JPS6119063A - Hydrogen occlusion electrode - Google Patents

Hydrogen occlusion electrode

Info

Publication number
JPS6119063A
JPS6119063A JP59139707A JP13970784A JPS6119063A JP S6119063 A JPS6119063 A JP S6119063A JP 59139707 A JP59139707 A JP 59139707A JP 13970784 A JP13970784 A JP 13970784A JP S6119063 A JPS6119063 A JP S6119063A
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
hydrogen storage
powder
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59139707A
Other languages
Japanese (ja)
Other versions
JPH0580106B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Takanao Matsumoto
松本 孝直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59139707A priority Critical patent/JPS6119063A/en
Publication of JPS6119063A publication Critical patent/JPS6119063A/en
Publication of JPH0580106B2 publication Critical patent/JPH0580106B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent conversion of hydride into oxide or hydroxide and suppress conversion of an electrode into fine powder by using hydrogen occlusion alloy powder having a hydrogen permeable metal thin film on its surface. CONSTITUTION:LaNi5 having hydrogen occluding ability is crushed in fine powder, and a palladium thin film is formed on the surface of the powder by a vapor-deposition process. 1-5wt% polytetrafluoroethylene powder is mixed to LaNi5 powder and they are kneaded to make polytetrafluoroethylene fibrous, and molded at a specified pressure to form a hydrogen occlusion electrode measuring 30mm. in diameter and 2mm. in thickness. The hydrogen occlusion electrode is combined with a nickel positive electrode, then electrolyte is poured to assemble an alkaline storage battery. Thereby, conversion of hydride into oxide or hydroxide is prevented and conversion of the electrode into fine powder is suppressed.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は蓄電池の負極として用いられる水素吸蔵電極に
関し、特に高エネルギー密度で且つ長寿命に改良された
水素吸蔵電極に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hydrogen storage electrode used as a negative electrode of a storage battery, and particularly to a hydrogen storage electrode that has been improved to have a high energy density and a long life.

(ロ) 従来技術 従来からよく用いられる蓄電池としては鉛電池及びニッ
ケルーカドミウム電池があるが、近年これらの電池より
軽量で且つ高容量となる可能性があるということで、特
に低圧で水素を可逆的に吸蔵・放出することのできる水
素吸蔵合金を水素極−1−’>’)。
(b) Conventional technology Lead-acid batteries and nickel-cadmium batteries have traditionally been commonly used storage batteries, but in recent years, it has been discovered that they can be lighter and have higher capacity than these batteries, so reversible hydrogen generation at low pressure has been developed. A hydrogen storage alloy that can absorb and desorb hydrogen is used as a hydrogen electrode (1-'>').

として用いたニッケルー水素電池などが注目されている
The nickel-metal hydride battery used as a battery is attracting attention.

この水素を吸蔵及び放出することのできる水素吸蔵合金
を備えた負極は、■特公昭49−25135号公報にみ
られるように水素吸蔵合金粉末に固着剤を加えてなるペ
ーストを支持体に塗着、乾燥した後焼結して得たもの、
■特開昭53−103541号公報に見られるように水
素吸蔵合金粉末及びアセチレンブラックを結着剤により
支持体に固着して得たものなど従来より種々の提案がな
されているが、かかる電極に用いられる水素吸蔵合金は
水素の吸蔵及び放出により結晶格子の間隔が広がり合金
粉末の微粉化が起こるため、これらの合金を水素吸蔵材
として用いた場合には合金粉末の微粉化による脱落が生
じ、電池容量、機械的強度及び電導性の低下が著しく、
長期にわたって電池性能を維持することが困難であった
A negative electrode equipped with a hydrogen storage alloy that can absorb and release hydrogen is produced by coating a support with a paste made by adding a binder to hydrogen storage alloy powder, as shown in Japanese Patent Publication No. 49-25135. , obtained by drying and sintering,
■ Various proposals have been made in the past, such as one obtained by fixing hydrogen storage alloy powder and acetylene black to a support with a binder, as seen in JP-A-53-103541. In the hydrogen storage alloys used, the spacing of the crystal lattice widens as hydrogen is absorbed and released, causing the alloy powder to become pulverized. Therefore, when these alloys are used as hydrogen storage materials, the alloy powder becomes pulverized and falls off. The battery capacity, mechanical strength and conductivity are significantly reduced.
It has been difficult to maintain battery performance over a long period of time.

