JPH10172550A - Alkaline battery with nickel positive electrode and its activating method - Google Patents

Alkaline battery with nickel positive electrode and its activating method

Info

Publication number
JPH10172550A
JPH10172550A JP8324029A JP32402996A JPH10172550A JP H10172550 A JPH10172550 A JP H10172550A JP 8324029 A JP8324029 A JP 8324029A JP 32402996 A JP32402996 A JP 32402996A JP H10172550 A JPH10172550 A JP H10172550A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
coooh
coo
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8324029A
Other languages
Japanese (ja)
Other versions
JP3399265B2 (en
Inventor
Taketoshi Minohara
雄敏 蓑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32402996A priority Critical patent/JP3399265B2/en
Publication of JPH10172550A publication Critical patent/JPH10172550A/en
Application granted granted Critical
Publication of JP3399265B2 publication Critical patent/JP3399265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the uneven distribution of CoOOH to uniformly distribute in a nickel positive electrode, and enhance discharge characteristics being subject to the influence of an activation state of a battery by containing amorphous CoOOH in the nickel positive electrode in an alkaline battery with the nickel positive electrode. SOLUTION: In an activated alkaline battery, the active material surface of a nickel positive electrode is uniformly covered with fine particles of amorphous CoOOH, fine conducting networks are formed, and high discharge characteristics are obtained. Smaller particle diameter of Co and CoO which are starting material is preferable from the standpoint of solubility to an electrolyte, For example, mean particle diameter of Co is preferable to be 10 micron or less, and that of CoO is preferable to be 8 micron or less. If the mean particle diameters exceed these values, dissolution to the electrolyte is made difficult, at least one of Co and CoO remains in the electrolyte, and sometimes it has bad effect on the discharge characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・カドミ
ウム電池、ニッケル−亜鉛電池、ニッケル・水素電池な
どのニッケル正極をもつアルカリ電池とその活性化方法
に関する。さらに詳しくは、コバルトを活物質に添加し
たニッケル正極をもち、優れた容量特性及び高率放電特
性をもつアルカリ電池とその活性化方法に関する。
The present invention relates to an alkaline battery having a nickel positive electrode, such as a nickel-cadmium battery, a nickel-zinc battery, and a nickel-metal hydride battery, and a method of activating the alkaline battery. More specifically, the present invention relates to an alkaline battery having a nickel positive electrode in which cobalt is added to an active material and having excellent capacity characteristics and high-rate discharge characteristics, and a method for activating the alkaline battery.

【0002】[0002]

【従来の技術】アルカリ蓄電池は、信頼性が高いこと、
小型軽量化及び高容量化が可能であることなどの理由に
より、各種ポータブル機器や産業用の電源として広く用
いられている。そしてアルカリ蓄電池の正極には、主と
して水酸化ニッケルからなる活物質をもつニッケル電極
が用いられている。
2. Description of the Related Art Alkaline storage batteries have high reliability,
Because of their small size, light weight, and high capacity, they are widely used as various portable devices and industrial power supplies. As a positive electrode of the alkaline storage battery, a nickel electrode having an active material mainly composed of nickel hydroxide is used.

【0003】このニッケル正極は、発泡ニッケルなどの
多孔質金属からなる電極基材に活物質を充填することで
製造されている。活物質を充填する方法としては、例え
ば特開平5−151965号公報に、水酸化ニッケルを
主とする活物質材料を結着剤とともに多孔質電極基材に
物理的に充填する方法が開示されている。この方法は、
一般にペースト充填法と称されている。
[0003] The nickel positive electrode is manufactured by filling an active material into an electrode substrate made of a porous metal such as foamed nickel. As a method of filling the active material, for example, Japanese Patent Application Laid-Open No. 5-151965 discloses a method of physically filling a porous electrode base material with an active material mainly containing nickel hydroxide together with a binder. I have. This method
It is generally called a paste filling method.

【0004】ところで、ニッケル正極の活物質である水
酸化ニッケルは、充電状態、放電状態のいずれでも導電
性にならないため、別に導電性の骨格が必要であり、発
泡ニッケルなどの発泡金属骨格に水酸化ニッケル粉末を
充填する方法が開発された。しかしこれでも活物質の利
用率がまだ低く、活物質粉末どうしの導電性を確保する
必要があった。
Incidentally, nickel hydroxide, which is the active material of the nickel positive electrode, does not become conductive in either the charged state or the discharged state. Therefore, a separate conductive skeleton is required. A method of filling nickel oxide powder has been developed. However, even in this case, the utilization rate of the active material is still low, and it is necessary to ensure the conductivity between the active material powders.

【0005】そこで活物質とともに金属コバルト、酸化
コバルト(CoO)あるいはフッ化コバルト(CoF)
などのコバルト化合物を含ませるのが望ましいことがわ
かり、研究が進められた。金属コバルトあるいはコバル
ト化合物の存在により、充放電を繰り返した時に水酸化
コバルト及びCoOOHが生成し、多孔質金属電極基材
と活物質との電気的接触性が向上するため、いわゆる導
電ネットワークの形成により活物質の利用効率が向上す
るのである。
[0005] Therefore, together with the active material, metallic cobalt, cobalt oxide (CoO) or cobalt fluoride (CoF)
It has been found that it is desirable to include such a cobalt compound, and research has been advanced. Due to the presence of metal cobalt or a cobalt compound, cobalt hydroxide and CoOOH are generated when charge and discharge are repeated, and the electrical contact between the porous metal electrode base material and the active material is improved. The use efficiency of the active material is improved.

【0006】つまり、コバルト化合物を含む電極では、
初期充電時に次式(1)式及び(2)式の反応が生じ、
放電時には次式(3)式の反応が生じるため、生成した
CoOOHにより導電ネットワークが構築される。 CoO+OH- → HCoO2 - (1) HCoO2 -+H2 O → Co(OH)2 +OH- (2) Co(OH)2 +OH- → CoOOH+H2 O+e- (3) すなわち、アルカリ電池を組み立てた直後には、ニッケ
ル正極は活性化されておらず、二次電池として使用可能
とするには上記反応を起こさせる活性化処理が必要とな
る。
That is, in an electrode containing a cobalt compound,
At the time of initial charging, reactions of the following equations (1) and (2) occur,
At the time of discharge, the reaction represented by the following equation (3) occurs, so that a conductive network is formed by the generated CoOOH. CoO + OH - → HCoO 2 - (1) HCoO 2 - + H 2 O → Co (OH) 2 + OH - (2) Co (OH) 2 + OH - → CoOOH + H 2 O + e - (3) That is, immediately after assembling the alkaline batteries In this case, the nickel positive electrode is not activated, and an activation treatment for causing the above-described reaction is required to enable use as a secondary battery.

【0007】例えばニッケル・水素電池を組み立てた時
点では、正極、負極ともに活性化されていないため、
0.1C程度の充電電流で約150%充電し、0.2C
程度の放電電流で約0.9Vまで放電する充放電を数回
繰り返すことで活性化する方法が一般的である。また組
立後の電池を充電せずに高温で貯蔵して活性化する方法
も知られている。
For example, at the time of assembling a nickel-metal hydride battery, both the positive electrode and the negative electrode are not activated.
Charge about 150% with a charging current of about 0.1C,
A method is generally used in which activation is performed by repeating charge and discharge for discharging to about 0.9 V with a discharge current of about several times. A method of storing and activating the assembled battery at a high temperature without charging the battery is also known.

【0008】しかしこのような活性化方法では、得られ
たアルカリ電池の大電流放電特性や低温放電特性が充分
でないという問題があった。そこで、例えば特開平7−
73902号公報には、充電状態のアルカリ電池を高温
で短時間貯蔵することで活性化する方法が開示されてい
る。この方法によれば、短時間で充分な活性化を行うこ
とができ、大電流放電特性や低温放電特性など電池の活
性化状態に影響を受ける放電特性が向上する。
[0008] However, such an activation method has a problem that the obtained alkaline battery has insufficient high-current discharge characteristics and low-temperature discharge characteristics. Therefore, for example, Japanese Patent Application Laid-Open
No. 73902 discloses a method of activating a charged alkaline battery by storing it at a high temperature for a short time. According to this method, sufficient activation can be performed in a short time, and the discharge characteristics such as a large current discharge characteristic and a low temperature discharge characteristic that are affected by the activation state of the battery are improved.

【0009】[0009]

【発明が解決しようとする課題】ところが従来の活性化
方法で処理されたアルカリ電池でも、大電流放電特性や
低温放電特性などが未だ充分とはいえず、さらなる特性
の向上が求められている。例えば特開平7−73902
号公報に開示された方法は、主としてニッケル・水素
(Ni−MH)電池の負極を活性化するものであり、他
にも正極の活性化に関する文献等はほとんど見あたらな
い。
However, even with an alkaline battery treated by the conventional activation method, large current discharge characteristics, low temperature discharge characteristics, and the like are not yet sufficient, and further improvement in characteristics is required. For example, JP-A-7-73902
The method disclosed in the above publication mainly activates the negative electrode of a nickel-metal hydride (Ni-MH) battery, and there are almost no other documents relating to the activation of the positive electrode.

【0010】またCoOOHによる導電性ネットワーク
を構築する方法で製造されたアルカリ電池においても、
生成したCoOOHの偏在が大きいために、大電流で充
放電を実施する場合にはその利用効率がきわめて低く出
力が低いという問題がある。本発明はこのような事情に
鑑みてなされたものであり、CoOOHの偏在を抑制し
てニッケル正極に均一に存在させ、電池の活性化状態に
影響を受ける放電特性を一層向上させることを目的とす
る。
In an alkaline battery manufactured by a method of constructing a conductive network using CoOOH,
Due to the large uneven distribution of the generated CoOOH, there is a problem that when charging and discharging are performed with a large current, the utilization efficiency is extremely low and the output is low. The present invention has been made in view of such circumstances, and has as its object to suppress uneven distribution of CoOOH so as to uniformly exist in the nickel positive electrode and further improve discharge characteristics affected by the activation state of the battery. I do.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する請求
項1に記載のニッケル正極をもつアルカリ電池の特徴
は、ニッケル正極をもつアルカリ電池において、ニッケ
ル正極には非晶質のCoOOHを含むことにある。また
請求項2に記載のニッケル正極をもつアルカリ電池の活
性化方法の特徴は、金属コバルト(Co)粉末と一酸化
コバルト(CoO)粉末の少なくとも一方を含むニッケ
ル正極をもつ未活性のアルカリ電池に電解液を注入し4
0℃未満の温度で所定時間保持する熟成工程と、40〜
60℃の温度において正極活物質1g当たり20mA以
下の電流量で定格容量の100〜110%の充電量とな
るように初期充電を行う充電工程と、をこの順に行うこ
とにある。
According to a first aspect of the present invention, there is provided an alkaline battery having a nickel positive electrode, wherein the nickel positive electrode contains amorphous CoOOH. It is in. A feature of the method for activating an alkaline battery having a nickel positive electrode according to claim 2 is that an alkaline battery having a nickel positive electrode containing at least one of a metal cobalt (Co) powder and a cobalt monoxide (CoO) powder is provided. Inject electrolyte 4
An aging step of holding at a temperature lower than 0 ° C. for a predetermined time;
And a charging step of performing initial charging at a temperature of 60 ° C. at a current amount of 20 mA or less per 1 g of the positive electrode active material so as to have a charging amount of 100 to 110% of the rated capacity.

【0012】[0012]

【発明の実施の形態】本発明の活性化方法では、Coと
CoOの少なくとも一方を含むことにより、熟成工程で
これらが電解液に接した時点で次式(1)の反応が生じ
ると考えられる。 CoO(Co)+OH- → HCoO2 - (1) つまり、CoとCoOの少なくとも一方は、(1)式の
反応により電解液に溶解し、HCoO2 -イオンとなる。
このHCoO2 -イオンは、電解液中で拡散し、活物質表
面を均一に覆う。この時点では、HCoO2 -イオンは
(2)式の平衡状態にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the activation method of the present invention, by containing at least one of Co and CoO, it is considered that a reaction represented by the following formula (1) occurs when these come into contact with the electrolytic solution in the aging step. . CoO (Co) + OH → HCoO 2 (1) That is, at least one of Co and CoO is dissolved in the electrolytic solution by the reaction of the formula (1) to become HCoO 2 ions.
The HCoO 2 - ions diffuse in the electrolyte and uniformly cover the active material surface. At this point, the HCoO 2 - ion is in the equilibrium state of the equation (2).

【0013】 HCoO2 -+H2 O = Co(OH)2 +OH- (2) この(1),(2)式の反応は、温度を40℃未満で行
うことが望ましい。温度が40℃以上になると、Coと
CoOの少なくとも一方の酸化反応が生じてCo3 4
が生成し、これは電解液に溶解しにくく活物質中に不純
物として存在するため、HCoO2 -イオンの生成量及び
CoOOHの生成量が減少してアルカリ電池の放電特性
が低下する。
HCoO 2 + H 2 O = Co (OH) 2 + OH (2) The reactions of the formulas (1) and (2) are desirably performed at a temperature lower than 40 ° C. When the temperature becomes 40 ° C. or higher, an oxidation reaction of at least one of Co and CoO occurs, and Co 3 O 4
Are generated, which are hardly dissolved in the electrolytic solution and exist as impurities in the active material. Therefore, the amount of HCoO 2 - ions and the amount of CoOOH are reduced, and the discharge characteristics of the alkaline battery are reduced.

【0014】この熟成工程の時間は、熟成温度に対応し
て決められ、熟成温度が低いほど熟成時間は長時間とな
る。例えば熟成温度が20℃程度の室温であれば、熟成
時間は約10時間以上必要となる。そして充電工程で
は、40〜60℃の温度において、正極活物質1g当た
り20mA(これは充電電流0.07Cに相当する)以
下の電流量で、定格容量の100〜110%の充電量と
なるように(これは正極活物質1g当たり300〜32
0mAhの合計電気量に相当する)初期充電を行うこと
により、次式(3),(4)の競争反応が生じる。
The time of the aging step is determined according to the aging temperature. The lower the aging temperature, the longer the aging time. For example, if the aging temperature is about room temperature of about 20 ° C., the aging time needs about 10 hours or more. Then, in the charging step, at a temperature of 40 to 60 ° C., a charging amount of 100 mA to 110% of the rated capacity is obtained at a current amount of 20 mA per gram of the positive electrode active material (this corresponds to a charging current of 0.07 C). (This is 300 to 32 per gram of the positive electrode active material.)
By performing the initial charging (corresponding to the total amount of electricity of 0 mAh), a competitive reaction of the following equations (3) and (4) occurs.

【0015】 Co(OH)2 +OH- → CoOOH+H2 O+e- (3) Ni(OH)2 +OH- → NiOOH+H2 O+e- (4) (2)式の平衡反応はゆっくりと右へ移るから、上記条
件であれば(3)式の反応もゆっくりと進行する。これ
により活物質の表面にきわめて微細な非晶質のCoOO
Hが均一に形成され、活物質間の導電性が確保される。
Co (OH) 2 + OH → CoOOH + H 2 O + e (3) Ni (OH) 2 + OH → NiOOH + H 2 O + e (4) Since the equilibrium reaction of the equation (2) slowly moves to the right, the above condition is satisfied. Then, the reaction of the formula (3) also proceeds slowly. Thereby, a very fine amorphous CoOO is formed on the surface of the active material.
H is uniformly formed, and conductivity between the active materials is ensured.

【0016】充電工程の温度が40℃未満では(3)式
の反応が生じにくくなり、結果的にCo及びCoOの少
なくとも一方が残存して放電特性に悪影響を及ぼす。ま
た60℃を超えると、負極に酸化が生じて劣化する場合
がある。また電流量が正極活物質1g当たり20mAを
超えると、(3)式の反応が急激に進行し、大きな粒子
の結晶質のCoOOHが不均一に析出するため活物質間
の導電性が不均一となると考えられ、放電特性が低下す
る。
If the temperature in the charging step is lower than 40 ° C., the reaction of the formula (3) becomes difficult to occur, and as a result, at least one of Co and CoO remains to adversely affect discharge characteristics. If the temperature exceeds 60 ° C., the anode may be oxidized and deteriorated. When the amount of current exceeds 20 mA per 1 g of the positive electrode active material, the reaction of the formula (3) proceeds rapidly, and the crystalline CoOOH of large particles precipitates non-uniformly. And the discharge characteristics are degraded.

【0017】なお、この電流量の下限は特に限定されな
いが、電流量が小さいほど充電時間が長くなり生産性が
低下するので、5mA以上とするのが好ましい。そして
充電量が定格容量の100%未満では、(3)式の反応
が充分に進行せずCoOOHの生成が少なく、110%
を超えると(3)式の反応が急激に進行し、大きな粒子
の結晶質のCoOOHが不均一に析出するため活物質間
の導電性が不均一となると考えられ、放電特性が低下す
る。定格容量の103〜110%の範囲が特に好まし
い。
The lower limit of the current is not particularly limited. However, the smaller the current, the longer the charging time and the lower the productivity. When the charged amount is less than 100% of the rated capacity, the reaction of the formula (3) does not sufficiently proceed, and the generation of CoOOH is small,
Is exceeded, the reaction of the formula (3) proceeds rapidly, and crystalline CoOOH of large particles precipitates non-uniformly, so that the conductivity between the active materials is considered to be non-uniform, and the discharge characteristics deteriorate. Particularly preferred is a range of 103 to 110% of the rated capacity.

【0018】したがって本発明の活性化方法により活性
化されたアルカリ電池では、ニッケル正極の活物質表面
が非晶質CoOOHの微細な粒子で均一に覆われている
ので、緻密な導電ネットワークが形成され高い放電特性
を示す。出発物質であるCo及びCoOの粒径は、電解
液への溶解性を考慮すれば、小さければ小さいほど好ま
しい。例えばCoの平均粒径は10μm以下が好まし
く、CoOの平均粒径は8μm以下であることが好まし
い。これより粒径が大きくなると電解液への溶解が困難
となって、電解液中にCo及びCoOの少なくとも一方
がCo3 4 となって残存し、放電特性に悪影響を及ぼ
す場合がある。
Therefore, in the alkaline battery activated by the activation method of the present invention, a dense conductive network is formed since the surface of the active material of the nickel positive electrode is uniformly covered with fine particles of amorphous CoOOH. Shows high discharge characteristics. The smaller the particle size of the starting materials Co and CoO, the better the smaller the particle size in consideration of the solubility in the electrolytic solution. For example, the average particle size of Co is preferably 10 μm or less, and the average particle size of CoO is preferably 8 μm or less. If the particle size is larger than this, it becomes difficult to dissolve in the electrolytic solution, and at least one of Co and CoO remains as Co 3 O 4 in the electrolytic solution, which may adversely affect the discharge characteristics.

【0019】またCo及びCoOの少なくとも一方の添
加量は、両方を含めばその合計で、正極活物質量の15
重量%以下とすることが好ましい。15重量%より多く
混合すると電池容量が相対的に低下するようになり好ま
しくない。なお、出発物質としてCoとCoOの少なく
とも一方を含めばよいが、CoとCoOの両方を含むこ
とが望ましい。これにより、機構は不明であるが、Co
34 の生成が抑制されるためCo及びCoOは円滑に
HCoO2 -イオンとなり、(3)式の反応が促進される
結果、少ないCo及びCoO量で非晶質のCoOOHが
多量に生成する。したがって従来に比べて添加するCo
量を低減して従来と同等の性能をもつニッケル正極を得
ることができ、コストの低減を図ることができるととも
に、活物質量が相対的に増加することにより電池容量が
増大する。
The total amount of at least one of Co and CoO, including both, is 15% of the positive electrode active material amount.
% By weight or less. If the content is more than 15% by weight, the battery capacity is relatively reduced, which is not preferable. Note that at least one of Co and CoO may be included as a starting material, and it is preferable to include both Co and CoO. As a result, although the mechanism is unknown, Co
Since the production of 3 O 4 is suppressed, Co and CoO become HCoO 2 - ions smoothly, and the reaction of the formula (3) is promoted. As a result, a large amount of amorphous CoOOH is produced with a small amount of Co and CoO. . Therefore, Co added in comparison with the conventional method
By reducing the amount, a nickel positive electrode having the same performance as that of the related art can be obtained, the cost can be reduced, and the battery capacity can be increased by relatively increasing the amount of the active material.

【0020】本発明はニッケル・水素(Ni−MH)電
池、ニッケル・カドミウム電池、ニッケル・亜鉛電池な
ど種々のアルカリ電池に適用できるが、中でもニッケル
・水素電池の活性化に特に好適である。例えばニッケル
・水素電池のニッケル正極には、一酸化ニッケル(Ni
O)、二酸化ニッケル(NiO2 )などのニッケル酸化
物、水酸化ニッケル[Ni(OH)2 ]などのニッケル
水酸化物などが活物質として用いられる。また、このニ
ッケル正極は、焼結法、ペースト法などのいずれで作製
したものも用いることができる。
The present invention can be applied to various alkaline batteries such as a nickel-hydrogen (Ni-MH) battery, a nickel-cadmium battery, and a nickel-zinc battery, and is particularly suitable for activating a nickel-metal hydride battery. For example, nickel monoxide (Ni
O), nickel oxide such as nickel dioxide (NiO 2 ), and nickel hydroxide such as nickel hydroxide [Ni (OH) 2 ] are used as the active material. Further, as the nickel positive electrode, one produced by any of a sintering method, a paste method and the like can be used.

【0021】また、ニッケル・水素電池の負極活物質と
しては、例えばAB2 系、AB5 系、AB系、A2 B系
などの水素貯蔵合金を用いることができる。なおAはT
i、Zr、Mn、Vなどであり、BはV、Ni、Cr、
Co、Fe、Mnなどであり、水素吸蔵合金としては、
例えばTi16Zr1622Ni39Cr7 、Ti16Zr16
22Ni32Cr7 Co7 、Ti15Zr1520.6Ni30Cr
6.6 Co6.6 Mn3.6Al2.7 、Ti15Zr1521Ni
31Cr6 Co6 Fe6 、Ti15Zr2115Ni 31Cr6
Co6 Fe6 などが例示される。
Further, the negative electrode active material of the nickel-metal hydride battery
For example, ABTwoSystem, ABFiveSystem, AB system, ATwoB system
And other hydrogen storage alloys. A is T
i, Zr, Mn, V, etc., and B is V, Ni, Cr,
Co, Fe, Mn, etc., and as a hydrogen storage alloy,
For example, Ti16Zr16Vtwenty twoNi39Cr7, Ti16Zr16V
twenty twoNi32Cr7Co7, TiFifteenZrFifteenV20.6Ni30Cr
6.6Co6.6Mn3.6Al2.7, TiFifteenZrFifteenVtwenty oneNi
31Cr6Co6Fe6, TiFifteenZrtwenty oneVFifteenNi 31Cr6
Co6Fe6And the like.

【0022】ニッケル・水素電池の電解液としてはアル
カリ水溶液が用いられ、例えば水酸化ナトリウム、水酸
化カリウム、水酸化リチウムなどの水溶液を用いること
ができる。
An alkaline aqueous solution is used as the electrolytic solution of the nickel-metal hydride battery. For example, an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.

【0023】[0023]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1) <Ni−MH電池の組立>Znを1.6重量%及びCo
を1.5重量%含み平均粒径10μmで最大粒径30μ
mの水酸化ニッケル粉末を100重量部と、平均粒径8
μmの金属コバルト粉末を2重量部、平均粒径5.3μ
mのCoO粉末を金属Co換算で5重量部、結着剤とし
てのCMC(カルボキシメチルセルロース)を1.5重
量部、及び純水適量を混合し、さらにボールミルにて4
8時間分散して、ペーストを調製した。
The present invention will be specifically described below with reference to examples and comparative examples. (Example 1) <Assembly of Ni-MH battery> 1.6% by weight of Zn and Co
1.5% by weight and an average particle size of 10 μm and a maximum particle size of 30 μm
100 parts by weight of nickel hydroxide powder having an average particle size of 8
2 parts by weight of metal cobalt powder having a particle size of 5.3 μm
m CoO powder, 5 parts by weight in terms of metal Co, 1.5 parts by weight of CMC (carboxymethylcellulose) as a binder, and an appropriate amount of pure water were mixed.
The mixture was dispersed for 8 hours to prepare a paste.

【0024】次に三次元網目構造を有する発泡ニッケル
電極基材(「セルメット」住友電工(株)製、厚さ1.
6mm、気孔率95%)を用意し、ヘラを用いて上記ペ
ーストを充填した。ペーストの充填量は、発泡ニッケル
電極基材1cm3 あたり0.75gである。そして60
〜80℃に加熱して充分に乾燥させた後圧延し、所定寸
法に切断して正極板を作製した。
Next, a foamed nickel electrode base material having a three-dimensional network structure ("Celmet", manufactured by Sumitomo Electric Industries, Ltd., thickness 1.
6 mm and a porosity of 95%), and the above paste was filled using a spatula. The filling amount of the paste is 0.75 g per 1 cm 3 of the foamed nickel electrode base material. And 60
After heating to 8080 ° C. and drying it sufficiently, it was rolled and cut into predetermined dimensions to produce a positive electrode plate.

【0025】一方、Mm Ni3.55Co0.75Mn0.4 Al
0.3 の水素吸蔵合金を機械的に粉砕し、マイクロシーブ
でふるいをかけて、平均粒径55μm、最大粒径75μ
mのMH粉末を調製した。このMH粉末100重量部
と、CMCを0.5重量部、導電助剤としての平均粒径
2μmのカーボン粉末を0.5重量部、及び適量のエタ
ノールと水を混合し、さらにボールミルにて48時間分
散してペーストを調製した。そして正極と同様に発泡ニ
ッケル電極基材に充填し、同様に乾燥・圧延・切断して
負極板を作製した。
On the other hand, Mm Ni 3.55 Co 0.75 Mn 0.4 Al
0.3 hydrogen storage alloy is mechanically pulverized and sieved with a micro sieve to obtain an average particle size of 55 μm and a maximum particle size of 75 μm.
m MH powder was prepared. 100 parts by weight of this MH powder, 0.5 parts by weight of CMC, 0.5 parts by weight of carbon powder having an average particle diameter of 2 μm as a conductive additive, and appropriate amounts of ethanol and water were mixed, and further mixed with a ball mill. A paste was prepared by dispersing for a time. Then, the foamed nickel electrode base material was filled in the same manner as the positive electrode, and dried, rolled and cut in the same manner to produce a negative electrode plate.

【0026】得られた正極板と負極板とを、親水化処理
されたポリプロピレン・ポリエチレン製不織布のセパレ
ータを介して巻回し、これを円筒状の電池缶に収容した
後、KOH:NaOH=7:3の比で濃度6モル/Lに
調製されたアルカリ電解液を所定量注入し、電池蓋を施
して、単3型で1200mAhの円筒型密閉Ni−MH
電池を組み立てた。この電池は、正極容量規制で負極/
正極=1.2であり、正極活物質1g当たりの定格容量
は289mA/gである。
The obtained positive electrode plate and negative electrode plate are wound around a separator made of non-woven fabric made of polypropylene / polyethylene which has been subjected to a hydrophilic treatment, and this is housed in a cylindrical battery can. Then, KOH: NaOH = 7: A predetermined amount of an alkaline electrolyte prepared to a concentration of 6 mol / L at a ratio of 3 was injected, a battery cover was provided, and a AA-size, 1200 mAh cylindrical sealed Ni-MH was used.
The battery was assembled. This battery uses a negative electrode /
The positive electrode was 1.2, and the rated capacity per gram of the positive electrode active material was 289 mA / g.

【0027】<熟成工程>得られた未活性状態の密閉電
池を、先ず10〜24時間室温(25℃)にて放置し、
電解液を正極及び負極に充分浸透させた。 <充電工程>その後、温度60℃、充電電流0.07C
(正極活物質1g当たり20mA)で、定格容量の10
3%(正極活物質1g当たり298mA)となるように
充電し、1/5Cにて放電させた。
<Aging Step> The obtained sealed battery in an inactive state is first left at room temperature (25 ° C.) for 10 to 24 hours.
The electrolyte was sufficiently permeated into the positive electrode and the negative electrode. <Charging process> After that, the temperature is 60 ° C and the charging current is 0.07C
(20 mA per gram of positive electrode active material) and rated capacity of 10
The battery was charged to 3% (298 mA per 1 g of the positive electrode active material) and discharged at 1 / 5C.

【0028】<試験>活性化された電池を1/5Cで
5.5時間充電してから、放電電流を1/5C、1C、
3C及び6Cでそれぞれ放電させた時の放電容量を測定
し、結果を表1に示す。表1からわかるように、この電
池は放電電流の大きさに関わらず安定した放電特性を示
している。
<Test> After charging the activated battery at 1 / 5C for 5.5 hours, the discharge current was reduced to 1 / 5C, 1C,
The discharge capacity at the time of discharging at 3C and 6C, respectively, was measured, and the results are shown in Table 1. As can be seen from Table 1, this battery shows stable discharge characteristics regardless of the magnitude of the discharge current.

【0029】また活性化後の電池を分解して正極表面を
顕微鏡観察したところ、正極活物質の表面に数nm〜数
10nmの微細な粒子が均一に付着しているのが観察さ
れた。この正極表面を赤外線分光分析にて分析したとこ
ろ、CoOOHとCo3 4の存在が確認された。そし
て正極活物質表面の粒子をX線回折にて分析したとこ
ろ、図1に示すようにCo3 4 のピークは観察された
が、CoOOHのピークは全く観察されなかった。つま
り、正極活物質表面に均一に付着している粒子には、結
晶質のCoOOHは含まれておらず、CoOOHは非晶
質として存在している。
When the battery after activation was disassembled and the surface of the positive electrode was observed under a microscope, it was observed that fine particles of several nm to several tens nm were uniformly attached to the surface of the positive electrode active material. When the positive electrode surface was analyzed by infrared spectroscopy, the presence of CoOOH and Co 3 O 4 was confirmed. When the particles on the surface of the positive electrode active material were analyzed by X-ray diffraction, a peak of Co 3 O 4 was observed as shown in FIG. 1, but no peak of CoOOH was observed. That is, the particles uniformly adhered to the surface of the positive electrode active material do not contain crystalline CoOOH, and CoOOH exists as amorphous.

【0030】(実施例2)実施例1と同様の未活性の電
池を用い、充電工程における温度を40℃としたこと、
及び充電電流を0.06C(正極活物質1g当たり17
mA)としたこと以外は実施例1と同様にして活性化し
た。そして実施例1と同様に放電容量とCoOOHの形
態を測定し、結果を表1に示す。
(Example 2) The same inactive battery as in Example 1 was used, and the temperature in the charging step was set to 40 ° C.
And a charging current of 0.06C (17 g / g of the positive electrode active material).
Activation was performed in the same manner as in Example 1 except that mA) was used. Then, the discharge capacity and the form of CoOOH were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0031】(実施例3)Co粉末の添加量を4重量部
としCoO粉末の添加量を10重量部としたこと以外は
実施例1と同様に作製された正極板を用い、実施例1と
同様にして未活性の電池を作製した。そして充電電流を
0.05C(正極活物質1g当たり14mA)としたこ
と、及び定格容量の105%(正極活物質1g当たり3
03mAに相当)となるように充電したこと以外は実施
例1と同様にして活性化し、同様に放電容量とCoOO
Hの形態を測定した結果を表1に示す。
Example 3 A positive electrode plate manufactured in the same manner as in Example 1 was used except that the addition amount of Co powder was 4 parts by weight and the addition amount of CoO powder was 10 parts by weight. An inactive battery was produced in the same manner. The charging current was set to 0.05 C (14 mA / g of the positive electrode active material), and 105% of the rated capacity (3% / g of the positive electrode active material).
Activated in the same manner as in Example 1 except that the battery was charged so as to have a discharge capacity and CoOO.
Table 1 shows the measurement results of the form of H.

【0032】(実施例4)Co粉末の添加量を10重量
部とし、平均粒径8μmのCoO粉末を用いてその添加
量を4重量部としたこと以外は実施例1と同様に作製さ
れた正極板を用い、実施例1と同様にして未活性の電池
を作製した。そして充電電流を0.05C(正極活物質
1g当たり14mA)としたこと、及び定格容量の10
5%(正極活物質1g当たり303mAに相当)となる
ように充電したこと以外は実施例1と同様にして活性化
し、同様に放電容量とCoOOHの形態を測定した結果
を表1に示す。
Example 4 The same procedure as in Example 1 was carried out except that the addition amount of Co powder was 10 parts by weight, and the addition amount was 4 parts by weight using CoO powder having an average particle size of 8 μm. An inactive battery was manufactured in the same manner as in Example 1 using the positive electrode plate. The charging current was set to 0.05 C (14 mA per 1 g of the positive electrode active material), and the rated capacity was set to 10
Activation was performed in the same manner as in Example 1 except that the battery was charged to 5% (corresponding to 303 mA per 1 g of the positive electrode active material), and the discharge capacity and the form of CoOOH were measured in the same manner as shown in Table 1.

【0033】(実施例5)Co粉末を用いず、実施例1
で用いたCoO粉末を7重量部添加したこと以外は実施
例1と同様に作製された正極板を用い、実施例1と同様
にして未活性の電池を作製した。そして充電工程の温度
を50℃としたこと以外は実施例1と同様にして活性化
し、同様に放電容量とCoOOHの形態を測定した結果
を表1に示す。
Example 5 Example 1 was performed without using Co powder.
An inactive battery was produced in the same manner as in Example 1, except that 7 parts by weight of the CoO powder used in Example 1 was added. Then, activation was performed in the same manner as in Example 1 except that the temperature in the charging step was set to 50 ° C., and the results of similarly measuring the discharge capacity and the form of CoOOH are shown in Table 1.

【0034】(実施例6)Co粉末とCoO粉末の代わ
りに、平均粒径3.8μmの市販のコバルト酸化物(主
成分がCoOで一部金属Coが含まれる)を8重量部添
加したこと以外は実施例1と同様に作製された正極板を
用い、実施例1と同様にして未活性の電池を作製した。
そして充電工程の温度を50℃としたこと以外は実施例
1と同様にして活性化し、同様に放電容量とCoOOH
の形態を測定した結果を表1に示す。
Example 6 Instead of Co powder and CoO powder, 8 parts by weight of a commercially available cobalt oxide having an average particle size of 3.8 μm (main component is CoO and partially contains metal Co) was added. A non-active battery was manufactured in the same manner as in Example 1 except that a positive electrode plate manufactured in the same manner as in Example 1 was used.
Then, activation was performed in the same manner as in Example 1 except that the temperature in the charging step was set to 50 ° C., and discharge capacity and CoOOH
Table 1 shows the results obtained by measuring the morphology.

【0035】(実施例7)Co粉末の添加量を3重量部
とし、CoO粉末の添加量を6重量部としたこと以外は
実施例1と同様に作製された正極板を用い、実施例1と
同様にして未活性の電池を作製した。そして充電電流を
0.01C(正極活物質1g当たり3mA)としたこ
と、及び定格容量の110%(正極活物質1g当たり3
18mAに相当)となるように充電したこと以外は実施
例1と同様にして活性化し、同様に放電容量とCoOO
Hの形態を測定した結果を表1に示す。
Example 7 A positive electrode plate manufactured in the same manner as in Example 1 except that the addition amount of the Co powder was 3 parts by weight and the addition amount of the CoO powder was 6 parts by weight was used. An inactive battery was produced in the same manner as described above. The charging current was set to 0.01 C (3 mA / g of the positive electrode active material), and 110% of the rated capacity (3 g / g of the positive electrode active material).
(Equivalent to 18 mA), and activated in the same manner as in Example 1.
Table 1 shows the measurement results of the form of H.

【0036】(比較例1)実施例1と同様の未活性の電
池を用い、充電工程における温度を20℃としたこと以
外は実施例1と同様にして活性化した。そして実施例1
と同様に放電容量とCoOOHの形態を測定し、結果を
表1に示す。 (比較例2)実施例1と同様の未活性の電池を用い、充
電工程における温度を40℃としたこと、及び充電電流
を0.1C(正極活物質1g当たり29mA)としたこ
と以外は実施例1と同様にして活性化した。そして実施
例1と同様に放電容量とCoOOHの形態を測定し、結
果を表1に示す。
Comparative Example 1 An inactive battery similar to that of Example 1 was used and activated in the same manner as in Example 1 except that the temperature in the charging step was set at 20 ° C. And Example 1
Similarly, the discharge capacity and the form of CoOOH were measured, and the results are shown in Table 1. (Comparative Example 2) Using the same inactive battery as in Example 1, except that the temperature in the charging step was 40 ° C and the charging current was 0.1 C (29 mA per 1 g of the positive electrode active material). Activation was carried out as in Example 1. Then, the discharge capacity and the form of CoOOH were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0037】(比較例3)Co粉末とCoO粉末の代わ
りに、平均粒径6μmの水酸化コバルト(Co(OH)
2 )を8重量部添加したこと以外は実施例1と同様に作
製された正極板を用い、実施例1と同様にして未活性の
電池を作製した。そして実施例1と同様にして活性化
し、同様に放電容量とCoOOHの形態を測定した結果
を表1に示す。
Comparative Example 3 Instead of Co powder and CoO powder, cobalt hydroxide (Co (OH) having an average particle size of 6 μm was used.
An inactive battery was produced in the same manner as in Example 1 except that 8 parts by weight of 2 ) was added, using a positive electrode plate produced in the same manner as in Example 1. Then, activation was performed in the same manner as in Example 1, and the results of measuring the discharge capacity and the form of CoOOH in the same manner are shown in Table 1.

【0038】(参考例)平均粒径15μmのCo粉末と
平均粒径10μmのCoO粉末を用いたこと以外は実施
例1と同様に作製された正極板を用い、実施例1と同様
にして未活性の電池を作製した。そして充電工程におけ
る温度を40℃としたこと以外は実施例1と同様にして
活性化し、同様に放電容量とCoOOHの形態を測定し
た結果を表1に示す。
(Reference Example) A positive electrode plate manufactured in the same manner as in Example 1 was used except that Co powder having an average particle size of 15 μm and CoO powder having an average particle size of 10 μm were used. An active battery was made. Then, activation was performed in the same manner as in Example 1 except that the temperature in the charging step was set to 40 ° C., and the results of similarly measuring the discharge capacity and the form of CoOOH are shown in Table 1.

【0039】(評価)(Evaluation)

【0040】[0040]

【表1】 [Table 1]

【0041】表1から明らかなように、各実施例のNi
−MH電池は放電電流が大きく変動しても安定した放電
容量を示し、放電特性にきわめて優れていることがわか
る。しかし各比較例では、放電電流が大きくなるにつれ
て放電容量が大きく低下し、放電特性に劣っている。図
2に比較例3の正極活物質表面に付着した粒子のX線回
折チャートを示す。この粒子には結晶質のCoOOHが
含まれ、図1に示す実施例のチャートと全く異なってい
る。つまり現象面での実施例と比較例の差異は、CoO
OHが非晶質か結晶質かの差異と、CoOOHの分布が
均一か不均一かの差異に起因し、実施例のように非晶質
のCoOOHが均一に分布して存在していることが好ま
しい結果を与えていることが明らかである。
As is clear from Table 1, the Ni of each embodiment was
It can be seen that the −MH battery shows a stable discharge capacity even when the discharge current fluctuates greatly, and is extremely excellent in discharge characteristics. However, in each comparative example, as the discharge current increased, the discharge capacity was greatly reduced, and the discharge characteristics were inferior. FIG. 2 shows an X-ray diffraction chart of the particles attached to the surface of the positive electrode active material of Comparative Example 3. These particles contain crystalline CoOOH, which is completely different from the chart of the embodiment shown in FIG. In other words, the difference between the embodiment and the comparative example in terms of phenomenon is that CoO
Due to the difference between whether OH is amorphous or crystalline and whether the distribution of CoOOH is uniform or non-uniform, amorphous CoOOH is present in a uniform distribution as in the example. It is clear that it is giving favorable results.

【0042】なお、比較例1では充電工程における温度
が20℃と低いこと、比較例2では充電工程における充
電電流が0.1C(正極活物質1g当たり29mA)と
大きいこと、比較例3では出発物質が水酸化コバルトで
あること、が実施例と異なっており、本発明の構成から
外れた場合には非晶質のCoOOHが形成されず放電特
性が低下することが明らかである。
In Comparative Example 1, the temperature in the charging step was as low as 20 ° C. In Comparative Example 2, the charging current in the charging step was as large as 0.1 C (29 mA / g of the positive electrode active material). The fact that the substance is cobalt hydroxide is different from the example, and it is clear that when the composition deviates from the constitution of the present invention, amorphous CoOOH is not formed and the discharge characteristics are deteriorated.

【0043】また参考例に示したように、出発物質の粒
径が10〜15μmと大きくなると、熟成工程中に電解
液中に溶解不能な部分が存在し、それがCo3 4 とな
って不均一な結晶質粒子として存在するようになる。こ
れは特性に好影響を与えるものではなく、かえって放電
特性が低下するようになるので、各実施例に示した程度
の10μm以下の細かな粒子径とすることが望ましい。
Further, as shown in the reference example, when the particle size of the starting material is as large as 10 to 15 μm, an insoluble portion is present in the electrolyte during the aging step, which becomes Co 3 O 4. It will be present as non-uniform crystalline particles. This does not have a favorable effect on the characteristics, but rather degrades the discharge characteristics. Therefore, it is desirable that the particle diameter is as small as 10 μm or less as shown in each embodiment.

【0044】[0044]

【発明の効果】すなわち本発明のニッケル正極をもつア
ルカリ電池によれば、非晶質のCoOOHによる均一な
導電ネットワークが形成されるため、放電電流が大きく
なっても安定した放電容量を示し放電特性に優れてい
る。また活物質の利用率が向上するため、高出力・高容
量となる。
That is, according to the alkaline battery having a nickel positive electrode of the present invention, a uniform conductive network is formed by amorphous CoOOH, so that even when the discharge current is large, a stable discharge capacity is exhibited and the discharge characteristic is maintained. Is excellent. In addition, since the utilization rate of the active material is improved, high output and high capacity are obtained.

【0045】そして本発明の活性化方法によれば、上記
した優れた特性を有するアルカリ電池を容易にかつ確実
に形成することができる。さらに従来の方法で電池を活
性化した場合、電解液を加えてからコバルト化合物を水
酸化コバルトとして分散させるための熟成・エージング
期間が数日間必要であったが、この期間を短縮すること
ができ生産性が向上するとともに、コバルトからCoO
OHを形成する効率が向上するためコバルト使用量を低
減することができ、コストの低減を図ることができる。
また活物質量が相対的に増大するため、電池容量が増大
する。
According to the activation method of the present invention, an alkaline battery having the above-described excellent characteristics can be easily and reliably formed. Furthermore, when the battery was activated by a conventional method, an aging and aging period for dispersing the cobalt compound as cobalt hydroxide after adding the electrolytic solution was required for several days, but this period can be shortened. Productivity is improved, and CoO
Since the efficiency of forming OH is improved, the amount of cobalt used can be reduced, and the cost can be reduced.
Further, since the amount of the active material relatively increases, the battery capacity increases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のアルカリ電池正極の活物質表面に付
着した粒子のX線回折チャート図である。
FIG. 1 is an X-ray diffraction chart of particles attached to the active material surface of a positive electrode of an alkaline battery of Example 1.

【図2】比較例3のアルカリ電池正極の活物質表面に付
着した粒子のX線回折チャート図である。
FIG. 2 is an X-ray diffraction chart of particles attached to an active material surface of a positive electrode of an alkaline battery of Comparative Example 3.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル正極をもつアルカリ電池におい
て、該ニッケル正極には非晶質のCoOOHを含むこと
を特徴とするニッケル正極をもつアルカリ電池。
1. An alkaline battery having a nickel positive electrode, wherein the nickel positive electrode contains amorphous CoOOH.
【請求項2】 金属コバルト(Co)粉末と一酸化コバ
ルト(CoO)粉末の少なくとも一方を含むニッケル正
極をもつ未活性のアルカリ電池に電解液を注入し40℃
未満の温度で所定時間保持する熟成工程と、 40〜60℃の温度において正極活物質1g当たり20
mA以下の電流量で定格容量の100〜110%の充電
量となるように初期充電を行う充電工程と、をこの順に
行うことを特徴とするニッケル正極をもつアルカリ電池
の活性化方法。
2. An electrolytic solution is injected into an inactive alkaline battery having a nickel positive electrode containing at least one of metal cobalt (Co) powder and cobalt monoxide (CoO) powder, and the electrolyte is charged at 40 ° C.
An aging step in which the temperature is maintained at a temperature of less than 40 ° C. for a predetermined time;
a method of activating an alkaline battery having a nickel positive electrode, comprising: performing a charging step of performing initial charging so as to obtain a charging amount of 100 to 110% of a rated capacity at a current amount of mA or less.
JP32402996A 1996-12-04 1996-12-04 Alkaline battery with nickel positive electrode and method of activating the same Expired - Fee Related JP3399265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32402996A JP3399265B2 (en) 1996-12-04 1996-12-04 Alkaline battery with nickel positive electrode and method of activating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32402996A JP3399265B2 (en) 1996-12-04 1996-12-04 Alkaline battery with nickel positive electrode and method of activating the same

Publications (2)

Publication Number Publication Date
JPH10172550A true JPH10172550A (en) 1998-06-26
JP3399265B2 JP3399265B2 (en) 2003-04-21

Family

ID=18161364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32402996A Expired - Fee Related JP3399265B2 (en) 1996-12-04 1996-12-04 Alkaline battery with nickel positive electrode and method of activating the same

Country Status (1)

Country Link
JP (1) JP3399265B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP2009231259A (en) * 2008-02-25 2009-10-08 Sanyo Electric Co Ltd Alkaline storage battery
JP2018007412A (en) * 2016-07-01 2018-01-11 トヨタ自動車株式会社 Battery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP2009231259A (en) * 2008-02-25 2009-10-08 Sanyo Electric Co Ltd Alkaline storage battery
JP2018007412A (en) * 2016-07-01 2018-01-11 トヨタ自動車株式会社 Battery system

Also Published As

Publication number Publication date
JP3399265B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
JP4710225B2 (en) Method for producing nickel electrode material
JP2004179064A (en) Nickel-hydrogen secondary battery
JP2012227106A (en) Nickel-metal hydride battery
JP2012188728A (en) Composite hydrogen-storage alloy and nickel-metal hydride storage battery
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP3079303B2 (en) Activation method of alkaline secondary battery
JP3399265B2 (en) Alkaline battery with nickel positive electrode and method of activating the same
JP3264168B2 (en) Nickel-metal hydride battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP5309479B2 (en) Alkaline storage battery
WO1998044577A1 (en) Sintered hydrogen storage alloy electrode and nickel-hydrogen storage battery
JP5769028B2 (en) Nickel metal hydride storage battery
JP3198896B2 (en) Nickel-metal hydride battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2001223000A (en) Alkaline secondary battery
JPH08287906A (en) Hydrogen storage alloy electrode
JP4059357B2 (en) Hydride secondary battery and manufacturing method thereof
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees