resistance with respect to alkali and having a porous structure having a current collecting property is preferable. On the other hand, for a negative electrode, a punching plate obtained by applying nickel plating to an iron foil that is inexpensive and excellent in conductivity is preferable.

前記導電性支持体の厚さは、30〜100μmであることが好ましく、より好ましくは40〜70μmである。前記導電性支持体の厚さが30μm未満であると、生産性が低下することがあり、一方、前記導電性支持体の厚さが100μmを超えると、放電容量が不充分となることがある。   The thickness of the conductive support is preferably 30 to 100 μm, more preferably 40 to 70 μm. When the thickness of the conductive support is less than 30 μm, the productivity may be reduced. On the other hand, when the thickness of the conductive support exceeds 100 μm, the discharge capacity may be insufficient. .

前記導電性支持体が多孔性のものである場合、その内径は、0.8〜2μmであることが好ましく、より好ましくは1〜1.5μmである。内径が0.8μm未満であると、生産性が低下することがあり、一方、内径が2μmを超えると、水素吸蔵合金の保持性能が不充分となることがある。   When the conductive support is porous, the inner diameter is preferably 0.8 to 2 μm, more preferably 1 to 1.5 μm. If the inner diameter is less than 0.8 μm, the productivity may be lowered. On the other hand, if the inner diameter exceeds 2 μm, the holding performance of the hydrogen storage alloy may be insufficient.

前記導電性支持体への各電極用ペーストの塗布方法としては、例えば、アプリケーターロール等を用いたローラーコーティング、スクリーンコーティング、ブレードコーティング、スピンコーティング、パーコーティング等が挙げられる。   Examples of a method for applying each electrode paste to the conductive support include roller coating using an applicator roll and the like, screen coating, blade coating, spin coating, and per coating.

前記セパレータとしては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、アクリル、ポリアミド等を材料とする多孔膜や不織布等が挙げられる。   Examples of the separator include a porous film and a nonwoven fabric made of a polyolefin resin such as polyethylene or polypropylene, acrylic, polyamide, or the like.

前記セパレータの目付は、40〜100g/mであることが好ましい。目付が40g/m未満であると、短絡や自己放電性能の低下が起こることがあり、一方、目付が100g/mを超えると単位体積当たりに占めるセパレータの割合が増加するため、電池容量が下がる傾向にある。また、前記セパレータの通気度は、1〜50cm/secであることが好ましい。通気度が1cm/sec未満であると、電池内圧が高くなりすぎることがあり、一方、通気度が50cm/secを超えると、短絡や自己放電性能の低下が起こることがある。更に、前記セパレータの平均繊維径は、1〜20μmであることが好ましい。平均繊維径が1μm未満であるとセパレータの強度が低下し、電池組み立て工程での不良率が増加することがあり、一方、20μmを超えると、平均繊維径が短絡や自己放電性能の低下が起こることがある。 The basis weight of the separator is preferably 40 to 100 g / m 2 . If the basis weight is less than 40 g / m 2 , a short circuit or a decrease in self-discharge performance may occur. On the other hand, if the basis weight exceeds 100 g / m 2 , the proportion of the separator per unit volume increases. Tend to go down. The separator preferably has an air permeability of 1 to 50 cm / sec. If the air permeability is less than 1 cm / sec, the internal pressure of the battery may be too high. On the other hand, if the air permeability exceeds 50 cm / sec, a short circuit or a decrease in self-discharge performance may occur. Furthermore, the average fiber diameter of the separator is preferably 1 to 20 μm. If the average fiber diameter is less than 1 μm, the strength of the separator may decrease, and the defect rate in the battery assembly process may increase. On the other hand, if the average fiber diameter exceeds 20 μm, the average fiber diameter may cause a short circuit or a decrease in self-discharge performance. Sometimes.

