JPH04328252A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH04328252A
JPH04328252A JP3188403A JP18840391A JPH04328252A JP H04328252 A JPH04328252 A JP H04328252A JP 3188403 A JP3188403 A JP 3188403A JP 18840391 A JP18840391 A JP 18840391A JP H04328252 A JPH04328252 A JP H04328252A
Authority
JP
Japan
Prior art keywords
hydrogen storage
powders
alloy
electrode
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3188403A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3188403A priority Critical patent/JPH04328252A/en
Publication of JPH04328252A publication Critical patent/JPH04328252A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To reduce a necessary charge/discharge number of times for initial activation, and increase an initial capacity of charge/discharge by applying an immersion process for hydrogen storage alloy in water solution of hypophosphorous acid, and forming a hydrogen storage electrode using obtained hydrogen storage alloy powders. CONSTITUTION:After mixing to form a composition of MnNi4.0CO0.5Al0.5, it is heated and melted, and an obtained ingot of hydrogen storage alloy is crushed to be fine powders of the alloy. A predetermined quantity of carbon nickel powders for conductive agent, and ethylene tetrafluoride powders for binding agent are mixed to the alloy powders, an obtained matter is pressure moulded with a nickel gauze, and it is rolled to be a hydrogen storage alloy electrode plate. This electrode plate is then immersed in water solution of sodium or potassium hypophosphorous acid at a density of 1mol/l, and it is washed and dried to be an electrode. The charge/discharge number of times required for initial activation can thus be small, and a high capacity can be taken even in an initial stage of charge/discharge. The alloy powders arethen arbon nickel powders.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、二次電池などの負極に
用いる水素吸蔵電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode used as a negative electrode of a secondary battery or the like.

【0002】0002

【従来の技術】従来二次電池としては、ニッケル−カド
ミウム電池、鉛電池等が良く知られているが、これらの
電池は単位重量又は単位体積当たりのエネルギー密度が
比較的小さい欠点がある。そこで、電気化学的に多量の
水素の吸蔵・放出が可能な水素吸蔵合金を用いた電極を
負極とし、正極にはニッケル酸化物を用い電解液として
アルカリ水溶液を用いたエネルギー密度の大きいニッケ
ル−水素電池が提案されていた。ここでの負極にはLa
Ni5等の水素吸蔵合金が用いられていたが、充放電の
繰り返しに対するサイクル寿命が30サイクル程度と短
く実用的ではなかった。これを改良するため、LaNi
5のNiの一部をCo、Al、Mn等で置換し多元化す
ると共に、経済的な観点から、Laを希土類元素の混合
物であるMm(ミッシュメタル)に置換した合金の使用
が提案され、又最近では、Zr−V−Ni系等のラベス
相AB2型合金の使用も提案されている。
2. Description of the Related Art Conventionally, nickel-cadmium batteries, lead batteries, and the like are well known as secondary batteries, but these batteries have the drawback of relatively low energy density per unit weight or unit volume. Therefore, the negative electrode is an electrode using a hydrogen storage alloy that can electrochemically absorb and release a large amount of hydrogen, the positive electrode is nickel oxide, and the electrolyte is a nickel-hydrogen with high energy density, using an alkaline aqueous solution. Batteries were proposed. The negative electrode here is La
Hydrogen storage alloys such as Ni5 have been used, but their cycle life for repeated charging and discharging is as short as about 30 cycles, making them impractical. To improve this, LaNi
In addition to replacing a part of Ni in No. 5 with Co, Al, Mn, etc. to diversify the alloy, from an economical point of view, it was proposed to use an alloy in which La was replaced with Mm (misch metal), which is a mixture of rare earth elements. Recently, the use of Laves phase AB2 type alloys such as Zr-V-Ni has also been proposed.

【0003】0003

【発明が解決しようとする課題】上記改良型合金は、サ
イクル寿命が比較的長く改良の効果は認められる。しか
し、これらの合金は一般に初期活性化、即ち安定した容
量を取り出せる状態になるまでに多数回の充放電の繰り
返しを必要とする。従って、これらの合金から成る水素
吸蔵電極を用いて密閉型ニッケル−水素電池を作製する
と、充放電サイクルの初期には水素吸蔵合金電極から殆
ど容量が取り出せないために、電池容量が定格容量を大
きく下回る等の不都合が生じていた。従って、かゝる従
来の水素吸蔵電極の不都合を解消し、初期活性化に要す
る充放電サイクルの回数を減少し得られ、充放電の初期
から定格容量を取り出すことを可能とする水素吸蔵電極
が望まれる。
The above-mentioned improved alloy has a relatively long cycle life, and the effects of improvement are recognized. However, these alloys generally require repeated charging and discharging many times before initial activation, that is, a state in which a stable capacity can be obtained. Therefore, when a sealed nickel-metal hydride battery is fabricated using a hydrogen storage electrode made of these alloys, the battery capacity will exceed the rated capacity because almost no capacity can be extracted from the hydrogen storage alloy electrode at the beginning of the charge/discharge cycle. There were some inconveniences such as lower than expected. Therefore, a hydrogen storage electrode that eliminates the disadvantages of conventional hydrogen storage electrodes, reduces the number of charge/discharge cycles required for initial activation, and makes it possible to obtain the rated capacity from the initial stage of charging and discharging. desired.

【0004】0004

【課題を解決するための手段】本発明は、上記の課題を
解決し、上記の要望を満足する水素吸蔵電極に係り、そ
の1つは、次亜りん酸塩水溶液に浸漬処理して成る。他
の1つは、次亜りん酸塩水溶液に浸漬処理した水素吸蔵
合金粉を用いて製造して成る。
[Means for Solving the Problems] The present invention relates to a hydrogen storage electrode that solves the above-mentioned problems and satisfies the above-mentioned needs, one of which is formed by immersion treatment in a hypophosphite aqueous solution. The other one is manufactured using hydrogen storage alloy powder immersed in a hypophosphite aqueous solution.

【0005】[0005]

【作用】本発明の作用は明らかでないが、該次亜りん酸
塩水溶液の還元作用で合金粒子の表面に生成していた酸
化膜を除去すると共に、合金自体の持つ触媒作用により
合金が次亜りん酸ナトリウムの水素を取り込み、結晶格
子に残る歪みが除去され、これにより水素の吸蔵・放出
のし易い、高活性な状態になるものと考えられる。その
結果、この電極の初期活性化が早くでき、電池として当
初から高容量を取り出せる。
[Function] Although the function of the present invention is not clear, the reducing action of the hypophosphite aqueous solution removes the oxide film formed on the surface of the alloy particles, and the catalytic action of the alloy itself reduces the hypophosphite to the alloy. It is thought that hydrogen from sodium phosphate is taken in, distortion remaining in the crystal lattice is removed, and this results in a highly active state in which it is easy to absorb and release hydrogen. As a result, the initial activation of this electrode can be done quickly, and a high capacity can be obtained from the beginning as a battery.

【0006】[0006]