(ハ) 発明が解決しようとする問題点本発明が解決し
ようとする問題点は水素吸蔵電極の充放電によって生じ
る水素吸蔵合金の微粉化による脱落に起因する電池容量
、機械的強度及び電導性の低下などの電池性能の劣化で
ある。
(c) Problems to be Solved by the Invention The problems to be solved by the present invention are problems in terms of battery capacity, mechanical strength, and electrical conductivity caused by drop-off due to pulverization of hydrogen storage alloys caused by charging and discharging of hydrogen storage electrodes. This is a deterioration in battery performance such as a drop in battery performance.

(ニ) 問題点を解決するための手段 本発明の水素吸蔵電極はかかる点に鑑み水素を透過する
金属の薄膜を表面に有する水素吸蔵合金粉末を備えたも
のである。
(d) Means for Solving the Problems In view of this point, the hydrogen storage electrode of the present invention is provided with a hydrogen storage alloy powder having a hydrogen-permeable metal thin film on its surface.

(ホ) 作用 水素を透過することのできる金属の薄膜を有する水素吸
蔵合金粉末は、充放電の際に表面の金属薄膜を介して水
素の吸蔵放出が行なえ、また該金属薄膜によって水素吸
蔵合金自体が酸化物あるいは水酸化物に変化することが
防止されると共に水素吸蔵合金の微粉化が抑制される。
(e) Hydrogen storage alloy powder that has a metal thin film that can permeate hydrogen can absorb and release hydrogen through the metal thin film on the surface during charging and discharging, and the hydrogen storage alloy itself can be absorbed by the metal thin film. is prevented from changing into an oxide or hydroxide, and the pulverization of the hydrogen storage alloy is suppressed.

(へ)実施例 負極に水素吸蔵を極を用い、正極に金属酸化物を用いる
代表的な電池であるニッケルー水素電池を作製し、かか
る電池を用いて本発明の一実施例を以下に示し説明する
(F) Example A nickel-metal hydride battery, which is a typical battery using a hydrogen storage electrode as the negative electrode and a metal oxide as the positive electrode, was prepared, and an example of the present invention using such a battery is shown below and explained. do.

水素吸蔵能力を有するLaNi5を機械的に粉砕して微
粉化し、次いでこの粉末を真空下に於いてPdを蒸着し
前記粉末表面にPdの薄膜を形成する。このようにして
得た微粉末に小さなせん断力で簡単にm細化し塑性変形
するポリテトラフルオロエチレン粉末を、LaNi5粉
末の重量に対して1〜5%添加して混合機で均一に混合
すると同時にポリテトラフルオロエチレンをm細化させ
、これを分取し1 ton/cm2の圧力で加圧成型す
ることにより直径30mm5厚み2mmの水素吸蔵電極
を得る。
LaNi5 having a hydrogen storage ability is mechanically crushed into a fine powder, and then Pd is deposited on the powder under vacuum to form a thin Pd film on the powder surface. To the thus obtained fine powder, polytetrafluoroethylene powder, which can be easily reduced in size and plastically deformed by small shearing force, is added in an amount of 1 to 5% based on the weight of LaNi5 powder, and mixed uniformly with a mixer. A hydrogen storage electrode having a diameter of 30 mm and a thickness of 2 mm is obtained by cutting polytetrafluoroethylene into m-thin pieces, separating them, and press-molding them at a pressure of 1 ton/cm2.

こうして得られた水素吸蔵電極を理論容量が500mA
lである公知のニッケル正極と組み合わせ電解液を注ぎ
、電解液リッチな状態の本発明に於ける水素吸蔵電極を
備えたアルカリ蓄電池(A)を作製した。
The hydrogen storage electrode thus obtained has a theoretical capacity of 500 mA.
An alkaline storage battery (A) equipped with a hydrogen storage electrode according to the present invention in an electrolyte-rich state was prepared by pouring an electrolyte in combination with a known nickel positive electrode (1).

また、表面に金属の薄膜を持たないLaN i sを水
素吸蔵合金粉末として用い、その他は前記電池(A)と
同様の比較電池(B)を作製し、これらの電池(A>及
び(B)のサイクル特性を調べた。図面は電池(A)及
び(B)のサイクル特性図であり、0.1c[流で15
時間充電した後、終止電圧1.OVとしてo、2ct流
で放電するというサイクル条件で充放電を繰り返し行な
い、初期容量を100として表わしている。
In addition, a comparison battery (B) was prepared which was the same as the battery (A) except that LaN i s without a metal thin film on the surface was used as the hydrogen storage alloy powder, and these batteries (A> and (B) The cycle characteristics of batteries (A) and (B) were investigated.
After charging for an hour, the final voltage is 1. The initial capacity is expressed as 100 after repeated charging and discharging under cycle conditions of discharging at a flow rate of 2 ct as OV.

図面から明らかなように本発明の水素吸蔵電極を備えた
電池(A)は比較電池(B)に比しサイクル寿命が向上
していることがわかる。これは電池(B)が充放電に伴
う水素吸蔵合金の水素の吸蔵及び放出によって、水素吸
蔵合金の結晶格子間隔がひろがり微粉化が進み、これに
よって合金の脱落が生じるため200サイクル経過時く
らいから急激な容量が低下が起こるのに対して、電池(
A)では水素吸蔵合金の表面がPdの薄膜によって覆わ
れ補強されているので水素吸蔵合金の水素吸蔵による膨
張、即ち結晶格子の変形が抑制されて水素吸蔵合金の微
粉化及び微粉化による水素吸蔵合金の脱落が起こり難く
なるため、電極の機械的強度が維持されると共に導電性
の低下が著しく抑制されてより長期にわたって電池容量
が維持できたものと考えられる。
As is clear from the drawings, the battery (A) equipped with the hydrogen storage electrode of the present invention has an improved cycle life compared to the comparative battery (B). This is because when battery (B) is charged and discharged, the hydrogen storage alloy absorbs and desorbs hydrogen, the crystal lattice spacing of the hydrogen storage alloy expands, and pulverization progresses, which causes the alloy to fall off. Whereas a sudden decrease in capacity occurs, batteries (
In A), the surface of the hydrogen storage alloy is covered and reinforced with a thin Pd film, which suppresses the expansion of the hydrogen storage alloy due to hydrogen absorption, that is, the deformation of the crystal lattice, and the pulverization of the hydrogen storage alloy and hydrogen absorption through pulverization. It is thought that since the alloy is less likely to fall off, the mechanical strength of the electrode is maintained and the decrease in conductivity is significantly suppressed, allowing the battery capacity to be maintained for a longer period of time.

更に放電時に電解液と接して酸化物あるいは水酸化物に
変化して水素吸蔵能力を失う水素吸蔵合金、例えばCa
Ni5のように水素吸蔵能力を持たない水酸化カルシウ
ムに変化してしまう水素吸蔵合金を用いる場合に於いて
は、本発明のように表面を水素を透過する金属の薄膜に
よって保護すれば水素吸蔵合金は電解液と直接接しない
ため、水素吸蔵合金が酸化物あるいは水酸化物となって
水素吸蔵能力を失うことによる容量減少が防止でき、充
放電時に起こる水素の吸蔵・放出が長期間にわたって安
定して行なわれることになる。
Furthermore, hydrogen storage alloys, such as Ca
When using a hydrogen-absorbing alloy such as Ni5, which changes to calcium hydroxide, which does not have hydrogen-absorbing ability, if the surface is protected with a hydrogen-permeable metal thin film as in the present invention, the hydrogen-absorbing alloy can be used. Because it does not come into direct contact with the electrolyte, it is possible to prevent capacity reduction due to the hydrogen storage alloy becoming an oxide or hydroxide and losing its hydrogen storage capacity, and the hydrogen storage and release that occurs during charging and discharging is stable over a long period of time. It will be done.

尚、本実施例では水素吸蔵合金粉末表面に形成する金属
の薄膜としてPdを示したが、水素吸蔵合金粉末が水素
を吸蔵・放出しなければならないことから、前記金属と
してはPdの他に水素を透過するTi、 Ni、V、 
Zr、 Nb、、If、 Ta、、Cuが適している。
In this example, Pd is shown as the metal thin film formed on the surface of the hydrogen storage alloy powder, but since the hydrogen storage alloy powder must absorb and release hydrogen, hydrogen may be used as the metal in addition to Pd. Ti, Ni, V,
Zr, Nb, If, Ta, Cu are suitable.

また、水素吸蔵合金としてLaN i sを使用したが
、本発明は他の水素吸蔵合金金てに適用されるもめであ
り、水素吸蔵合金表面へ金属の薄膜を形成する方法につ
いても蒸着法に限定されるものではなく、メッキなどに
よっても行なうことができる。
In addition, although LaN is used as the hydrogen storage alloy, the present invention is applicable to other hydrogen storage alloys, and the method for forming a thin metal film on the surface of the hydrogen storage alloy is also limited to vapor deposition. It can also be done by plating or the like.

(ト)  発明の効果 本発明の水素吸蔵電極は、水素を透過する金属の薄膜を
表面に配した水素吸蔵合金粉末を備えたものであるから
、充放電に伴う水素の吸蔵・放出による水素吸蔵合金の
微粉化が抑制され、水素吸蔵合金の脱落、!極の機械的
強度の低下及び導電性の低下が抑制され、より長期にわ
たって高容量を維持することが可能となる。
(G) Effects of the Invention Since the hydrogen storage electrode of the present invention is equipped with a hydrogen storage alloy powder on the surface of which a hydrogen-permeable metal thin film is arranged, the hydrogen storage electrode of the present invention is capable of absorbing and desorbing hydrogen during charging and discharging. The pulverization of the alloy is suppressed, and the hydrogen storage alloy falls off! Decrease in mechanical strength and conductivity of the electrodes are suppressed, making it possible to maintain high capacity for a longer period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は未発明の水素吸蔵電極を用いた電池と比較電池の
サイクル特性図である。 (A)・・・本発明の水素吸蔵電極を用いた電池、(B
)・・・比較電池。
The drawing is a cycle characteristic diagram of a battery using an uninvented hydrogen storage electrode and a comparative battery. (A)...Battery using the hydrogen storage electrode of the present invention, (B
)...Comparison battery.

Claims (2)

【特許請求の範囲】[Claims] (1)水素を透過する金属の薄膜を表面に配した水素吸
蔵合金粉末を備えた水素吸蔵電極。
(1) A hydrogen storage electrode comprising hydrogen storage alloy powder with a hydrogen-permeable metal thin film on its surface.
(2)前記水素を透過する金属が、Ti、Ni、V、Z
r、Nb、Hf、Ta、Cu、Pdのうち少なくとも一
種からなる特許請求の範囲第(1)項記載の水素吸蔵電
極。
(2) The hydrogen permeable metal is Ti, Ni, V, Z
The hydrogen storage electrode according to claim (1), comprising at least one of r, Nb, Hf, Ta, Cu, and Pd.
JP59139707A 1984-07-05 1984-07-05 Hydrogen occlusion electrode Granted JPS6119063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139707A JPS6119063A (en) 1984-07-05 1984-07-05 Hydrogen occlusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139707A JPS6119063A (en) 1984-07-05 1984-07-05 Hydrogen occlusion electrode

Publications (2)

Publication Number Publication Date
JPS6119063A true JPS6119063A (en) 1986-01-27
JPH0580106B2 JPH0580106B2 (en) 1993-11-05

Family

ID=15251543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139707A Granted JPS6119063A (en) 1984-07-05 1984-07-05 Hydrogen occlusion electrode

Country Status (1)

Country Link
JP (1) JPS6119063A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164069A (en) * 1984-09-05 1986-04-02 Agency Of Ind Science & Technol Hydrogen-absorbing electrode and its manufacture
JPS61101957A (en) * 1984-10-24 1986-05-20 Agency Of Ind Science & Technol Hydrogen occluding electrode and its manufacturing method
JPS6222370A (en) * 1985-07-22 1987-01-30 Matsushita Electric Ind Co Ltd Nickel-hydrogen alkaline storage battery
JPS6355857A (en) * 1986-08-27 1988-03-10 Matsushita Electric Ind Co Ltd Enclosed type alkaline storage battery
JPS6486448A (en) * 1987-08-20 1989-03-31 Sanyo Electric Co Hydrogen absorption electrode
US5100747A (en) * 1988-09-13 1992-03-31 Kabushiki Kaisha Toshiba Dry method for manufacturing hydrogen absorption alloy electrode
EP0851515A3 (en) * 1996-12-27 2004-10-27 Canon Kabushiki Kaisha Powdery material, electrode member, method for manufacturing same and secondary cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881960A (en) * 1973-02-17 1975-05-06 Deutsche Automobilgesellsch Electrode for galvanic cells
JPS50111546A (en) * 1973-10-18 1975-09-02
GB2003927A (en) * 1977-08-02 1979-03-21 Anvar Lanthanum and nickel based alloys their manufacture and their electrochemical applications
JPS5532729A (en) * 1978-08-25 1980-03-07 Toppan Printing Co Ltd Hydrogen storing structure having electrode part
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS588841A (en) * 1981-07-07 1983-01-19 Nissan Motor Co Ltd Shock absorber
JPS5935001A (en) * 1982-08-23 1984-02-25 Mitsubishi Steel Mfg Co Ltd Preparation of hydrogen storing material
JPS6110855A (en) * 1984-06-26 1986-01-18 Asahi Glass Co Ltd Electrode for cell and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881960A (en) * 1973-02-17 1975-05-06 Deutsche Automobilgesellsch Electrode for galvanic cells
JPS50111546A (en) * 1973-10-18 1975-09-02
GB2003927A (en) * 1977-08-02 1979-03-21 Anvar Lanthanum and nickel based alloys their manufacture and their electrochemical applications
JPS5532729A (en) * 1978-08-25 1980-03-07 Toppan Printing Co Ltd Hydrogen storing structure having electrode part
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS588841A (en) * 1981-07-07 1983-01-19 Nissan Motor Co Ltd Shock absorber
JPS5935001A (en) * 1982-08-23 1984-02-25 Mitsubishi Steel Mfg Co Ltd Preparation of hydrogen storing material
JPS6110855A (en) * 1984-06-26 1986-01-18 Asahi Glass Co Ltd Electrode for cell and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164069A (en) * 1984-09-05 1986-04-02 Agency Of Ind Science & Technol Hydrogen-absorbing electrode and its manufacture
JPH0435874B2 (en) * 1984-09-05 1992-06-12 Kogyo Gijutsu Incho
JPS61101957A (en) * 1984-10-24 1986-05-20 Agency Of Ind Science & Technol Hydrogen occluding electrode and its manufacturing method
JPH0443386B2 (en) * 1984-10-24 1992-07-16 Kogyo Gijutsuin
JPS6222370A (en) * 1985-07-22 1987-01-30 Matsushita Electric Ind Co Ltd Nickel-hydrogen alkaline storage battery
JPS6355857A (en) * 1986-08-27 1988-03-10 Matsushita Electric Ind Co Ltd Enclosed type alkaline storage battery
JPH0815077B2 (en) * 1986-08-27 1996-02-14 松下電器産業株式会社 Sealed alkaline storage battery
JPS6486448A (en) * 1987-08-20 1989-03-31 Sanyo Electric Co Hydrogen absorption electrode
JPH0528472B2 (en) * 1987-08-20 1993-04-26 Sanyo Electric Co
US5100747A (en) * 1988-09-13 1992-03-31 Kabushiki Kaisha Toshiba Dry method for manufacturing hydrogen absorption alloy electrode
EP0851515A3 (en) * 1996-12-27 2004-10-27 Canon Kabushiki Kaisha Powdery material, electrode member, method for manufacturing same and secondary cell

Also Published As

Publication number Publication date
JPH0580106B2 (en) 1993-11-05

Similar Documents

Publication Publication Date Title
JP2002105564A (en) Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
JP2002105563A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
JPS6119063A (en) Hydrogen occlusion electrode
JPH1186898A (en) Alkaline storage battery
JP2595967B2 (en) Hydrogen storage electrode
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JP2823301B2 (en) Hydrogen storage alloy electrode
JPS6119058A (en) Hydrogen occlusion electrode
JP2883450B2 (en) Hydrogen storage alloy material and method for producing the same
JP3198896B2 (en) Nickel-metal hydride battery
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3454780B2 (en) Alkaline storage battery
JP2586752B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH04328252A (en) Hydrogen storage alloy electrode
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JPS60119079A (en) Hydrogen absorption electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JP3096464B2 (en) Nickel-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term