前記セパレータは、その繊維表面に親水化処理が施されていることが好ましい。当該親水化処理としては、例えば、スルフォン化処理、コロナ処理、フッ素ガス処理、プラズマ処理等が挙げられる。なかでも、繊維表面にスルフォン化処理が施されたセパレータは、シャトル現象を引き起こすNO 、NO 、NH 等の不純物や負極からの溶出元素を吸着する能力が高いため、自己放電抑制効果が高く、好ましい。 The separator is preferably subjected to a hydrophilic treatment on the fiber surface. Examples of the hydrophilization treatment include sulfonation treatment, corona treatment, fluorine gas treatment, and plasma treatment. Among them, the separator whose fiber surface has been sulfonated has a high ability to adsorb impurities such as NO 3 , NO 2 , NH 3 − and the like, which cause a shuttle phenomenon, and an elution element from the negative electrode. The suppression effect is high and preferable.

前記アルカリ電解液としては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等を含有するアルカリ性の水溶液が挙げられる。前記アルカリ電解液は、単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the alkaline electrolyte include alkaline aqueous solutions containing potassium hydroxide, sodium hydroxide, lithium hydroxide and the like. The said alkaline electrolyte may be used independently and 2 or more types may be used together.

前記アルカリ電解液の濃度は、イオン濃度の合計が9.0mol/L以下であるものが好ましく、5.0〜8.0mol/Lであるものがより好ましい。   The concentration of the alkaline electrolyte is preferably a total ion concentration of 9.0 mol / L or less, more preferably 5.0 to 8.0 mol / L.

前記アルカリ電解液には、正極での酸素過電圧向上、負極の耐食性の向上、自己放電向上のため、種々の添加剤を添加してもよい。このような添加剤としては、例えば、イットリウム、イッテルビウム、エルビウム、カルシウム、亜鉛等の酸化物や水酸化物等が挙げられる。これらの添加剤は、単独で用いられてもよく、2種以上が併用されてもよい。   Various additives may be added to the alkaline electrolyte in order to improve oxygen overvoltage at the positive electrode, improve corrosion resistance of the negative electrode, and improve self-discharge. Examples of such additives include oxides and hydroxides such as yttrium, ytterbium, erbium, calcium, and zinc. These additives may be used independently and 2 or more types may be used together.

本発明に係るニッケル水素蓄電池が開放型ニッケル水素蓄電池である場合、当該電池は、例えば、セパレータを介して負極を正極で挟み込み、これらの電極に所定の圧力がかかるように電極を固定した状態で、アルカリ電解液を注液し、開放形セルを組み立てることにより製造することができる。   When the nickel-metal hydride storage battery according to the present invention is an open-type nickel-metal hydride storage battery, for example, the battery is sandwiched between a negative electrode and a positive electrode via a separator, and the electrodes are fixed so that a predetermined pressure is applied to these electrodes. It can be produced by injecting an alkaline electrolyte and assembling an open cell.

一方、本発明に係るニッケル水素蓄電池が密閉型ニッケル水素蓄電池である場合、当該電池は、正極、セパレータ及び負極を積層する前又は後に、アルカリ電解液を注液し、外装材で封止することにより製造することができる。また、正極と負極とがセパレータを介して積層された発電要素を巻回してなる密閉型ニッケル水素蓄電池においては、前記発電要素を巻回する前又は後に、アルカリ電解液を発電要素に注液するのが好ましい。アルカリ電解液の注液法としては特に限定されず、常圧で注液してもよいが、例えば、真空含浸法、加圧含浸法、遠心含浸法等を用いてもよい。また、密閉型ニッケル水素蓄電池の外装材としては、例えば、鉄、ニッケル等の金属材料からなるメッキが施された鉄、ステンレススチール、ポリオレフィン系樹脂等からなるものが挙げられる。   On the other hand, when the nickel-metal hydride storage battery according to the present invention is a sealed nickel-metal hydride storage battery, the battery is injected with an alkaline electrolyte before or after the positive electrode, the separator, and the negative electrode are stacked, and sealed with an exterior material. Can be manufactured. Further, in a sealed nickel-metal hydride storage battery in which a power generation element in which a positive electrode and a negative electrode are stacked via a separator is wound, an alkaline electrolyte is injected into the power generation element before or after the power generation element is wound. Is preferred. The method of injecting the alkaline electrolyte is not particularly limited, and may be injected at normal pressure. For example, a vacuum impregnation method, a pressure impregnation method, a centrifugal impregnation method, or the like may be used. Moreover, as an exterior material of a sealed nickel-metal hydride storage battery, for example, a material made of iron, stainless steel, polyolefin resin, or the like plated with a metal material such as iron or nickel can be cited.

前記密閉型ニッケル水素蓄電池の態様としては特に限定されず、例えば、コイン電池、ボタン電池、角型電池、扁平型電池等の正極、負極及び単層又は複層のセパレータを備えた電池や、ロール状の正極、負極及びセパレータを備えた円筒型電池等が挙げられる。   The embodiment of the sealed nickel-metal hydride storage battery is not particularly limited. For example, a battery including a positive electrode such as a coin battery, a button battery, a square battery, and a flat battery, a negative electrode, and a single-layer or multi-layer separator, a roll And a cylindrical battery including a positive electrode, a negative electrode and a separator.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

以下に示す方法により、ニッケル水素蓄電池を作製した。
<水素吸蔵合金の作製>
化学組成がLa0.80Ce0.10Pr0.01Nd0.040.05Ni3.80Co0.80Mn0.30Al0.25及びLa0.64Pr0.20Mg0.16Ni3.50Al0.15となるように、それぞれ原料インゴットを所定量秤量してルツボに入れ、減圧アルゴンガス雰囲気下で高周波溶解炉を用いて1500℃に加熱し、材料を溶解した。溶融後、メルトスピニング法を適用して急冷し、合金を固化させた。
A nickel-metal hydride storage battery was produced by the method described below.
<Production of hydrogen storage alloy>
The chemical composition is La 0.80 Ce 0.10 Pr 0.01 Nd 0.04 Y 0.05 Ni 3.80 Co 0.80 Mn 0.30 Al 0.25 and La 0.64 Pr 0.20 Mg 0 .16 Ni 3.50 Al 0.15 Each of the raw material ingots was weighed into a crucible and placed in a crucible, and heated to 1500 ° C. using a high-frequency melting furnace in a reduced pressure argon gas atmosphere to dissolve the materials. . After melting, it was quenched by applying a melt spinning method to solidify the alloy.

なお、La0.80Ce0.10Pr0.01Nd0.040.05Ni3.80Co0.80Mn0.30Al0.25の化学組成を有する合金が前記水素吸蔵合金(B)に相当し、La0.64Pr0.20Mg0.16Ni3.50Al0.15の化学組成を有する合金が前記水素吸蔵合金(A)に相当する。 Note that an alloy having a chemical composition of La 0.80 Ce 0.10 Pr 0.01 Nd 0.04 Y 0.05 Ni 3.80 Co 0.80 Mn 0.30 Al 0.25 is the hydrogen storage alloy ( B), an alloy having a chemical composition of La 0.64 Pr 0.20 Mg 0.16 Ni 3.50 Al 0.15 corresponds to the hydrogen storage alloy (A).

次に、得られた合金を加圧されたアルゴンガス雰囲気下で、それぞれ1000℃及び950℃にて熱処理を5時間行った後、得られた水素吸蔵合金を粉砕し、平均粒径(D50)がそれぞれ42μm及び50μmの水素吸蔵合金粉末とした。なお、平均粒径(D50)はマイクロトラック社製MT3000装置を用いて測定した。   Next, the obtained alloy was heat-treated at 1000 ° C. and 950 ° C. for 5 hours under a pressurized argon gas atmosphere, and then the obtained hydrogen storage alloy was pulverized to obtain an average particle size (D50). Were hydrogen storage alloy powders of 42 μm and 50 μm, respectively. The average particle diameter (D50) was measured using an MT3000 apparatus manufactured by Microtrack.

<水素平衡圧の測定>
粉砕後の水素吸蔵合金粉末を用いて、80℃での平衡水素圧(水素吸蔵量H/M=0.4における放出圧)を、ジーベルツPCT装置として鈴木商館社製PCT特性測定装置を用いて測定した。当該平衡水素圧は、La0.80Ce0.10Pr0.01Nd0.040.05Ni3.80Co0.80Mn0.30Al0.25合金及びLa0.64Pr0.20Mg0.16Ni3.50Al0.15合金で、それぞれ0.14MPaと0.02MPaであった。
<Measurement of hydrogen equilibrium pressure>
Using the hydrogen storage alloy powder after pulverization, the equilibrium hydrogen pressure at 80 ° C. (discharge pressure at hydrogen storage amount H / M = 0.4) is used as a Siebelz PCT apparatus using a PCT characteristic measurement apparatus manufactured by Suzuki Shokan Co., Ltd. It was measured. The equilibrium hydrogen pressure is La 0.80 Ce 0.10 Pr 0.01 Nd 0.04 Y 0.05 Ni 3.80 Co 0.80 Mn 0.30 Al 0.25 alloy and La 0.64 Pr 0 .20 Mg 0.16 Ni 3.50 Al 0.15 alloy with 0.14 MPa and 0.02 MPa, respectively.

<密閉形ニッケル水素蓄電池負極の作製>
上記のようにして得られたLa0.80Ce0.10Pr0.01Nd0.040.05Ni3.80Co0.80Mn0.30Al0.25合金及びLa0.64Pr0.20Mg0.16Ni3.50Al0.15合金の粉末を、それぞれ10:0、8:2、6:4、4:6、2:8、0:10の質量比で混合し、110℃で2時間、8M水酸化カリウム水溶液中に浸漬させた後、pHが10となるまで水洗を繰り返した。乾燥後の粉末100質量部に増粘剤(メチルセルロース)を溶解した水溶液を加え、更に、結着剤(スチレンブタジエンゴム)を1質量部加えてペースト状にしたものを厚さ35μmの穿孔鋼板(開口率50%)の両面に塗布して乾燥させた後、厚さ0.31mmにプレスして、負極板とした。
<Preparation of sealed nickel-metal hydride storage battery negative electrode>
La 0.80 Ce 0.10 Pr 0.01 Nd 0.04 Y 0.05 Ni 3.80 Co 0.80 Mn 0.30 Al 0.25 alloy and La 0.64 obtained as described above. Pr 0.20 Mg 0.16 Ni 3.50 Al 0.15 alloy powders are mixed at mass ratios of 10: 0, 8: 2, 6: 4, 4: 6, 2: 8, and 0:10, respectively. Then, after being immersed in an 8M aqueous potassium hydroxide solution at 110 ° C. for 2 hours, washing with water was repeated until the pH reached 10. An aqueous solution in which a thickener (methylcellulose) is dissolved is added to 100 parts by mass of the powder after drying, and further 1 part by mass of a binder (styrene butadiene rubber) is added to form a paste, which is a perforated steel sheet having a thickness of 35 μm ( It was applied to both surfaces having an aperture ratio of 50% and dried, and then pressed to a thickness of 0.31 mm to obtain a negative electrode plate.

<密閉形ニッケル水素蓄電池正極の作製>
また、正極活物質には、亜鉛3質量%及びコバルト0.6質量%を固溶状態で含有する水酸化ニッケル表面に、6質量%の水酸化コバルトを被覆したものを、18M水酸化ナトリウム溶液を用いて110℃で1時間空気酸化処理して得られたものを用いた。増粘剤(カルボキシメチルセルロース)を溶解させた水溶液と、活物質と、更に酸化イッテルビウム2質量%とを混合してペーストを作製し、ニッケル発泡基材に充填し、乾燥させた後、所定の厚さ(0.77mm)にプレスすることによって正極板とした。
<Preparation of sealed nickel-metal hydride storage battery positive electrode>
Further, as the positive electrode active material, a nickel hydroxide surface containing 3% by mass of zinc and 0.6% by mass of cobalt in a solid solution state and coated with 6% by mass of cobalt hydroxide is used as an 18M sodium hydroxide solution. The product obtained by air oxidation treatment at 110 ° C. for 1 hour using was used. An aqueous solution in which a thickener (carboxymethylcellulose) is dissolved, an active material, and further 2% by mass of ytterbium oxide are mixed to prepare a paste, filled in a nickel foam substrate, dried, and then given a predetermined thickness. A positive electrode plate was formed by pressing to a thickness (0.77 mm).

<密閉形ニッケル水素蓄電池の作製>
正極と負極とを、正極容量1に対して負極容量が1.35となる割合でセパレータを介して渦巻き上に捲回して電極群とし、円筒状の金属ケースに収納した。次に、7Mの水酸化カリウムと0.8Mの水酸化リチウムからなる電解液を1.95mL注液し、安全弁を備えた金属製蓋体で封口して、2400mAh AAサイズのニッケル水素蓄電池を作製した。なお、正極及び負極の容量は参照電極を用いた開放形電池にてそれぞれ確認した。
<Production of sealed nickel-metal hydride storage battery>
The positive electrode and the negative electrode were wound on a spiral through a separator at a ratio such that the negative electrode capacity was 1.35 with respect to the positive electrode capacity 1 to form an electrode group, which was housed in a cylindrical metal case. Next, 1.95 mL of an electrolyte composed of 7M potassium hydroxide and 0.8M lithium hydroxide was injected and sealed with a metal lid provided with a safety valve to produce a 2400 mAh AA size nickel metal hydride storage battery. did. In addition, the capacity | capacitance of the positive electrode and the negative electrode was confirmed with the open battery using the reference electrode, respectively.

<負極容量の確認>
正極板には負極容量の3倍の容量を有するシンター式水酸化ニッケル電極を用いた。セパレータを介して負極を正極で挟み込み、これらの電極に1kgfの圧力がかかるようにこれらの電極を固定して7M水酸化カリウム水溶液を注入し、開放形セルを組み立てた。そして、20℃で、0.1ItAで15時間の充電、休止1時間、0.2ItAでHg/HgO参照電極に対して−0.6Vまで放電を行う充放電サイクルを繰り返し、最大容量に達するまでのサイクル数と負極容量を求めた。
<Confirmation of negative electrode capacity>
As the positive electrode plate, a sintered nickel hydroxide electrode having a capacity three times the negative electrode capacity was used. A negative electrode was sandwiched between positive electrodes through a separator, these electrodes were fixed so that a pressure of 1 kgf was applied to these electrodes, and a 7M potassium hydroxide aqueous solution was injected to assemble an open cell. Then, at 20 ° C., charging for 15 hours at 0.1 ItA, resting for 1 hour, and repeating a charging / discharging cycle of discharging to −0.6 V against the Hg / HgO reference electrode at 0.2 ItA until the maximum capacity is reached. The number of cycles and the negative electrode capacity were determined.

<正極容量の確認>
負極板には正極容量の3倍の容量を有する水素吸蔵合金電極を用いた。セパレータを介して正極を負極で挟み込み、これらの電極に1kgfの圧力がかかるようにこれらの電極を固定して7M水酸化カリウム水溶液を注入し、開放形セルを組み立てた。そして、20℃で、0.1ItAで15時間の充電、休止1時間、0.2ItAでHg/HgO参照電極に対して0Vまで放電をおこなう充放電サイクルを繰り返し、最大容量に達するまでのサイクル数と正極容量を求めた。
<Confirmation of positive electrode capacity>
A hydrogen storage alloy electrode having a capacity three times the positive electrode capacity was used for the negative electrode plate. The positive electrode was sandwiched between the negative electrode through the separator, these electrodes were fixed so that a pressure of 1 kgf was applied to the electrodes, and a 7M potassium hydroxide aqueous solution was injected to assemble an open cell. And at 20 ° C., charging for 15 hours at 0.1 ItA, resting for 1 hour, charging / discharging cycle for discharging to 0 V with respect to the Hg / HgO reference electrode at 0.2 ItA, and the number of cycles until reaching the maximum capacity And the positive electrode capacity was determined.

<密閉形ニッケル水素蓄電池の初期化成>
全ての電池は、次の手順で初期化成を行った。充電は20℃、0.1ItAで15時間行った後、20℃、0.2ItAで終止電圧が1Vとなるまで放電するサイクルを3サイクル繰り返した。その後40℃で2日間放置し、化成とした。
<Initialization of sealed nickel-metal hydride storage battery>
All batteries were initialized by the following procedure. Charging was performed at 20 ° C. and 0.1 ItA for 15 hours, and then a cycle of discharging at 20 ° C. and 0.2 ItA until the final voltage reached 1 V was repeated three times. Thereafter, it was left at 40 ° C. for 2 days to form a chemical.

<密閉形ニッケル水素蓄電池の充電末期保存試験>
はじめに、充電は20℃、0.1ItAで15時間行った後、1時間休止をし、20℃、0.2ItAで終止電圧が1Vとなるまで放電して、初期容量を求めた。その後、充電は20℃、0.1ItAで15時間行った後、45℃又は60℃、で14日間保存した。20℃で3時間放置した後、20℃、0.2ItAで終止電圧が1Vとなるまで放電して残存容量を求めた。更に、充電を20℃、0.1ItAで15時間行った後、1時間休止をし、20℃、0.2ItAで終止電圧が1Vとなるまで放電するサイクルを3サイクル繰り返し、回復容量を求めた。更に、残存容量維持率(%)及び回復容量維持率(%)を、それぞれ以下に示す式に従い求めた。
<End-of-life storage test for sealed nickel-metal hydride batteries>
First, charging was carried out at 20 ° C. and 0.1 ItA for 15 hours, then rested for 1 hour, and discharged at 20 ° C. and 0.2 ItA until the final voltage reached 1 V to obtain the initial capacity. Thereafter, charging was performed at 20 ° C. and 0.1 ItA for 15 hours, and then stored at 45 ° C. or 60 ° C. for 14 days. After leaving at 20 ° C. for 3 hours, the battery was discharged at 20 ° C. and 0.2 ItA until the final voltage reached 1 V, and the remaining capacity was determined. Further, after charging for 15 hours at 20 ° C. and 0.1 ItA, the cycle was rested for 1 hour and then discharged at 20 ° C. and 0.2 ItA until the final voltage reached 1 V, and the recovery capacity was determined by repeating three cycles. . Furthermore, the remaining capacity retention rate (%) and the recovery capacity retention rate (%) were determined according to the following formulas.

残存容量維持率(%)=残存容量/初期容量×100
回復容量維持率(%)=回復容量/初期容量×100
Remaining capacity maintenance ratio (%) = remaining capacity / initial capacity × 100
Recovery capacity retention rate (%) = Recovery capacity / initial capacity × 100

得られた結果を下記表1に示す。なお、表1中、「水素吸蔵合金(A)」は、La0.64Pr0.20Mg0.16Ni3.50Al0.15合金を意味する。 The obtained results are shown in Table 1 below. In Table 1, “hydrogen storage alloy (A)” means La 0.64 Pr 0.20 Mg 0.16 Ni 3.50 Al 0.15 alloy.

Figure 0005769028
Figure 0005769028

表1に示すように、La0.64Pr0.20Mg0.16Ni3.50Al0.15合金の比率が高くなるにつれて、残存容量維持率は増大したが、回復容量維持率はやや低下した。 As shown in Table 1, as the ratio of La 0.64 Pr 0.20 Mg 0.16 Ni 3.50 Al 0.15 alloy increased, the remaining capacity retention ratio increased, but the recovery capacity retention ratio was somewhat Declined.

<密閉形ニッケル水素蓄電池の放電末期保存試験>
はじめに、充電は20℃、0.1ItAで15時間行った後、1時間休止をし、20℃、0.2ItAで終止電圧が1Vとなるまで放電して、初期容量を求めた。その後45℃、で112日間保存した。20℃で3時間放置した後、充電を20℃、0.1ItAで15時間行った後、1時間休止をし、20℃、0.2ItAで終止電圧が1Vとなるまで放電するサイクルを3サイクル繰り返し、回復容量を求めた。また、得られた回復容量から上記におけると同様にして回復容量維持率(%)を求めた。得られた結果を下記表2に示す。なお、表2中、「水素吸蔵合金(A)」は、La0.64Pr0.20Mg0.16Ni3.50Al0.15合金を意味する。
<End-of-discharge storage test for sealed nickel-metal hydride batteries>
First, charging was carried out at 20 ° C. and 0.1 ItA for 15 hours, then rested for 1 hour, and discharged at 20 ° C. and 0.2 ItA until the final voltage reached 1 V to obtain the initial capacity. Thereafter, it was stored at 45 ° C. for 112 days. After leaving at 20 ° C for 3 hours, charging was performed at 20 ° C and 0.1 ItA for 15 hours, then resting for 1 hour, and discharging at 20 ° C and 0.2 ItA until the final voltage became 1 V. 3 cycles Repeatedly, the recovery capacity was determined. The recovery capacity retention rate (%) was determined from the recovery capacity obtained in the same manner as described above. The obtained results are shown in Table 2 below. In Table 2, “hydrogen storage alloy (A)” means La 0.64 Pr 0.20 Mg 0.16 Ni 3.50 Al 0.15 alloy.

Figure 0005769028
Figure 0005769028

表2に示すように、La0.64Pr0.20Mg0.16Ni3.50Al0.15合金の比率が100質量%のとき、3サイクル目の回復容量維持率は96.1%であった。回復容量がサイクル数に伴って減少していくことは負極(負極の容量劣化)に起因すると考えられる。また、La0.64Pr0.20Mg0.16Ni3.50Al0.15合金の比率が20質量%のとき、回復容量維持率は96%であった。これは、AB型合金であるLa0.80Ce0.10Pr0.01Nd0.040.05Ni3.80Co0.80Mn0.30Al0.25合金の比率が多いために、微少短絡による自己放電が生じたものと推測される。そして、La0.64Pr0.20Mg0.16Ni3.50Al0.15合金の比率が40質量%及び60質量%である場合に、高い回復容量維持率が得られ、優れた長期保存性能が発現された。 As shown in Table 2, when the ratio of La 0.64 Pr 0.20 Mg 0.16 Ni 3.50 Al 0.15 alloy is 100% by mass, the recovery capacity retention rate at the third cycle is 96.1%. Met. The decrease in the recovery capacity with the number of cycles is considered to be due to the negative electrode (deterioration of negative electrode capacity). When the ratio of La 0.64 Pr 0.20 Mg 0.16 Ni 3.50 Al 0.15 alloy was 20% by mass, the recovery capacity retention rate was 96%. This is a large proportion of the AB 5 type alloy La 0.80 Ce 0.10 Pr 0.01 Nd 0.04 Y 0.05 Ni 3.80 Co 0.80 Mn 0.30 Al 0.25 alloy. For this reason, it is presumed that self-discharge due to a minute short circuit occurred. And when the ratio of La 0.64 Pr 0.20 Mg 0.16 Ni 3.50 Al 0.15 alloy is 40% by mass and 60% by mass, a high recovery capacity retention rate is obtained, and excellent long-term Storage performance was expressed.

Claims (3)

希土類−Mg−Ni系水素吸蔵合金(A)と、希土類−Ni系水素吸蔵合金(B)とを含有する負極を備えたニッケル水素蓄電池であって、
前記負極における前記希土類−Mg−Ni系水素吸蔵合金(A)と前記希土類−Ni系水素吸蔵合金(B)との含有量の合計に対する、前記希土類−Mg−Ni系水素吸蔵合金(A)の含有量の比率が、30〜70質量%であり、
前記希土類−Mg−Ni系水素吸蔵合金(A)の80℃での平衡水素圧(水素吸蔵量H/M=0.4における放出圧)が、0.05MPa以下であり、
前記希土類−Ni系水素吸蔵合金(B)の80℃での平衡水素圧(水素吸蔵量H/M=0.4における放出圧)が、0.1MPa以上であるニッケル水素蓄電池。
A nickel-metal hydride storage battery comprising a negative electrode containing a rare earth-Mg-Ni hydrogen storage alloy (A) and a rare earth-Ni hydrogen storage alloy (B),
Of the rare earth-Mg-Ni hydrogen storage alloy (A) with respect to the total content of the rare earth-Mg-Ni hydrogen storage alloy (A) and the rare earth-Ni system hydrogen storage alloy (B) in the negative electrode. the ratio of the content, Ri 30-70% by mass,
The rare earth-Mg—Ni-based hydrogen storage alloy (A) has an equilibrium hydrogen pressure at 80 ° C. (a release pressure at a hydrogen storage amount H / M = 0.4) of 0.05 MPa or less,
A nickel-metal hydride storage battery in which the rare earth-Ni-based hydrogen storage alloy (B) has an equilibrium hydrogen pressure at 80 ° C. (a release pressure at a hydrogen storage amount H / M = 0.4) of 0.1 MPa or more.
前記希土類−Mg−Ni系水素吸蔵合金(A)の平均粒径(D50)が、前記希土類−Ni系水素吸蔵合金(B)の平均粒径(D50)以上である請求項1記載のニッケル水素蓄電池。   2. The nickel hydride according to claim 1, wherein an average particle diameter (D50) of the rare earth-Mg—Ni-based hydrogen storage alloy (A) is equal to or greater than an average particle diameter (D50) of the rare-earth-Ni-based hydrogen storage alloy (B). Storage battery. 前記希土類−Mg−Ni系水素吸蔵合金(A)及び前記希土類−Ni系水素吸蔵合金(B)が、アルミニウムを含有することを特徴とする請求項1又は2記載のニッケル水素蓄電池。The nickel-metal hydride storage battery according to claim 1 or 2, wherein the rare earth-Mg-Ni hydrogen storage alloy (A) and the rare earth-Ni hydrogen storage alloy (B) contain aluminum.
JP2012027619A 2012-02-10 2012-02-10 Nickel metal hydride storage battery Active JP5769028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027619A JP5769028B2 (en) 2012-02-10 2012-02-10 Nickel metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027619A JP5769028B2 (en) 2012-02-10 2012-02-10 Nickel metal hydride storage battery

Publications (2)

Publication Number Publication Date
JP2013164991A JP2013164991A (en) 2013-08-22
JP5769028B2 true JP5769028B2 (en) 2015-08-26

Family

ID=49176234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027619A Active JP5769028B2 (en) 2012-02-10 2012-02-10 Nickel metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP5769028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658660B2 (en) 2016-09-26 2020-05-19 Primearth Ev Energy Co., Ltd. Nickel-metal hydride battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291511A (en) * 2000-04-07 2001-10-19 Toshiba Corp Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP4587734B2 (en) * 2004-07-30 2010-11-24 三洋電機株式会社 Hydrogen storage alloy electrode and secondary battery using the electrode
JP4958411B2 (en) * 2004-08-25 2012-06-20 三洋電機株式会社 Hydrogen storage alloy electrode and alkaline storage battery
JP4511298B2 (en) * 2004-09-28 2010-07-28 三洋電機株式会社 Nickel metal hydride storage battery
JP5171123B2 (en) * 2007-06-22 2013-03-27 三洋電機株式会社 Alkaline secondary battery

Also Published As

Publication number Publication date
JP2013164991A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP5927372B2 (en) Alkaline secondary battery and method for producing alkaline secondary battery
US20130213532A1 (en) Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy
JPWO2018021361A1 (en) Magnesium-lithium alloy and magnesium air battery
JP2012069510A (en) Cylindrical nickel-hydrogen storage battery
JP5217826B2 (en) Nickel metal hydride storage battery
JP2008071759A (en) Composition of anode of alkaline electrolytic solution battery, anode composed of the composition, and alkaline electrolytic solution battery composed of this anode
JP2012227106A (en) Nickel-metal hydride battery
US20110274972A1 (en) Hydrogen-absorbing alloy and nickel-metal hydride rechargeable battery
JP5796787B2 (en) Hydrogen storage alloy and nickel metal hydride storage battery
JP5577672B2 (en) Hydrogen storage alloy electrode and nickel metal hydride battery using the same
JP2012188728A (en) Composite hydrogen-storage alloy and nickel-metal hydride storage battery
JP5716969B2 (en) Nickel metal hydride storage battery
JP5495100B2 (en) Hydrogen storage alloy and nickel metal hydride storage battery
JP6422017B2 (en) Hydrogen storage alloy, electrode and nickel metal hydride storage battery
JP5481803B2 (en) Nickel metal hydride storage battery
JP6201307B2 (en) Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy
JP5769028B2 (en) Nickel metal hydride storage battery
JP6394955B2 (en) Hydrogen storage alloy, electrode and nickel metal hydride storage battery
JP5532389B2 (en) Hydrogen storage alloy and nickel metal hydride storage battery
JP5532390B2 (en) Nickel metal hydride storage battery
JP6406796B2 (en) Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy
JP2008269888A (en) Nickel-hydrogen storage battery
JP2014199732A (en) Nickel hydride storage battery
JP2019067761A (en) Methods and compositions to improve high-temperature performance of nickel metal hydride batteries
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5769028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150