【実施例】次に本発明の実施例を詳述する。市販のミッ
シュメタル、ニッケル、コバルト、アルミニウムの各粉
末を所定の組成比、例えばMmNi4.0CO0.5A
l0.5となるように秤量混合し、これらをアーク溶解
法により加熱溶解して水素吸蔵合金を得た。この合金イ
ンゴットをクラッシャーにより粗砕した後、ボールミル
などで250メッシュ以下の微粉末とした。この合金粉
末に対して導電剤として例えば、カーボニルニッケル粉
を15wt.%、結着剤として例えば、四フッ化エチレ
ン粉末を5wt.%添加して混合した。この混合粉を型
内に充填し、ニッケル金網と共に圧着した後脱型し、そ
の成形板を所定厚さに圧延して水素吸蔵電極板を作製し
た。本発明によれば、更にこの電極を例えば1モル/1
の濃度の次亜りん酸ナトリウム(NaPH2O2)又は
次亜りん酸カリウム(KPH2O2)の水溶液に室温で
1時間浸漬した後取り出し、水洗乾燥した。これを本発
明電極とする。尚、この乾燥は、60℃で数時間行った
が、発熱も発火もなかった。これは、その合金粉粒子の
表面にニッケル−りん酸被膜が生成しているためである
。一方、比較のため、次亜りん酸ナトリウム水溶液への
浸漬処理を行わなかった上記の製造に係る水素吸蔵電極
板を比較電極とした。尚、各電極中の水素吸蔵合金粉末
の重量は約1gである。このように作製した本発明電極
並に比較電極を夫々作用極とし、ニッケル板を対極とし
て組み合わせ、アルカリ電解液として30wt.%の水
酸化カリウム水溶液を用いて開放型の試験セルを作製し
た。この各試験セルを用いて、初回の充放電で取り出せ
る容量を確認した。又、更に充放電を繰り返して、容量
が安定するのに要した、即ち初期活性化に要する充放電
サイクル数を調べた。充放電は、各試験セルを6mA/
cm2の電流密度で該水素吸蔵電極の電気化学的水素吸
蔵量の130%まで充電した後、10mA/cm2の電
流密度で水素吸蔵電極の電圧が−0.75V  vs.
Hg/Hg0になるまで放電することによって行われた
。以上の試験結果は表1に示す通りであった。
EXAMPLES Next, examples of the present invention will be described in detail. Commercially available misch metal, nickel, cobalt, and aluminum powders were mixed at a predetermined composition ratio, for example, MmNi4.0CO0.5A.
They were weighed and mixed so that the weight was 10.5, and then heated and melted using an arc melting method to obtain a hydrogen storage alloy. This alloy ingot was crushed using a crusher, and then made into fine powder of 250 mesh or less using a ball mill or the like. For example, 15 wt. %, for example, 5 wt.% of tetrafluoroethylene powder as a binder. % and mixed. This mixed powder was filled into a mold, pressed together with a nickel wire gauze, and then removed from the mold, and the molded plate was rolled to a predetermined thickness to produce a hydrogen storage electrode plate. According to the invention, this electrode may be
After being immersed in an aqueous solution of sodium hypophosphite (NaPH2O2) or potassium hypophosphite (KPH2O2) at room temperature for 1 hour at a concentration of , it was taken out, washed with water, and dried. This is referred to as the electrode of the present invention. Although this drying was carried out at 60° C. for several hours, no heat generation or ignition occurred. This is because a nickel-phosphoric acid film is formed on the surface of the alloy powder particles. On the other hand, for comparison, the hydrogen storage electrode plate manufactured above, which was not subjected to the immersion treatment in the sodium hypophosphite aqueous solution, was used as a comparison electrode. The weight of the hydrogen storage alloy powder in each electrode is approximately 1 g. The electrode of the present invention and the reference electrode prepared in this way were combined as working electrodes, and a nickel plate was used as a counter electrode, and 30 wt. % potassium hydroxide aqueous solution was used to prepare an open type test cell. Using each of these test cells, the capacity that could be taken out during the first charge and discharge was confirmed. Furthermore, charging and discharging were repeated to determine the number of charging and discharging cycles required for the capacity to stabilize, that is, for initial activation. Charge/discharge each test cell at 6 mA/
After charging the hydrogen storage electrode to 130% of its electrochemical hydrogen storage capacity at a current density of cm2, the voltage of the hydrogen storage electrode was -0.75V vs. at a current density of 10mA/cm2.
This was done by discharging until Hg/Hg0. The above test results are as shown in Table 1.

【0007】[0007]

【表1】[Table 1]

【0008】該表1から分かるように、電極を次亜りん
酸塩水溶液に浸漬処理することにより、初回放電容量が
増加し、又、初期活性化サイクル数が減少する効果が認
められた。上記実施例では、次亜りん酸塩水溶液での浸
漬処理を室温で行ったが、処理温度を高くすることは処
理時間の短縮に効果がある。又、合金表面の酸化物が還
元され易い場合は、次亜りん酸塩水溶液を更に水で希釈
して用いることができ、又、その逆の場合は、その水溶
液の濃度を高めることもできる。
[0008] As can be seen from Table 1, the effect of increasing the initial discharge capacity and decreasing the number of initial activation cycles was observed by immersing the electrode in the hypophosphite aqueous solution. In the above example, the immersion treatment in the hypophosphite aqueous solution was performed at room temperature, but increasing the treatment temperature is effective in shortening the treatment time. Further, when the oxide on the alloy surface is easily reduced, the hypophosphite aqueous solution can be further diluted with water, and vice versa, the concentration of the aqueous solution can be increased.

【0009】上記の本発明電極を負極として組み込み、
AAサイズの1000mAhの水素−ニッケル円筒型密
閉アルカリ蓄電池を作製した所、初回の充放電時から定
格を満足する容量を取り出すことができた。
Incorporating the above electrode of the present invention as a negative electrode,
When a AA size 1000 mAh hydrogen-nickel cylindrical sealed alkaline storage battery was manufactured, it was possible to obtain a capacity that satisfied the rating from the first charge/discharge.

【0010】上記の実施例では、水素吸蔵合金粉を、電
極板とした段階において、次亜りん酸塩水溶液に浸漬処
埋した場合を示したが、電極とする前に、上記のように
製造した水素吸蔵合金粉の段階で次亜りん酸塩水溶液に
浸漬処理し、これを用いて上記と同様にして水素吸蔵電
極としたものも上記と同様の効果が得られた。
[0010] In the above example, the hydrogen storage alloy powder was immersed in a hypophosphite aqueous solution at the stage of forming the electrode plate. The same effect as above was also obtained by immersing the hydrogen-absorbing alloy powder in a hypophosphite aqueous solution and using it to make a hydrogen-absorbing electrode in the same manner as above.

【0011】本発明の次亜りん酸塩水溶液での浸漬処理
を行う対象となる水素吸蔵合金は、上記のMm−Ni系
合金の他、La−Ni、Zr−Ni、Ti−Ni、Ti
−Zr−Ni、Zr−V−Ni、Ti−Feなどがあげ
られる。
[0011] In addition to the above-mentioned Mm-Ni alloy, the hydrogen storage alloys to be subjected to the immersion treatment in the hypophosphite aqueous solution of the present invention include La-Ni, Zr-Ni, Ti-Ni, and Ti.
-Zr-Ni, Zr-V-Ni, Ti-Fe, etc.

【0012】0012

【発明の効果】このように本発明によるときは、次亜り
ん酸塩水溶液に浸漬処理した水素吸蔵電極、或いは次亜
りん酸塩水溶液に浸漬処理した水素吸蔵合金粉を用いて
製造した水素吸蔵電極は、いずれも初期活性化に要する
充放電回数が少なくてすみ、而も電池の充放電の初期か
ら高容量を取り出し得る効果をもたらす。
Effects of the Invention As described above, according to the present invention, a hydrogen storage electrode manufactured using a hydrogen storage electrode immersed in a hypophosphite aqueous solution or a hydrogen storage alloy powder immersed in a hypophosphite aqueous solution is provided. All of the electrodes require fewer charging and discharging cycles for initial activation, and have the effect of allowing high capacity to be obtained from the initial stages of battery charging and discharging.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  次亜りん酸塩水溶液に浸漬処理して成
る水素吸蔵電極。
Claim: 1. A hydrogen storage electrode formed by immersion in a hypophosphite aqueous solution.
【請求項2】  次亜りん酸塩水溶液に浸漬処埋した水
素吸蔵合金粉を用いて製造して成る水素吸蔵電極。
2. A hydrogen storage electrode manufactured using hydrogen storage alloy powder immersed in a hypophosphite aqueous solution.
JP3188403A 1991-04-25 1991-04-25 Hydrogen storage alloy electrode Pending JPH04328252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3188403A JPH04328252A (en) 1991-04-25 1991-04-25 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3188403A JPH04328252A (en) 1991-04-25 1991-04-25 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH04328252A true JPH04328252A (en) 1992-11-17

Family

ID=16223039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3188403A Pending JPH04328252A (en) 1991-04-25 1991-04-25 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH04328252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641032A1 (en) * 1993-08-25 1995-03-01 Furukawa Denchi Kabushiki Kaisha Hydrogen-occlusion-alloy electrode
EP0645833A1 (en) * 1993-08-31 1995-03-29 SANYO ELECTRIC Co., Ltd. Method for producing a hydrogen absorbing alloy electrode
CN102205412A (en) * 2011-05-06 2011-10-05 桂林理工大学 Fluoridation modifying method for MLNi3.5Co0.0Mn0.4Al0.5 hydrogen storage alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641032A1 (en) * 1993-08-25 1995-03-01 Furukawa Denchi Kabushiki Kaisha Hydrogen-occlusion-alloy electrode
EP0645833A1 (en) * 1993-08-31 1995-03-29 SANYO ELECTRIC Co., Ltd. Method for producing a hydrogen absorbing alloy electrode
CN102205412A (en) * 2011-05-06 2011-10-05 桂林理工大学 Fluoridation modifying method for MLNi3.5Co0.0Mn0.4Al0.5 hydrogen storage alloy

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH05225975A (en) Hydrogen storage alloy electrode
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
CN109830676A (en) Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JPH04328252A (en) Hydrogen storage alloy electrode
JPS6119063A (en) Hydrogen occlusion electrode
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JPH04319258A (en) Hydrogen storage alloy electrode
JP2537084B2 (en) Hydrogen storage alloy electrode
JP3057737B2 (en) Sealed alkaline storage battery
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP3198896B2 (en) Nickel-metal hydride battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2750793B2 (en) Nickel-metal hydride battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPH05225976A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2529898B2 (en) Hydrogen storage alloy electrode
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH03226539A (en) Hydrogen storage alloy electrode
JP2001035526A (en) Nickel hydrogen storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06145849A (en) Hydrogen storage alloy electrode