JP3096464B2 - Nickel-hydrogen alkaline storage battery - Google Patents

Nickel-hydrogen alkaline storage battery

Info

Publication number
JP3096464B2
JP3096464B2 JP01271233A JP27123389A JP3096464B2 JP 3096464 B2 JP3096464 B2 JP 3096464B2 JP 01271233 A JP01271233 A JP 01271233A JP 27123389 A JP27123389 A JP 27123389A JP 3096464 B2 JP3096464 B2 JP 3096464B2
Authority
JP
Japan
Prior art keywords
alloy
electrode
nickel
hydrogen
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01271233A
Other languages
Japanese (ja)
Other versions
JPH03133066A (en
Inventor
優治 佐藤
和太 武野
浩孝 林田
浩之 高橋
一郎 猿渡
裕之 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP01271233A priority Critical patent/JP3096464B2/en
Publication of JPH03133066A publication Critical patent/JPH03133066A/en
Application granted granted Critical
Publication of JP3096464B2 publication Critical patent/JP3096464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はニッケル・水素アルカリ蓄電池に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a nickel-metal hydride alkaline storage battery.

(従来の技術) 近年、水素吸蔵合金を含む水素吸蔵合金電極を負極に
用い、ニッケル酸化物を含むニッケル酸化物電極を正極
に用いたニッケル・水素アルカリ蓄電池は、一般的なア
ルカリ蓄電池であるニッケル・カドミウム蓄電池に比べ
て1.5倍以上のエネルギー密度を得ることができ、高容
量化に対応可能な電池として各種検討されている。
(Prior Art) In recent years, a nickel-hydrogen alkaline storage battery using a hydrogen storage alloy electrode containing a hydrogen storage alloy for a negative electrode and a nickel oxide electrode containing a nickel oxide for a positive electrode has been known as a general alkaline storage battery. -It is possible to obtain 1.5 times or more the energy density compared to cadmium storage batteries, and various types of batteries are being studied as batteries that can support high capacity.

上述したニッケル・水素アルカリ蓄電池は、前記水素
吸蔵合金電極と、前記ニッケル酸化物電極とをセパレー
タを介して渦巻状に捲回した電極群を外装缶内に収納し
て密閉した構造になっている。従来、前記ニッケル・水
素アルカリ蓄電池は、一般的なアルカリ蓄電池と同様に
前記外装缶が負極の端子を兼ねており、前記電極群の最
外周端が負極である水素吸蔵合金電極の端部となるよう
にし、前記外装缶の内壁に水素吸蔵合金電極を接触させ
て集電する構造のもの(特開昭60−100382号、特開昭60
−130053号、特開昭61−99278号)が知られている。こ
のように電極群の最外周端が水素吸蔵合金電極の端部と
なるような構造にすることによって製造工程が簡素にな
り、集電が確実になり、しかも過充電時にニッケル酸化
物電極から発生した酸素ガスを水素吸蔵合金電極で水に
還元し、電池内部の圧力上昇を抑え電池特性の安定化が
図られる。従って、電極群の最外周端が水素吸蔵合金電
極の端部となるような構造にすることにより、酸素ガス
の還元が効率よく行なわれ、より電池特性の安定化する
ことができる。
The above-described nickel-hydrogen alkaline storage battery has a structure in which an electrode group in which the hydrogen storage alloy electrode and the nickel oxide electrode are spirally wound with a separator interposed therebetween is housed in an outer can and hermetically sealed. . Conventionally, in the nickel-hydrogen alkaline storage battery, the outer can also serves as a negative electrode terminal, as in a general alkaline storage battery, and the outermost peripheral end of the electrode group is an end of a hydrogen storage alloy electrode that is a negative electrode. In such a manner, a hydrogen storage alloy electrode is brought into contact with the inner wall of the outer can to collect current (Japanese Patent Application Laid-Open Nos.
No. -130053, JP-A-61-99278) are known. By adopting a structure in which the outermost end of the electrode group is the end of the hydrogen-absorbing alloy electrode, the manufacturing process is simplified, current collection is ensured, and the nickel oxide electrode is generated during overcharge. The oxygen gas thus reduced is reduced to water by the hydrogen-absorbing alloy electrode, thereby suppressing a pressure rise inside the battery and stabilizing the battery characteristics. Therefore, by adopting a structure in which the outermost end of the electrode group is the end of the hydrogen storage alloy electrode, the oxygen gas can be efficiently reduced, and the battery characteristics can be further stabilized.

しかしながら、従来のニッケル・水素アルカリ蓄電池
では、過充電時(高率充電時)での電池内部圧力が大
幅に上昇するという問題、大電流放電時の分極による
電圧降下が大きくなるという問題、及び電極群の最内
周のニッケル酸化物電極の位置が規制されないためニッ
ケル酸化物電極の膨潤が大きくなり、正極活物質の利用
率が低くなるという問題がある。
However, the conventional nickel-hydrogen alkaline storage battery has a problem that the internal pressure of the battery greatly increases during overcharge (high-rate charge), a problem that a voltage drop due to polarization during large-current discharge increases, and Since the position of the innermost nickel oxide electrode of the group is not restricted, there is a problem that the swelling of the nickel oxide electrode increases and the utilization rate of the positive electrode active material decreases.

(発明が解決しようとする課題) 本発明は従来の課題を解決するためになされたもの
で、電池内部圧力の上昇を抑え、電圧降下が低減される
と共に、ニッケル酸化物電極の利用率を向上させて電池
容量を高めたニッケル・水素アルカリ蓄電池を提供しよ
うとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the conventional problems, and suppresses a rise in internal pressure of a battery, reduces a voltage drop, and improves a utilization rate of a nickel oxide electrode. It is intended to provide a nickel-hydrogen alkaline storage battery having an increased battery capacity.

[発明の構成] (課題を解決するための手段) 本発明は、水素吸蔵合金を含む水素吸蔵合金電極と、
ニッケル酸化物を含むニッケル酸化物電極とをセパレー
タを介して渦巻状に捲回した電極群を外装缶内に収納
し、かつ密閉したニッケル・水素アルカリ蓄電池におい
て、前記電極群はその最内周端及び最外周端に前記水素
吸蔵合金電極の端部がそれぞれ位置する構造であること
を特徴とするニッケル・水素アルカリ蓄電池である。
[Configuration of the Invention] (Means for Solving the Problems) The present invention provides a hydrogen storage alloy electrode including a hydrogen storage alloy,
An electrode group in which a nickel oxide electrode containing nickel oxide is spirally wound via a separator is housed in an outer can, and in a sealed nickel-hydrogen alkaline storage battery, the electrode group is an innermost end thereof. And a structure in which the ends of the hydrogen storage alloy electrode are located at the outermost peripheral ends, respectively.

前記水素吸蔵合金電極に含まれる水素吸蔵合金として
は、格別制限されるものではなく、電解液中で電気化学
的に発生させた水素を吸蔵でき、かつ放電時にその吸蔵
水素を容易に放出できるものであればよいが、LaNi5
金、MmNi5合金(ミッシュメタル)若しくはLmNi5合金
(La富化ミッシュメタル)、及びこれら合金のNiの一部
をCo、Al、Mn、Fe、Cu、Ti及びCrからなる群より選択さ
れる少なくとも一つで置換した多元系合金が望ましい。
前記水素吸蔵合金電極がこれらの水素吸蔵合金を含むこ
とにより、電池容量をより高めることができ、また電池
特性をより安定化することができる。
The hydrogen storage alloy contained in the hydrogen storage alloy electrode is not particularly limited, and can store hydrogen electrochemically generated in an electrolytic solution and can easily release the stored hydrogen during discharge. As long as it is sufficient, LaNi 5 alloy, MmNi 5 alloy (Misch metal) or LmNi 5 alloy (La-enriched Misch metal), and a part of Ni of these alloys are Co, Al, Mn, Fe, Cu, Ti and A multicomponent alloy substituted with at least one selected from the group consisting of Cr is desirable.
When the hydrogen storage alloy electrode contains these hydrogen storage alloys, the battery capacity can be further increased, and the battery characteristics can be further stabilized.

(作用) 本発明によれば、外装缶内に収納された電極群の最内
周端及び最外周端に水素吸蔵合金電極の端部がそれぞれ
位置する構造にしたことにより、ニッケル酸化物電極の
全面に水素吸蔵合金電極を対向させることができる。従
って、過充電時においてニッケル酸化物電極から発生
した酸素ガスが対向する水素吸蔵合金電極により、迅速
に水に還元され、電池内部の圧力上昇を抑えることがで
き、ニッケル酸化物電極が効率良く利用されるため、
電流密度が軽減されて大電流放電時の分極による電圧降
下を低減することができ、しかも電池容量を高めること
ができ、更に全てのニッケル酸化物電極の位置が水素
吸蔵合金電極により規制されるためニッケル酸化物電極
の膨潤を抑制し、正極活物質の利用率の低下を防止して
ニッケル酸化物電極を効率よく利用できる。
(Operation) According to the present invention, the end of the hydrogen storage alloy electrode is located at the innermost peripheral edge and the outermost peripheral edge of the electrode group housed in the outer can. The hydrogen storage alloy electrode can be opposed to the entire surface. Therefore, oxygen gas generated from the nickel oxide electrode at the time of overcharging is rapidly reduced to water by the facing hydrogen storage alloy electrode, the pressure rise inside the battery can be suppressed, and the nickel oxide electrode can be used efficiently. To be
Since the current density is reduced, the voltage drop due to polarization at the time of large current discharge can be reduced, the battery capacity can be increased, and the positions of all nickel oxide electrodes are regulated by the hydrogen storage alloy electrodes. The nickel oxide electrode can be efficiently used by suppressing swelling of the nickel oxide electrode and preventing a decrease in the utilization rate of the positive electrode active material.

(実施例) 以下、本発明のニッケル水素二次電池を実施例におい
て、さらに具体的に説明する。
EXAMPLES Hereinafter, the nickel-hydrogen secondary battery of the present invention will be described more specifically in Examples.

実施例1 まず、LmNi4.2Co0.2Mn0.3Al0.3(Lm;La富化ミッシュ
メタル)で示される組成の水素吸蔵合金を機械的に粒径
74μm以下に粉砕して粉末化した。つづいて、前記水素
吸蔵合金粉末に結着剤としてPTFE、粘性剤としてCMC及
びポリアクリル酸ソーダ、導電剤としてカーボンブラッ
ク及び水を添加してペーストを調製した後、このペース
トをパンチドメタルの基板に塗布・乾燥・圧延し95mm×
39mm×0.40mmに裁断し、水素吸蔵合金電極を作製した。
Example 1 First, LmNi 4.2 Co 0.2 Mn 0.3 Al 0.3; mechanically particle size of (Lm La enriched misch metal) hydrogen absorbing alloy having a composition represented by
It was pulverized to a size of 74 μm or less and powdered. Subsequently, a paste was prepared by adding PTFE as a binder, CMC and sodium polyacrylate as a viscous agent, and carbon black and water as a conductive agent to the hydrogen storage alloy powder. 95mm ×
It was cut to 39 mm x 0.40 mm to produce a hydrogen storage alloy electrode.

一方、水酸化ニッケル90重量部及び一酸化コバルト10
重量部に結着剤、粘性剤及び水を添加してペーストを調
製した後、このペーストをニッケル焼結繊維基板(多孔
度95%)に充填・乾燥・圧延し63mm×39mm×0.70mmに裁
断し、ニッケル酸化物電極を作製した。
Meanwhile, nickel hydroxide 90 parts by weight and cobalt monoxide 10
A paste is prepared by adding a binder, a viscous agent and water to parts by weight, then the paste is filled into a nickel sintered fiber substrate (95% porosity), dried and rolled, and cut into 63 mm x 39 mm x 0.70 mm. Then, a nickel oxide electrode was produced.

第1図に示すように前記方法で作製した水素吸蔵合金
電極1とニッケル酸化物電極2との間に厚さ0.20mmのポ
リアミド製不織布のセパレータ3を介在させ、水素吸蔵
合金電極1の両端部が最内周端及び最外周端となるよう
に渦巻状に捲回して電極群を作製した。この電極群を圧
力検出器を付けたアクリル樹脂製容器のAAサイズの空間
に挿入し、この空間にKOH7規定、LiOH1規定の電解液を
2.4ml注液し、封口して第3図に示すような試験セルを
組立てた。即ち、この試験セルはアクリル樹脂製のケー
ス本体11とキャップ12とからなる電池ケースを備える。
前記ケース本体11の中心部には、AAサイズの電池の金属
容器と同一の内径及び高さを有する空間13が形成されて
おり、この空間13内部には電極群14が収納され、更に電
解液が収容されている。前記キャップ12は、封口板の役
割を果たしていると共に、圧力検出器15を取り付けて電
池内圧を検出できるようになっている。前記ケース本体
11上には、前記キャップ12がゴムシート16及びOリング
17を介してボルト18及びナット19により気密に固定され
ている。水素吸蔵合金電極からの負極リード20とニッケ
ル酸化物電極からの正極リード21は、前記ゴムシート16
と前記Oリング17との間を通して導出されている。
As shown in FIG. 1, a 0.20 mm-thick polyamide nonwoven fabric separator 3 is interposed between the hydrogen-absorbing alloy electrode 1 and the nickel oxide electrode 2 produced by the above-described method. Were spirally wound to form an electrode group. This electrode group is inserted into an AA size space of an acrylic resin container equipped with a pressure detector, and a KOH7 standard and LiOH1 standard electrolyte solution is filled in this space.
2.4 ml was injected, sealed, and a test cell as shown in FIG. 3 was assembled. That is, this test cell includes a battery case including a case main body 11 and a cap 12 made of an acrylic resin.
At the center of the case main body 11, a space 13 having the same inner diameter and height as the metal container of the AA size battery is formed.In the space 13, an electrode group 14 is housed. Is housed. The cap 12 serves as a sealing plate, and has a pressure detector 15 attached so that the internal pressure of the battery can be detected. The case body
On the cap 11, the cap 12 is a rubber sheet 16 and an O-ring.
It is airtightly fixed by bolts 18 and nuts 19 via 17. The negative electrode lead 20 from the hydrogen storage alloy electrode and the positive electrode lead 21 from the nickel oxide electrode
And the O-ring 17.

比較例1 第2図に示すように実施例1と同様に作製した水素吸
蔵合金電極1′とニッケル酸化物電極2′との間に厚さ
0.20mmのポリアミド製不織布のセパレータ3′を介在さ
せ、ニッケル酸化物電極2′の端部が最内周端、水素吸
蔵合金電極1′が最外周端になるように渦巻状に捲回し
て電極群を作製した以外、実施例1と同様な試験セルを
組立てた。
Comparative Example 1 As shown in FIG. 2, the thickness was between the hydrogen storage alloy electrode 1 'and the nickel oxide electrode 2' produced in the same manner as in Example 1.
A 0.20 mm polyamide nonwoven fabric separator 3 ′ is interposed and spirally wound so that the end of the nickel oxide electrode 2 ′ is the innermost end and the hydrogen storage alloy electrode 1 ′ is the outermost end. A test cell similar to that of Example 1 was assembled except that a group was prepared.

得られた実施例1の試験セル(公称容量1100mAh)及
び比較例1の試験セル(公称容量950mAh)を温度45℃下
で24時間静置した後、電池容量の150%まで初充電(電
流値、実施例1;110mA、比較例1;95mA)を行なった。
After the obtained test cell of Example 1 (nominal capacity of 1100 mAh) and the test cell of Comparative Example 1 (nominal capacity of 950 mAh) were allowed to stand at a temperature of 45 ° C. for 24 hours, they were initially charged to 150% of the battery capacity (current value). , Example 1; 110 mA, Comparative Example 1; 95 mA).

初充電後、1CmAで電池容量の150%までの充電、1CmA
で0.8Vまでの放電を行なって、サイクル特性試験を行な
った。但し、充電と放電との間及び放電と充電との間に
それぞれ30分間の休止時間をとった。かかるサイクル特
性試験において、初充電後1サイクル目で電池電圧が1.
0Vに達するまでの放電容量及び30サイクル目で5CmAの大
電流放電を行なった時の電池電圧が1.0Vに達したときの
放電容量を下記第1表に示した。また、30サイクル目で
5CmAの大電流放電を行なった時の放電容量に対する電池
電圧の変化を第5図に示す。更に、サイクル特性試験に
おいて電池内圧が20kg/cm2に達したときのサイクル数
(サイクル寿命)を同第1表に併記した。
After first charge, charge up to 150% of battery capacity at 1 CmA, 1 CmA
, And a cycle characteristic test was performed. However, a rest time of 30 minutes was taken between charging and discharging and between discharging and charging. In such a cycle characteristic test, the battery voltage was 1.
Table 1 below shows the discharge capacity before reaching 0 V and the discharge capacity when the battery voltage reached 1.0 V when a large current discharge of 5 CmA was performed at the 30th cycle. Also, at the 30th cycle
FIG. 5 shows a change in the battery voltage with respect to the discharge capacity when a large current discharge of 5 CmA is performed. Table 1 also shows the number of cycles (cycle life) when the internal pressure of the battery reached 20 kg / cm 2 in the cycle characteristic test.

第1表及び第5図より明らかなように実施例1の試験
セルは比較例1の試験セルと比べて、サイクル寿命が長
く、5CmA放電の大電流放電特性についても、作動電圧が
高く(分極が大きい)、しかも放電容量が大きく良好で
あるのがわかった。
As is clear from Table 1 and FIG. 5, the test cell of Example 1 has a longer cycle life than the test cell of Comparative Example 1, and has a high operating voltage (high polarization) with respect to the large current discharge characteristic of 5 CmA discharge. Was large) and the discharge capacity was large and good.

また、前記サイクル特性試験において50サイクル目の
充電時の充電容量に対する電池内圧の挙動を第4図に示
した。この第4図により明らかなように実施例1の試験
セルは、1CmAの高率充電であるにもかかわらず電池内圧
は6kg/cm2程度までしか上昇せず、酸素ガスの還元反応
が迅速に行なわれているのがわかった。一方、比較例1
の試験セルは、1CmAの高率充電において電池内圧が13kg
/cm2程度まで上昇し、酸素ガスの還元反応が迅速に行な
われていないことがわかった。
FIG. 4 shows the behavior of the battery internal pressure with respect to the charge capacity at the time of charging in the 50th cycle in the cycle characteristic test. As is clear from FIG. 4, the test cell of Example 1 had a battery internal pressure of only about 6 kg / cm 2 despite the high rate of charge of 1 CmA, and the oxygen gas reduction reaction was rapid. I knew it was going on. On the other hand, Comparative Example 1
Test cell has a battery internal pressure of 13kg at 1CmA high rate charging
/ cm 2 , which indicates that the reduction reaction of oxygen gas is not rapidly performed.

[発明の効果] 以上詳述した如く、本発明によれば、過充電時におけ
る電池内部圧力の上昇を抑え、大電流放電時の分極によ
る電圧降下を低減することができ、かつ電池の高容量化
に充分に対応可能なニッケル・水素アルカリ蓄電池を提
供することができる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to suppress a rise in internal pressure of a battery during overcharge, reduce a voltage drop due to polarization during large current discharge, and achieve a high capacity of the battery. It is possible to provide a nickel-metal hydride alkaline storage battery which can sufficiently cope with the conversion.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1の電極群を示す断面図、第2図は比較
例1の電極群を示す断面図、第3図は実施例で用いた試
験セルを示す断面図、第4図はサイクル特性試験におい
て50サイクル目の充電時の充電容量に対する電池内圧の
変化を示す特性図、第5図は大電流放電試験における放
電容量に対する電池電圧の変化を示す特性図である。 1……水素吸蔵合金電極、2……ニッケル酸化物電極、
3……セパレータ、11……ケース本体、12……キャッ
プ、14……電極群、15……圧力検出器。
FIG. 1 is a sectional view showing an electrode group of Example 1, FIG. 2 is a sectional view showing an electrode group of Comparative Example 1, FIG. 3 is a sectional view showing a test cell used in the example, and FIG. FIG. 5 is a characteristic diagram showing a change in battery internal pressure with respect to a charge capacity at the time of charging in a 50th cycle in a cycle characteristic test, and FIG. 5 is a characteristic diagram showing a change in battery voltage with respect to a discharge capacity in a large current discharge test. 1 ... hydrogen storage alloy electrode, 2 ... nickel oxide electrode,
3 ... separator, 11 ... case body, 12 ... cap, 14 ... electrode group, 15 ... pressure detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林田 浩孝 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (72)発明者 高橋 浩之 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 猿渡 一郎 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 長谷部 裕之 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (58)調査した分野(Int.Cl.7,DB名) H01M 10/28 - 10/30 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hirotaka Hayashida 1 Toshiba Research Institute, Komukai, Kawasaki City, Kanagawa Prefecture (72) Inventor Hiroyuki Takahashi 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo No. Toshiba Battery Co., Ltd. (72) Inventor Ichiro Saruwatari 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Co., Ltd. (72) Inventor Hiroyuki Hasebe 1 Komukai Toshiba-cho, Koyuki-ku, Kawasaki-shi, Kanagawa Prefecture Address Toshiba Research Institute, Inc. (58) Field surveyed (Int. Cl. 7 , DB name) H01M 10/28-10/30

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金を含む水素吸蔵合金電極と、
ニッケル酸化物を含むニッケル酸化物電極とをセパレー
タを介して渦巻き状に捲回した電極群を外装缶内に収納
し、かつ密閉したニッケル・水素アルカリ蓄電池におい
て、前記電極群はその最内周端及び最外周端に前記水素
吸蔵合金電極の端部がそれぞれ位置する構造であること
を特徴とするニッケル・水素アルカリ蓄電池。
1. A hydrogen storage alloy electrode including a hydrogen storage alloy,
An electrode group in which a nickel oxide electrode containing nickel oxide is spirally wound with a separator interposed therebetween is housed in an outer can, and in a sealed nickel-hydrogen alkaline storage battery, the electrode group is an innermost end thereof. And a structure in which ends of the hydrogen storage alloy electrode are located at outermost peripheral ends, respectively.
【請求項2】前記水素吸蔵合金電極はペースト式である
ことを特徴とする請求項1記載のニッケル・水素アルカ
リ蓄電池。
2. The nickel-hydrogen alkaline storage battery according to claim 1, wherein said hydrogen storage alloy electrode is of a paste type.
【請求項3】前記水素吸蔵合金は、LaNi5合金、MmNi5
金(但し、Mmはミッシュメタルを示す)、LmNi5合金
(但し、LmはLa富化したミッシュメタルを示す)、また
前記LaNi5合金、前記MmNi5合金及び前記LmNi5合金のNi
の一部をCo、Al、Mn、Fe、Cu、Ti及びCrから選ばれる少
なくとも1つの元素で置換した多元系合金であることを
特徴とする請求項1記載のニッケル・水素アルカリ蓄電
池。
3. The hydrogen storage alloy is a LaNi 5 alloy, an MmNi 5 alloy (where Mm represents a misch metal), an LmNi 5 alloy (where Lm represents a La-enriched misch metal), and the LaNi 5 alloy. 5 alloy, Ni of the MmNi 5 alloy and the LmNi 5 alloy
2. A nickel-hydrogen alkaline storage battery according to claim 1, wherein the nickel-hydrogen alkaline storage battery is a multi-component alloy in which a part of is replaced by at least one element selected from Co, Al, Mn, Fe, Cu, Ti and Cr.
【請求項4】前記ニッケル酸化物電極は、ペースト式で
あることを特徴とする請求項1記載のニッケル・水素ア
ルカリ蓄電池。
4. The nickel-hydrogen alkaline storage battery according to claim 1, wherein said nickel oxide electrode is of a paste type.
JP01271233A 1989-10-18 1989-10-18 Nickel-hydrogen alkaline storage battery Expired - Fee Related JP3096464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01271233A JP3096464B2 (en) 1989-10-18 1989-10-18 Nickel-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01271233A JP3096464B2 (en) 1989-10-18 1989-10-18 Nickel-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH03133066A JPH03133066A (en) 1991-06-06
JP3096464B2 true JP3096464B2 (en) 2000-10-10

Family

ID=17497212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01271233A Expired - Fee Related JP3096464B2 (en) 1989-10-18 1989-10-18 Nickel-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3096464B2 (en)

Also Published As

Publication number Publication date
JPH03133066A (en) 1991-06-06

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP2000021439A (en) Nickel hydrogen secondary battery
EP0901179B1 (en) Alkaline storage battery
JP3096464B2 (en) Nickel-hydrogen alkaline storage battery
JPH0580106B2 (en)
JPH11162459A (en) Nickel-hydrogen secondary battery
JP2680623B2 (en) Hydrogen storage alloy electrode
JP3113891B2 (en) Metal hydride storage battery
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP3171401B2 (en) Hydride rechargeable battery
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
WO1998054775A1 (en) Hydrogen storage alloy
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3343413B2 (en) Alkaline secondary battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JPH06267583A (en) Spiral-shaped cell
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JPH10241727A (en) Nickel-hydrogen battery assembly
JPH05263171A (en) Hydrogen-occluding alloy and its electrode as well as hydrogen storage alloy battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JP2854920B2 (en) Nickel-metal hydride battery
JPH11191412A (en) Alkaline storage battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees