JP3399265B2 - Alkaline battery with nickel positive electrode and method of activating the same - Google Patents

Alkaline battery with nickel positive electrode and method of activating the same

Info

Publication number
JP3399265B2
JP3399265B2 JP32402996A JP32402996A JP3399265B2 JP 3399265 B2 JP3399265 B2 JP 3399265B2 JP 32402996 A JP32402996 A JP 32402996A JP 32402996 A JP32402996 A JP 32402996A JP 3399265 B2 JP3399265 B2 JP 3399265B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
nickel
coooh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32402996A
Other languages
Japanese (ja)
Other versions
JPH10172550A (en
Inventor
雄敏 蓑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32402996A priority Critical patent/JP3399265B2/en
Publication of JPH10172550A publication Critical patent/JPH10172550A/en
Application granted granted Critical
Publication of JP3399265B2 publication Critical patent/JP3399265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・カドミ
ウム電池、ニッケル−亜鉛電池、ニッケル・水素電池な
どのニッケル正極をもつアルカリ電池とその活性化方法
に関する。さらに詳しくは、コバルトを活物質に添加し
たニッケル正極をもち、優れた容量特性及び高率放電特
性をもつアルカリ電池とその活性化方法に関する。
TECHNICAL FIELD The present invention relates to an alkaline battery having a nickel positive electrode such as a nickel-cadmium battery, a nickel-zinc battery and a nickel-hydrogen battery, and a method for activating the alkaline battery. More specifically, it relates to an alkaline battery having a nickel positive electrode in which cobalt is added to an active material and having excellent capacity characteristics and high rate discharge characteristics, and a method for activating the same.

【0002】[0002]

【従来の技術】アルカリ蓄電池は、信頼性が高いこと、
小型軽量化及び高容量化が可能であることなどの理由に
より、各種ポータブル機器や産業用の電源として広く用
いられている。そしてアルカリ蓄電池の正極には、主と
して水酸化ニッケルからなる活物質をもつニッケル電極
が用いられている。
2. Description of the Related Art Alkaline storage batteries have high reliability,
It is widely used as a power source for various portable devices and industrial use because it can be made smaller and lighter and has higher capacity. A nickel electrode having an active material mainly composed of nickel hydroxide is used for the positive electrode of the alkaline storage battery.

【0003】このニッケル正極は、発泡ニッケルなどの
多孔質金属からなる電極基材に活物質を充填することで
製造されている。活物質を充填する方法としては、例え
ば特開平5−151965号公報に、水酸化ニッケルを
主とする活物質材料を結着剤とともに多孔質電極基材に
物理的に充填する方法が開示されている。この方法は、
一般にペースト充填法と称されている。
This nickel positive electrode is manufactured by filling an electrode base material made of a porous metal such as foamed nickel with an active material. As a method of filling the active material, for example, JP-A-5-151965 discloses a method of physically filling the porous electrode base material with an active material material mainly containing nickel hydroxide together with a binder. There is. This method
It is generally called a paste filling method.

【0004】ところで、ニッケル正極の活物質である水
酸化ニッケルは、充電状態、放電状態のいずれでも導電
性にならないため、別に導電性の骨格が必要であり、発
泡ニッケルなどの発泡金属骨格に水酸化ニッケル粉末を
充填する方法が開発された。しかしこれでも活物質の利
用率がまだ低く、活物質粉末どうしの導電性を確保する
必要があった。
By the way, since nickel hydroxide, which is an active material of a nickel positive electrode, does not become conductive in both charged and discharged states, a separate conductive skeleton is required. A method for filling nickel oxide powder has been developed. However, even with this, the utilization rate of the active material is still low, and it was necessary to secure the conductivity between the active material powders.

【0005】そこで活物質とともに金属コバルト、酸化
コバルト(CoO)あるいはフッ化コバルト(CoF)
などのコバルト化合物を含ませるのが望ましいことがわ
かり、研究が進められた。金属コバルトあるいはコバル
ト化合物の存在により、充放電を繰り返した時に水酸化
コバルト及びCoOOHが生成し、多孔質金属電極基材
と活物質との電気的接触性が向上するため、いわゆる導
電ネットワークの形成により活物質の利用効率が向上す
るのである。
Therefore, along with the active material, metallic cobalt, cobalt oxide (CoO) or cobalt fluoride (CoF) is used.
It was found that it is desirable to include a cobalt compound such as, and the research was advanced. Due to the presence of metallic cobalt or a cobalt compound, cobalt hydroxide and CoOOH are generated when charging and discharging are repeated, and the electrical contact between the porous metal electrode substrate and the active material is improved. The utilization efficiency of the active material is improved.

【0006】つまり、コバルト化合物を含む電極では、
初期充電時に次式(1)式及び(2)式の反応が生じ、
放電時には次式(3)式の反応が生じるため、生成した
CoOOHにより導電ネットワークが構築される。 CoO+OH- → HCoO2 - (1) HCoO2 -+H2 O → Co(OH)2 +OH- (2) Co(OH)2 +OH- → CoOOH+H2 O+e- (3) すなわち、アルカリ電池を組み立てた直後には、ニッケ
ル正極は活性化されておらず、二次電池として使用可能
とするには上記反応を起こさせる活性化処理が必要とな
る。
That is, in the electrode containing the cobalt compound,
At the time of initial charging, the reactions of the following formulas (1) and (2) occur,
Since the reaction of the following formula (3) occurs during discharge, the generated CoOOH forms a conductive network. CoO + OH → HCoO 2 (1) HCoO 2 + H 2 O → Co (OH) 2 + OH (2) Co (OH) 2 + OH → CoOOH + H 2 O + e (3) That is, immediately after assembling the alkaline battery. , The nickel positive electrode is not activated, and the activation treatment for causing the above reaction is required before it can be used as a secondary battery.

【0007】例えばニッケル・水素電池を組み立てた時
点では、正極、負極ともに活性化されていないため、
0.1C程度の充電電流で約150%充電し、0.2C
程度の放電電流で約0.9Vまで放電する充放電を数回
繰り返すことで活性化する方法が一般的である。また組
立後の電池を充電せずに高温で貯蔵して活性化する方法
も知られている。
For example, when the nickel-hydrogen battery is assembled, neither the positive electrode nor the negative electrode has been activated.
Charge about 150% with a charging current of about 0.1C, 0.2C
A general method is to activate the battery by repeating charging / discharging several times with a discharge current of about 0.9V. A method is also known in which the assembled battery is stored at high temperature and activated without being charged.

【0008】しかしこのような活性化方法では、得られ
たアルカリ電池の大電流放電特性や低温放電特性が充分
でないという問題があった。そこで、例えば特開平7−
73902号公報には、充電状態のアルカリ電池を高温
で短時間貯蔵することで活性化する方法が開示されてい
る。この方法によれば、短時間で充分な活性化を行うこ
とができ、大電流放電特性や低温放電特性など電池の活
性化状態に影響を受ける放電特性が向上する。
However, such an activation method has a problem that the large current discharge characteristics and the low temperature discharge characteristics of the obtained alkaline battery are not sufficient. Therefore, for example, Japanese Patent Laid-Open No. 7-
Japanese Patent No. 73902 discloses a method of activating an alkaline battery in a charged state by storing it at a high temperature for a short time. According to this method, sufficient activation can be performed in a short time, and discharge characteristics that are affected by the activation state of the battery, such as large current discharge characteristics and low temperature discharge characteristics, are improved.

【0009】[0009]

【発明が解決しようとする課題】ところが従来の活性化
方法で処理されたアルカリ電池でも、大電流放電特性や
低温放電特性などが未だ充分とはいえず、さらなる特性
の向上が求められている。例えば特開平7−73902
号公報に開示された方法は、主としてニッケル・水素
(Ni−MH)電池の負極を活性化するものであり、他
にも正極の活性化に関する文献等はほとんど見あたらな
い。
However, even in the alkaline battery treated by the conventional activation method, the large-current discharge characteristic and the low-temperature discharge characteristic are not yet sufficient, and further improvement in the characteristics is required. For example, JP-A-7-73902
The method disclosed in the publication is mainly for activating the negative electrode of a nickel-hydrogen (Ni-MH) battery, and there are almost no other documents or the like regarding activation of the positive electrode.

【0010】またCoOOHによる導電性ネットワーク
を構築する方法で製造されたアルカリ電池においても、
生成したCoOOHの偏在が大きいために、大電流で充
放電を実施する場合にはその利用効率がきわめて低く出
力が低いという問題がある。本発明はこのような事情に
鑑みてなされたものであり、CoOOHの偏在を抑制し
てニッケル正極に均一に存在させ、電池の活性化状態に
影響を受ける放電特性を一層向上させることを目的とす
る。
Also in an alkaline battery manufactured by the method of constructing a conductive network of CoOOH,
Since the generated CoOOH is highly unevenly distributed, there is a problem that the utilization efficiency is extremely low and the output is low when charging and discharging with a large current. The present invention has been made in view of such circumstances, and an object thereof is to suppress uneven distribution of CoOOH and allow CoOOH to uniformly exist in a nickel positive electrode, and further improve discharge characteristics affected by an activated state of a battery. To do.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する請求
項1に記載のニッケル正極をもつアルカリ電池の活性化
方法の特徴は、金属コバルト(Co)粉末と一酸化コバ
ルト(CoO)粉末の少なくとも一方を含むニッケル正
極をもつ未活性のアルカリ電池に電解液を注入し40℃
未満の温度で所定時間保持する熟成工程と、40〜60
℃の温度において正極活物質1g当たり20mA以下の
電流量で定格容量の100〜110%の充電量となるよ
うに初期充電を行う充電工程と、をこの順に行うことに
ある。また請求項2に記載のニッケル正極をもつアルカ
リ電池の特徴は、請求項1に基材の活性化方法によって
形成された非晶質のCoOOHをニッケル正極に含むこ
とにある。
Activation of an alkaline battery having a nickel positive electrode according to claim 1 for solving the above-mentioned problems .
The characteristic of the method is that metallic cobalt (Co) powder and cobalt monoxide are used.
Nickel containing at least one of the alloys (CoO) powder
Inject the electrolyte into a non-active alkaline battery with a pole at 40 ° C
A maturing step of maintaining a temperature of less than a predetermined time for 40 to 60
20 mA or less per 1 g of the positive electrode active material at a temperature of ℃
The amount of charge will be 100 to 110% of the rated capacity based on the amount of current.
The charging process for initial charging and
is there. The Arca with nickel positive electrode according to claim 2
The rechargeable battery is characterized by the method for activating a base material according to claim 1.
The formed amorphous CoOOH should be included in the nickel positive electrode.
And in.

【0012】[0012]

【発明の実施の形態】本発明の活性化方法では、Coと
CoOの少なくとも一方を含むことにより、熟成工程で
これらが電解液に接した時点で次式(1)の反応が生じ
ると考えられる。 CoO(Co)+OH- → HCoO2 - (1) つまり、CoとCoOの少なくとも一方は、(1)式の
反応により電解液に溶解し、HCoO2 -イオンとなる。
このHCoO2 -イオンは、電解液中で拡散し、活物質表
面を均一に覆う。この時点では、HCoO2 -イオンは
(2)式の平衡状態にある。
BEST MODE FOR CARRYING OUT THE INVENTION In the activation method of the present invention, by containing at least one of Co and CoO, it is considered that the reaction of the following formula (1) occurs at the time when they come into contact with the electrolytic solution in the aging step. . CoO (Co) + OH → HCoO 2 (1) That is, at least one of Co and CoO is dissolved in the electrolytic solution by the reaction of the formula (1) to become HCoO 2 ion.
The HCoO 2 ions diffuse in the electrolytic solution and uniformly cover the surface of the active material. At this point, the HCoO 2 ions are in the equilibrium state of the formula (2).

【0013】 HCoO2 -+H2 O = Co(OH)2 +OH- (2) この(1),(2)式の反応は、温度を40℃未満で行
うことが望ましい。温度が40℃以上になると、Coと
CoOの少なくとも一方の酸化反応が生じてCo3 4
が生成し、これは電解液に溶解しにくく活物質中に不純
物として存在するため、HCoO2 -イオンの生成量及び
CoOOHの生成量が減少してアルカリ電池の放電特性
が低下する。
HCoO 2 + H 2 O = Co (OH) 2 + OH (2) It is desirable that the reaction of the formulas (1) and (2) is performed at a temperature of less than 40 ° C. When the temperature rises above 40 ° C, an oxidation reaction of at least one of Co and CoO occurs and Co 3 O 4
Is generated and is hardly dissolved in the electrolytic solution and is present as an impurity in the active material, so that the production amount of HCoO 2 ions and the production amount of CoOOH are reduced and the discharge characteristics of the alkaline battery are deteriorated.

【0014】この熟成工程の時間は、熟成温度に対応し
て決められ、熟成温度が低いほど熟成時間は長時間とな
る。例えば熟成温度が20℃程度の室温であれば、熟成
時間は約10時間以上必要となる。そして充電工程で
は、40〜60℃の温度において、正極活物質1g当た
り20mA(これは充電電流0.07Cに相当する)以
下の電流量で、定格容量の100〜110%の充電量と
なるように(これは正極活物質1g当たり300〜32
0mAhの合計電気量に相当する)初期充電を行うこと
により、次式(3),(4)の競争反応が生じる。
The time of this aging step is determined according to the aging temperature, and the lower the aging temperature, the longer the aging time. For example, if the aging temperature is room temperature of about 20 ° C., the aging time will be about 10 hours or more. Then, in the charging step, at a temperature of 40 to 60 ° C., with a current amount of 20 mA per 1 g of the positive electrode active material (which corresponds to a charging current of 0.07 C) or less, the charged amount becomes 100 to 110% of the rated capacity. (This is 300 to 32 per 1 g of the positive electrode active material.
By carrying out the initial charging (corresponding to the total amount of electricity of 0 mAh), the competitive reaction of the following equations (3) and (4) occurs.

【0015】 Co(OH)2 +OH- → CoOOH+H2 O+e- (3) Ni(OH)2 +OH- → NiOOH+H2 O+e- (4) (2)式の平衡反応はゆっくりと右へ移るから、上記条
件であれば(3)式の反応もゆっくりと進行する。これ
により活物質の表面にきわめて微細な非晶質のCoOO
Hが均一に形成され、活物質間の導電性が確保される。
Co (OH) 2 + OH → CoOOH + H 2 O + e (3) Ni (OH) 2 + OH → NiOOH + H 2 O + e (4) Since the equilibrium reaction of the formula (2) shifts to the right slowly, In that case, the reaction of formula (3) also proceeds slowly. As a result, extremely fine amorphous CoOO is formed on the surface of the active material.
H is uniformly formed, and conductivity between the active materials is secured.

【0016】充電工程の温度が40℃未満では(3)式
の反応が生じにくくなり、結果的にCo及びCoOの少
なくとも一方が残存して放電特性に悪影響を及ぼす。ま
た60℃を超えると、負極に酸化が生じて劣化する場合
がある。また電流量が正極活物質1g当たり20mAを
超えると、(3)式の反応が急激に進行し、大きな粒子
の結晶質のCoOOHが不均一に析出するため活物質間
の導電性が不均一となると考えられ、放電特性が低下す
る。
If the temperature in the charging step is lower than 40 ° C., the reaction of the formula (3) is less likely to occur, and as a result, at least one of Co and CoO remains and adversely affects the discharge characteristics. If it exceeds 60 ° C., the negative electrode may be oxidized and deteriorated. Further, when the amount of current exceeds 20 mA per 1 g of the positive electrode active material, the reaction of the formula (3) rapidly progresses, and crystalline CoOOH having large particles is nonuniformly deposited, resulting in nonuniform conductivity between the active materials. It is considered that the discharge characteristics deteriorate.

【0017】なお、この電流量の下限は特に限定されな
いが、電流量が小さいほど充電時間が長くなり生産性が
低下するので、5mA以上とするのが好ましい。そして
充電量が定格容量の100%未満では、(3)式の反応
が充分に進行せずCoOOHの生成が少なく、110%
を超えると(3)式の反応が急激に進行し、大きな粒子
の結晶質のCoOOHが不均一に析出するため活物質間
の導電性が不均一となると考えられ、放電特性が低下す
る。定格容量の103〜110%の範囲が特に好まし
い。
The lower limit of the amount of current is not particularly limited, but the smaller the amount of current is, the longer the charging time is and the lower the productivity is. Therefore, the lower limit is preferably 5 mA or more. When the charge amount is less than 100% of the rated capacity, the reaction of the formula (3) does not proceed sufficiently and the production of CoOOH is small.
When it exceeds, the reaction of the formula (3) rapidly progresses and crystalline CoOOH having large particles is nonuniformly deposited, so that it is considered that the conductivity between the active materials becomes nonuniform, and the discharge characteristics are deteriorated. The range of 103 to 110% of the rated capacity is particularly preferable.

【0018】したがって本発明の活性化方法により活性
化されたアルカリ電池では、ニッケル正極の活物質表面
が非晶質CoOOHの微細な粒子で均一に覆われている
ので、緻密な導電ネットワークが形成され高い放電特性
を示す。出発物質であるCo及びCoOの粒径は、電解
液への溶解性を考慮すれば、小さければ小さいほど好ま
しい。例えばCoの平均粒径は10μm以下が好まし
く、CoOの平均粒径は8μm以下であることが好まし
い。これより粒径が大きくなると電解液への溶解が困難
となって、電解液中にCo及びCoOの少なくとも一方
がCo3 4 となって残存し、放電特性に悪影響を及ぼ
す場合がある。
Therefore, in the alkaline battery activated by the activation method of the present invention, since the surface of the active material of the nickel positive electrode is uniformly covered with fine particles of amorphous CoOOH, a dense conductive network is formed. Shows high discharge characteristics. The particle diameters of Co and CoO that are the starting materials are preferably as small as possible in consideration of the solubility in the electrolytic solution. For example, the average particle size of Co is preferably 10 μm or less, and the average particle size of CoO is preferably 8 μm or less. If the particle size is larger than this, dissolution in the electrolytic solution becomes difficult, and at least one of Co and CoO remains in the electrolytic solution as Co 3 O 4 , which may adversely affect the discharge characteristics.

【0019】またCo及びCoOの少なくとも一方の添
加量は、両方を含めばその合計で、正極活物質量の15
重量%以下とすることが好ましい。15重量%より多く
混合すると電池容量が相対的に低下するようになり好ま
しくない。なお、出発物質としてCoとCoOの少なく
とも一方を含めばよいが、CoとCoOの両方を含むこ
とが望ましい。これにより、機構は不明であるが、Co
34 の生成が抑制されるためCo及びCoOは円滑に
HCoO2 -イオンとなり、(3)式の反応が促進される
結果、少ないCo及びCoO量で非晶質のCoOOHが
多量に生成する。したがって従来に比べて添加するCo
量を低減して従来と同等の性能をもつニッケル正極を得
ることができ、コストの低減を図ることができるととも
に、活物質量が相対的に増加することにより電池容量が
増大する。
The total amount of at least one of Co and CoO, if both are added, is 15 times the amount of the positive electrode active material.
It is preferable to set the content to be not more than weight%. If it is mixed in an amount of more than 15% by weight, the battery capacity will relatively decrease, which is not preferable. Note that at least one of Co and CoO may be included as a starting material, but it is preferable to include both Co and CoO. Due to this, the mechanism is unknown, but Co
Since the formation of 3 O 4 is suppressed, Co and CoO smoothly become HCoO 2 ions, and the reaction of the formula (3) is promoted. As a result, a large amount of amorphous CoOOH is formed with a small amount of Co and CoO. . Therefore, Co added compared to the conventional
The amount of the nickel positive electrode can be reduced to obtain a nickel positive electrode having the same performance as the conventional one, the cost can be reduced, and the battery capacity is increased by the relative increase in the amount of the active material.

【0020】本発明はニッケル・水素(Ni−MH)電
池、ニッケル・カドミウム電池、ニッケル・亜鉛電池な
ど種々のアルカリ電池に適用できるが、中でもニッケル
・水素電池の活性化に特に好適である。例えばニッケル
・水素電池のニッケル正極には、一酸化ニッケル(Ni
O)、二酸化ニッケル(NiO2 )などのニッケル酸化
物、水酸化ニッケル[Ni(OH)2 ]などのニッケル
水酸化物などが活物質として用いられる。また、このニ
ッケル正極は、焼結法、ペースト法などのいずれで作製
したものも用いることができる。
The present invention can be applied to various alkaline batteries such as nickel-hydrogen (Ni-MH) batteries, nickel-cadmium batteries and nickel-zinc batteries, and is particularly suitable for activating nickel-hydrogen batteries. For example, nickel monoxide (Ni
O), nickel oxide such as nickel dioxide (NiO 2 ), nickel hydroxide such as nickel hydroxide [Ni (OH) 2 ] and the like are used as the active material. Further, as this nickel positive electrode, one prepared by either a sintering method or a paste method can be used.

【0021】また、ニッケル・水素電池の負極活物質と
しては、例えばAB2 系、AB5 系、AB系、A2 B系
などの水素貯蔵合金を用いることができる。なおAはT
i、Zr、Mn、Vなどであり、BはV、Ni、Cr、
Co、Fe、Mnなどであり、水素吸蔵合金としては、
例えばTi16Zr1622Ni39Cr7 、Ti16Zr16
22Ni32Cr7 Co7 、Ti15Zr1520.6Ni30Cr
6.6 Co6.6 Mn3.6Al2.7 、Ti15Zr1521Ni
31Cr6 Co6 Fe6 、Ti15Zr2115Ni 31Cr6
Co6 Fe6 などが例示される。
In addition, a negative electrode active material for a nickel-hydrogen battery
For example, AB2System, ABFiveSystem, AB system, A2B series
Hydrogen storage alloys such as A is T
i, Zr, Mn, V, etc., and B is V, Ni, Cr,
Co, Fe, Mn, etc., and as the hydrogen storage alloy,
For example Ti16Zr16Vtwenty twoNi39Cr7, Ti16Zr16V
twenty twoNi32Cr7Co7, Ti15Zr15V20.6Ni30Cr
6.6Co6.6Mn3.6Al2.7, Ti15Zr15Vtwenty oneNi
31Cr6Co6Fe6, Ti15Zrtwenty oneV15Ni 31Cr6
Co6Fe6Are exemplified.

【0022】ニッケル・水素電池の電解液としてはアル
カリ水溶液が用いられ、例えば水酸化ナトリウム、水酸
化カリウム、水酸化リチウムなどの水溶液を用いること
ができる。
An alkaline aqueous solution is used as the electrolytic solution of the nickel-hydrogen battery, and for example, an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.

【0023】[0023]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1) <Ni−MH電池の組立>Znを1.6重量%及びCo
を1.5重量%含み平均粒径10μmで最大粒径30μ
mの水酸化ニッケル粉末を100重量部と、平均粒径8
μmの金属コバルト粉末を2重量部、平均粒径5.3μ
mのCoO粉末を金属Co換算で5重量部、結着剤とし
てのCMC(カルボキシメチルセルロース)を1.5重
量部、及び純水適量を混合し、さらにボールミルにて4
8時間分散して、ペーストを調製した。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. (Example 1) <Assembly of Ni-MH battery> 1.6 wt% Zn and Co
Containing 1.5% by weight and having an average particle size of 10 μm and a maximum particle size of 30 μ
100 parts by weight of nickel hydroxide powder with an average particle size of 8
2 parts by weight of metallic cobalt powder having an average particle diameter of 5.3 μm
5 parts by weight of CoO powder of m in terms of metallic Co, 1.5 parts by weight of CMC (carboxymethyl cellulose) as a binder, and an appropriate amount of pure water are mixed, and further mixed by a ball mill.
The paste was prepared by dispersing for 8 hours.

【0024】次に三次元網目構造を有する発泡ニッケル
電極基材(「セルメット」住友電工(株)製、厚さ1.
6mm、気孔率95%)を用意し、ヘラを用いて上記ペ
ーストを充填した。ペーストの充填量は、発泡ニッケル
電極基材1cm3 あたり0.75gである。そして60
〜80℃に加熱して充分に乾燥させた後圧延し、所定寸
法に切断して正極板を作製した。
Next, a foamed nickel electrode substrate having a three-dimensional network structure (“Celmet” manufactured by Sumitomo Electric Industries, Ltd., thickness 1.
6 mm, porosity 95%) was prepared and the above paste was filled using a spatula. The filling amount of the paste is 0.75 g per 1 cm 3 of the foamed nickel electrode substrate. And 60
After being heated to -80 ° C. and sufficiently dried, it was rolled and cut into a predetermined size to prepare a positive electrode plate.

【0025】一方、Mm Ni3.55Co0.75Mn0.4 Al
0.3 の水素吸蔵合金を機械的に粉砕し、マイクロシーブ
でふるいをかけて、平均粒径55μm、最大粒径75μ
mのMH粉末を調製した。このMH粉末100重量部
と、CMCを0.5重量部、導電助剤としての平均粒径
2μmのカーボン粉末を0.5重量部、及び適量のエタ
ノールと水を混合し、さらにボールミルにて48時間分
散してペーストを調製した。そして正極と同様に発泡ニ
ッケル電極基材に充填し、同様に乾燥・圧延・切断して
負極板を作製した。
On the other hand, Mm Ni 3.55 Co 0.75 Mn 0.4 Al
0.3 hydrogen storage alloy is mechanically crushed, sieved with a micro sieve, average particle size 55μm, maximum particle size 75μ
m MH powder was prepared. 100 parts by weight of this MH powder, 0.5 parts by weight of CMC, 0.5 parts by weight of carbon powder having an average particle diameter of 2 μm as a conductive additive, and an appropriate amount of ethanol and water are mixed, and further mixed with a ball mill. The paste was prepared by dispersing for time. Then, a foamed nickel electrode base material was filled in the same manner as the positive electrode, and similarly dried, rolled and cut to prepare a negative electrode plate.

【0026】得られた正極板と負極板とを、親水化処理
されたポリプロピレン・ポリエチレン製不織布のセパレ
ータを介して巻回し、これを円筒状の電池缶に収容した
後、KOH:NaOH=7:3の比で濃度6モル/Lに
調製されたアルカリ電解液を所定量注入し、電池蓋を施
して、単3型で1200mAhの円筒型密閉Ni−MH
電池を組み立てた。この電池は、正極容量規制で負極/
正極=1.2であり、正極活物質1g当たりの定格容量
は289mA/gである。
The positive electrode plate and the negative electrode plate thus obtained were wound around a separator of polypropylene / polyethylene non-woven fabric which had been hydrophilized, and this was housed in a cylindrical battery can, and then KOH: NaOH = 7: A predetermined amount of an alkaline electrolyte prepared to a concentration of 6 mol / L at a ratio of 3 was injected, a battery lid was provided, and a 1200 mAh cylindrical sealed Ni-MH of AA type.
I assembled the battery. This battery has a negative electrode capacity regulation
The positive electrode was 1.2, and the rated capacity per 1 g of the positive electrode active material was 289 mA / g.

【0027】<熟成工程>得られた未活性状態の密閉電
池を、先ず10〜24時間室温(25℃)にて放置し、
電解液を正極及び負極に充分浸透させた。 <充電工程>その後、温度60℃、充電電流0.07C
(正極活物質1g当たり20mA)で、定格容量の10
3%(正極活物質1g当たり298mA)となるように
充電し、1/5Cにて放電させた。
<Aging Step> The obtained inactive sealed battery was first allowed to stand at room temperature (25 ° C.) for 10 to 24 hours,
The electrolytic solution was sufficiently permeated into the positive electrode and the negative electrode. <Charging process> After that, the temperature is 60 ° C and the charging current is 0.07C.
(20 mA per 1 g of positive electrode active material), with a rated capacity of 10
The battery was charged to 3% (298 mA / g of positive electrode active material) and discharged at 1 / 5C.

【0028】<試験>活性化された電池を1/5Cで
5.5時間充電してから、放電電流を1/5C、1C、
3C及び6Cでそれぞれ放電させた時の放電容量を測定
し、結果を表1に示す。表1からわかるように、この電
池は放電電流の大きさに関わらず安定した放電特性を示
している。
<Test> The activated battery was charged at 1 / 5C for 5.5 hours and then discharged at 1 / 5C, 1C,
The discharge capacities when discharged at 3C and 6C were measured, and the results are shown in Table 1. As can be seen from Table 1, this battery shows stable discharge characteristics regardless of the magnitude of discharge current.

【0029】また活性化後の電池を分解して正極表面を
顕微鏡観察したところ、正極活物質の表面に数nm〜数
10nmの微細な粒子が均一に付着しているのが観察さ
れた。この正極表面を赤外線分光分析にて分析したとこ
ろ、CoOOHとCo3 4の存在が確認された。そし
て正極活物質表面の粒子をX線回折にて分析したとこ
ろ、図1に示すようにCo3 4 のピークは観察された
が、CoOOHのピークは全く観察されなかった。つま
り、正極活物質表面に均一に付着している粒子には、結
晶質のCoOOHは含まれておらず、CoOOHは非晶
質として存在している。
When the battery after activation was disassembled and the surface of the positive electrode was observed with a microscope, it was observed that fine particles of several nm to several tens nm were uniformly attached to the surface of the positive electrode active material. When the surface of this positive electrode was analyzed by infrared spectroscopy, the presence of CoOOH and Co 3 O 4 was confirmed. When particles on the surface of the positive electrode active material were analyzed by X-ray diffraction, a Co 3 O 4 peak was observed as shown in FIG. 1, but a CoOOH peak was not observed at all. That is, crystalline CoOOH is not contained in the particles uniformly attached to the surface of the positive electrode active material, and CoOOH is present as amorphous.

【0030】(実施例2)実施例1と同様の未活性の電
池を用い、充電工程における温度を40℃としたこと、
及び充電電流を0.06C(正極活物質1g当たり17
mA)としたこと以外は実施例1と同様にして活性化し
た。そして実施例1と同様に放電容量とCoOOHの形
態を測定し、結果を表1に示す。
(Example 2) The same inactive battery as in Example 1 was used, and the temperature in the charging step was 40 ° C.
And a charging current of 0.06 C (17 g / g of positive electrode active material)
mA) was activated in the same manner as in Example 1. Then, the discharge capacity and the morphology of CoOOH were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0031】(実施例3)Co粉末の添加量を4重量部
としCoO粉末の添加量を10重量部としたこと以外は
実施例1と同様に作製された正極板を用い、実施例1と
同様にして未活性の電池を作製した。そして充電電流を
0.05C(正極活物質1g当たり14mA)としたこ
と、及び定格容量の105%(正極活物質1g当たり3
03mAに相当)となるように充電したこと以外は実施
例1と同様にして活性化し、同様に放電容量とCoOO
Hの形態を測定した結果を表1に示す。
Example 3 A positive electrode plate manufactured in the same manner as in Example 1 was used except that the amount of Co powder added was 4 parts by weight and the amount of CoO powder added was 10 parts by weight. An inactive battery was prepared in the same manner. The charging current was set to 0.05 C (14 mA / g of positive electrode active material), and 105% of the rated capacity (3 / g of positive electrode active material).
(Corresponding to 03 mA), activation was performed in the same manner as in Example 1 except that charging was performed so that discharge capacity and CoOO
The results of measuring the morphology of H are shown in Table 1.

【0032】(実施例4)Co粉末の添加量を10重量
部とし、平均粒径8μmのCoO粉末を用いてその添加
量を4重量部としたこと以外は実施例1と同様に作製さ
れた正極板を用い、実施例1と同様にして未活性の電池
を作製した。そして充電電流を0.05C(正極活物質
1g当たり14mA)としたこと、及び定格容量の10
5%(正極活物質1g当たり303mAに相当)となる
ように充電したこと以外は実施例1と同様にして活性化
し、同様に放電容量とCoOOHの形態を測定した結果
を表1に示す。
(Example 4) The procedure of Example 1 was repeated except that the amount of Co powder added was 10 parts by weight, and the amount of CoO powder having an average particle size of 8 μm was 4 parts by weight. An inactive battery was produced in the same manner as in Example 1 using the positive electrode plate. The charging current was set to 0.05 C (14 mA per 1 g of the positive electrode active material), and the rated capacity was 10
Table 1 shows the results of measuring the discharge capacity and the morphology of CoOOH in the same manner as in Example 1 except that the battery was charged to 5% (corresponding to 303 mA per 1 g of the positive electrode active material).

【0033】(実施例5)Co粉末を用いず、実施例1
で用いたCoO粉末を7重量部添加したこと以外は実施
例1と同様に作製された正極板を用い、実施例1と同様
にして未活性の電池を作製した。そして充電工程の温度
を50℃としたこと以外は実施例1と同様にして活性化
し、同様に放電容量とCoOOHの形態を測定した結果
を表1に示す。
Example 5 Example 1 was carried out without using Co powder.
An inactive battery was produced in the same manner as in Example 1 except that the positive electrode plate produced in the same manner as in Example 1 was used except that 7 parts by weight of the CoO powder used in 2) was added. Then, activation was performed in the same manner as in Example 1 except that the temperature in the charging step was set to 50 ° C., and the discharge capacity and the morphology of CoOOH were similarly measured.

【0034】(実施例6)Co粉末とCoO粉末の代わ
りに、平均粒径3.8μmの市販のコバルト酸化物(主
成分がCoOで一部金属Coが含まれる)を8重量部添
加したこと以外は実施例1と同様に作製された正極板を
用い、実施例1と同様にして未活性の電池を作製した。
そして充電工程の温度を50℃としたこと以外は実施例
1と同様にして活性化し、同様に放電容量とCoOOH
の形態を測定した結果を表1に示す。
Example 6 In place of Co powder and CoO powder, 8 parts by weight of commercially available cobalt oxide having an average particle diameter of 3.8 μm (main component is CoO and some metal Co is contained) was added. An inactive battery was produced in the same manner as in Example 1, except that the positive electrode plate produced in the same manner as in Example 1 was used except for the above.
Then, activation was performed in the same manner as in Example 1 except that the temperature in the charging step was set to 50 ° C., and the discharge capacity and CoOOH were similarly activated.
Table 1 shows the results of measuring the morphology.

【0035】(実施例7)Co粉末の添加量を3重量部
とし、CoO粉末の添加量を6重量部としたこと以外は
実施例1と同様に作製された正極板を用い、実施例1と
同様にして未活性の電池を作製した。そして充電電流を
0.01C(正極活物質1g当たり3mA)としたこ
と、及び定格容量の110%(正極活物質1g当たり3
18mAに相当)となるように充電したこと以外は実施
例1と同様にして活性化し、同様に放電容量とCoOO
Hの形態を測定した結果を表1に示す。
Example 7 A positive electrode plate manufactured in the same manner as in Example 1 was used except that the amount of Co powder added was 3 parts by weight and the amount of CoO powder added was 6 parts by weight. An inactive battery was prepared in the same manner as in. The charging current was set to 0.01 C (3 mA per 1 g of the positive electrode active material), and 110% of the rated capacity (3 per 1 g of the positive electrode active material).
(Equivalent to 18 mA) was activated in the same manner as in Example 1 except that the battery was charged to a discharge capacity and CoOO.
The results of measuring the morphology of H are shown in Table 1.

【0036】(比較例1)実施例1と同様の未活性の電
池を用い、充電工程における温度を20℃としたこと以
外は実施例1と同様にして活性化した。そして実施例1
と同様に放電容量とCoOOHの形態を測定し、結果を
表1に示す。 (比較例2)実施例1と同様の未活性の電池を用い、充
電工程における温度を40℃としたこと、及び充電電流
を0.1C(正極活物質1g当たり29mA)としたこ
と以外は実施例1と同様にして活性化した。そして実施
例1と同様に放電容量とCoOOHの形態を測定し、結
果を表1に示す。
(Comparative Example 1) Activation was performed in the same manner as in Example 1 except that the same inactive battery as in Example 1 was used and the temperature in the charging step was 20 ° C. And Example 1
The discharge capacity and the morphology of CoOOH were measured in the same manner as in, and the results are shown in Table 1. (Comparative Example 2) The same operation as in Example 1 was performed, except that the temperature in the charging step was 40 ° C and the charging current was 0.1 C (29 mA per 1 g of the positive electrode active material). Activation was carried out as in Example 1. Then, the discharge capacity and the morphology of CoOOH were measured in the same manner as in Example 1, and the results are shown in Table 1.

【0037】(比較例3)Co粉末とCoO粉末の代わ
りに、平均粒径6μmの水酸化コバルト(Co(OH)
2 )を8重量部添加したこと以外は実施例1と同様に作
製された正極板を用い、実施例1と同様にして未活性の
電池を作製した。そして実施例1と同様にして活性化
し、同様に放電容量とCoOOHの形態を測定した結果
を表1に示す。
Comparative Example 3 Instead of Co powder and CoO powder, cobalt hydroxide (Co (OH)) having an average particle size of 6 μm was used.
An inactive battery was produced in the same manner as in Example 1 except that 8 parts by weight of 2 ) was added and the positive electrode plate produced in the same manner as in Example 1 was used. Then, activation was performed in the same manner as in Example 1, and similarly, the discharge capacity and the form of CoOOH were measured, and the results are shown in Table 1.

【0038】(参考例)平均粒径15μmのCo粉末と
平均粒径10μmのCoO粉末を用いたこと以外は実施
例1と同様に作製された正極板を用い、実施例1と同様
にして未活性の電池を作製した。そして充電工程におけ
る温度を40℃としたこと以外は実施例1と同様にして
活性化し、同様に放電容量とCoOOHの形態を測定し
た結果を表1に示す。
Reference Example A positive electrode plate manufactured in the same manner as in Example 1 was used except that Co powder having an average particle size of 15 μm and CoO powder having an average particle size of 10 μm were used. An active battery was made. Then, activation was performed in the same manner as in Example 1 except that the temperature in the charging step was 40 ° C., and the discharge capacity and the morphology of CoOOH were measured in the same manner.

【0039】(評価)(Evaluation)

【0040】[0040]

【表1】 [Table 1]

【0041】表1から明らかなように、各実施例のNi
−MH電池は放電電流が大きく変動しても安定した放電
容量を示し、放電特性にきわめて優れていることがわか
る。しかし各比較例では、放電電流が大きくなるにつれ
て放電容量が大きく低下し、放電特性に劣っている。図
2に比較例3の正極活物質表面に付着した粒子のX線回
折チャートを示す。この粒子には結晶質のCoOOHが
含まれ、図1に示す実施例のチャートと全く異なってい
る。つまり現象面での実施例と比較例の差異は、CoO
OHが非晶質か結晶質かの差異と、CoOOHの分布が
均一か不均一かの差異に起因し、実施例のように非晶質
のCoOOHが均一に分布して存在していることが好ま
しい結果を与えていることが明らかである。
As is clear from Table 1, Ni of each Example
It can be seen that the -MH battery exhibits a stable discharge capacity even when the discharge current fluctuates greatly, and has extremely excellent discharge characteristics. However, in each of the comparative examples, the discharge capacity is greatly reduced as the discharge current is increased, and the discharge characteristics are inferior. FIG. 2 shows an X-ray diffraction chart of particles attached to the surface of the positive electrode active material of Comparative Example 3. This particle contains crystalline CoOOH, which is completely different from the chart of the embodiment shown in FIG. In other words, the difference between the example and the comparative example in terms of phenomenon is that CoO
Due to the difference in whether OH is amorphous or crystalline and the difference in distribution of CoOOH being uniform or non-uniform, it is possible that amorphous CoOOH is uniformly distributed as in the example. It is clear that it gives favorable results.

【0042】なお、比較例1では充電工程における温度
が20℃と低いこと、比較例2では充電工程における充
電電流が0.1C(正極活物質1g当たり29mA)と
大きいこと、比較例3では出発物質が水酸化コバルトで
あること、が実施例と異なっており、本発明の構成から
外れた場合には非晶質のCoOOHが形成されず放電特
性が低下することが明らかである。
In Comparative Example 1, the temperature in the charging step was as low as 20 ° C., in Comparative Example 2, the charging current in the charging step was 0.1 C (29 mA per 1 g of the positive electrode active material), which was large. The substance is cobalt hydroxide, which is different from the examples, and it is clear that when it is out of the constitution of the present invention, amorphous CoOOH is not formed and the discharge characteristic is deteriorated.

【0043】また参考例に示したように、出発物質の粒
径が10〜15μmと大きくなると、熟成工程中に電解
液中に溶解不能な部分が存在し、それがCo3 4 とな
って不均一な結晶質粒子として存在するようになる。こ
れは特性に好影響を与えるものではなく、かえって放電
特性が低下するようになるので、各実施例に示した程度
の10μm以下の細かな粒子径とすることが望ましい。
Further, as shown in the reference example, when the particle size of the starting material is as large as 10 to 15 μm, there is an insoluble portion in the electrolytic solution during the aging step, which becomes Co 3 O 4. It exists as non-uniform crystalline particles. This does not have a favorable effect on the characteristics, but rather deteriorates the discharge characteristics. Therefore, it is desirable to make the particle diameter as fine as 10 μm or less as shown in each example.

【0044】[0044]

【発明の効果】すなわち本発明のニッケル正極をもつア
ルカリ電池によれば、非晶質のCoOOHによる均一な
導電ネットワークが形成されるため、放電電流が大きく
なっても安定した放電容量を示し放電特性に優れてい
る。また活物質の利用率が向上するため、高出力・高容
量となる。
In other words, according to the alkaline battery having the nickel positive electrode of the present invention, a uniform conductive network is formed by amorphous CoOOH, so that a stable discharge capacity is exhibited even when the discharge current is large, and the discharge characteristics are improved. Is excellent. Further, since the utilization rate of the active material is improved, the output and the capacity are high.

【0045】そして本発明の活性化方法によれば、上記
した優れた特性を有するアルカリ電池を容易にかつ確実
に形成することができる。さらに従来の方法で電池を活
性化した場合、電解液を加えてからコバルト化合物を水
酸化コバルトとして分散させるための熟成・エージング
期間が数日間必要であったが、この期間を短縮すること
ができ生産性が向上するとともに、コバルトからCoO
OHを形成する効率が向上するためコバルト使用量を低
減することができ、コストの低減を図ることができる。
また活物質量が相対的に増大するため、電池容量が増大
する。
According to the activation method of the present invention, it is possible to easily and surely form the alkaline battery having the above-mentioned excellent characteristics. Furthermore, when the battery was activated by the conventional method, it took several days for the aging / aging period to disperse the cobalt compound as cobalt hydroxide after adding the electrolytic solution, but this period can be shortened. With improved productivity, cobalt to CoO
Since the efficiency of forming OH is improved, the amount of cobalt used can be reduced and the cost can be reduced.
Further, since the amount of active material is relatively increased, the battery capacity is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のアルカリ電池正極の活物質表面に付
着した粒子のX線回折チャート図である。
FIG. 1 is an X-ray diffraction chart of particles attached to a surface of an active material of an alkaline battery positive electrode of Example 1.

【図2】比較例3のアルカリ電池正極の活物質表面に付
着した粒子のX線回折チャート図である。
2 is an X-ray diffraction chart of particles adhering to the surface of the active material of the alkaline battery positive electrode of Comparative Example 3. FIG.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属コバルト(Co)粉末と一酸化コバ
ルト(CoO)粉末の少なくとも一方を含むニッケル正
極をもつ未活性のアルカリ電池に電解液を注入し40℃
未満の温度で所定時間保持する熟成工程と、 40〜60℃の温度において正極活物質1g当たり20
mA以下の電流量で定格容量の100〜110%の充電
量となるように初期充電を行う充電工程と、をこの順に
行うことを特徴とするニッケル正極をもつアルカリ電池
の活性化方法。
1. An electrolytic solution is injected into an inactive alkaline battery having a nickel positive electrode containing at least one of metallic cobalt (Co) powder and cobalt monoxide (CoO) powder, and 40 ° C.
And a aging step of maintaining the temperature for less than a predetermined time, and 20 at a temperature of 40 to 60 ° C. per 1 g of positive electrode active material.
A method of activating an alkaline battery having a nickel positive electrode, which comprises performing a charging step of performing initial charging so that a charged amount is 100 to 110% of a rated capacity at a current amount of mA or less.
【請求項2】 請求項1に記載の活性化方法によって形
成された非晶質のCoOOHをニッケル正極に含むこと
を特徴とするニッケル正極をもつアルカリ電池。
2. Formed by the activation method according to claim 1.
Including formed amorphous CoOOH in nickel positive electrode
Alkaline battery with a nickel positive electrode.
JP32402996A 1996-12-04 1996-12-04 Alkaline battery with nickel positive electrode and method of activating the same Expired - Fee Related JP3399265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32402996A JP3399265B2 (en) 1996-12-04 1996-12-04 Alkaline battery with nickel positive electrode and method of activating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32402996A JP3399265B2 (en) 1996-12-04 1996-12-04 Alkaline battery with nickel positive electrode and method of activating the same

Publications (2)

Publication Number Publication Date
JPH10172550A JPH10172550A (en) 1998-06-26
JP3399265B2 true JP3399265B2 (en) 2003-04-21

Family

ID=18161364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32402996A Expired - Fee Related JP3399265B2 (en) 1996-12-04 1996-12-04 Alkaline battery with nickel positive electrode and method of activating the same

Country Status (1)

Country Link
JP (1) JP3399265B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP5334498B2 (en) * 2008-02-25 2013-11-06 三洋電機株式会社 Alkaline storage battery
JP6620689B2 (en) * 2016-07-01 2019-12-18 トヨタ自動車株式会社 Battery system

Also Published As

Publication number Publication date
JPH10172550A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
JP3805876B2 (en) Nickel metal hydride battery
JP3399265B2 (en) Alkaline battery with nickel positive electrode and method of activating the same
JP3079303B2 (en) Activation method of alkaline secondary battery
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP3264168B2 (en) Nickel-metal hydride battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP2926732B2 (en) Alkaline secondary battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP5309479B2 (en) Alkaline storage battery
JP3198896B2 (en) Nickel-metal hydride battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3057737B2 (en) Sealed alkaline storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP2001223000A (en) Alkaline secondary battery
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JP3070081B2 (en) Sealed alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP2529898B2 (en) Hydrogen storage alloy electrode
JP3519836B2 (en) Hydrogen storage alloy electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPH04328252A (en) Hydrogen storage alloy electrode
JP2001338677A (en) Method of manufacturing alkalistorage battery
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees