JPS61233966A - Manufacture of sealed nickel-hydrogen storage battery - Google Patents
Manufacture of sealed nickel-hydrogen storage batteryInfo
- Publication number
- JPS61233966A JPS61233966A JP60075655A JP7565585A JPS61233966A JP S61233966 A JPS61233966 A JP S61233966A JP 60075655 A JP60075655 A JP 60075655A JP 7565585 A JP7565585 A JP 7565585A JP S61233966 A JPS61233966 A JP S61233966A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- hydrogen storage
- alloy
- hydrogen
- storage battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/242—Hydrogen storage electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、電解液中で水素を可逆的に吸蔵、脱蔵する水
素吸蔵電極と、酸化ニッケル正極とを組みあわせ構成す
る密閉形ニッケル−水素蓄電池の製造法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed nickel-hydrogen storage battery comprising a hydrogen storage electrode that reversibly stores and desorbs hydrogen in an electrolytic solution and a nickel oxide positive electrode. This relates to a manufacturing method.
従来の技術
水素吸蔵合金に、電気化学的に水素を吸蔵・脱蔵させる
ことにより、2次電池の負極材料として使用できる。こ
のうち、水素吸蔵量の多い合金を得らび、負極材料とす
ることにより、放電電気量の多い水素吸蔵電極が可能に
なる。したがって、公知の酸化ニッケル正極と組みあわ
せることにより、エネルギー密度の大きなアルカリ蓄電
池が期待できる。また、アルカリ蓄電池の市場を考慮す
ると、完全密閉式にすることが望ましく、その市場モ大
きい。このような背景から、水素吸蔵電極を用いた放電
容量の大きい密閉形ニッケル−水素蓄電池が注目を集め
ている。この電池系においては、水素吸蔵合金の耐食性
、充放電により微粒化などkよる放電容量の低下、さら
に密閉電池系においては過充電時に正極から発生する酸
素の吸収能力が低下し、電池内圧の上昇を招くなどの問
題があり、実用化を阻害している。BACKGROUND ART Hydrogen storage alloys can be used as negative electrode materials for secondary batteries by electrochemically absorbing and desorbing hydrogen. Among these, by obtaining an alloy with a large amount of hydrogen storage and using it as a negative electrode material, a hydrogen storage electrode that can discharge a large amount of electricity becomes possible. Therefore, by combining it with a known nickel oxide positive electrode, an alkaline storage battery with high energy density can be expected. Furthermore, considering the market for alkaline storage batteries, it is desirable to use a completely sealed type, and the market for this is large. Against this background, sealed nickel-hydrogen storage batteries that use hydrogen storage electrodes and have a large discharge capacity are attracting attention. In this battery system, the corrosion resistance of the hydrogen storage alloy and the decrease in discharge capacity due to atomization during charging and discharging, and in the case of a sealed battery system, the ability to absorb oxygen generated from the positive electrode during overcharging decreases, resulting in an increase in battery internal pressure. There are problems such as causing problems, which are hindering practical application.
これらの問題を解決する手段として、水素吸蔵合金材料
として、一般式LnNi5.C!LNi5テ表わされる
合金あるいはこれらの合金に他の金属を置換した合金が
提案され、初期特性としては優れた水素吸蔵電極が可能
になった。As a means to solve these problems, as a hydrogen storage alloy material, LnNi5. C! Alloys represented by LNi5 and alloys in which other metals are substituted for these alloys have been proposed, and hydrogen storage electrodes with excellent initial properties have become possible.
発明が解決しようとする問題点
前述した合金、あるいはその置換体を水素吸蔵電極の負
極材料に使用した密閉形ニッケル−水素番
蓄電池は、初期において充放電特性は満足できるものが
得られるが、充放電の繰りかえしにより、充電中に電池
内圧の上昇、放電容量の低下が認められ、サイクル寿命
が低下する。また、この現象が認められると同時に電池
の短絡が起こることもある。これらの原因としては、水
素吸蔵合金の一部が電解液中へ溶出し、合金組成の変化
、溶出金属のセパレータ内での析出などがある。Problems to be Solved by the Invention A sealed nickel-hydrogen plate using the above-mentioned alloy or its substituted material as the negative electrode material of a hydrogen storage electrode.
Although a storage battery has satisfactory charging and discharging characteristics in the initial stage, repeated charging and discharging causes an increase in battery internal pressure and a decrease in discharge capacity during charging, resulting in a decrease in cycle life. Moreover, a short circuit of the battery may occur at the same time as this phenomenon is observed. These causes include a portion of the hydrogen storage alloy being eluted into the electrolyte, a change in the alloy composition, and precipitation of eluted metal within the separator.
本発明はこのような原因で起こる電池特性の劣化、すな
わち、充放電の繰りかえしによって、放電容量の低下、
電池内圧の上昇、短絡現象などの問題を解決しようとす
るものである。The present invention addresses deterioration of battery characteristics caused by such causes, that is, a decrease in discharge capacity due to repeated charging and discharging.
This is an attempt to solve problems such as increases in battery internal pressure and short circuit phenomena.
さらに、密閉形ニッケル−水素蓄電池は通常の密閉形ニ
ッケル−カドミウム蓄電池に比べ保存中の容量低下が大
きい。これは水素吸蔵電極は充電状態でカドミウム電極
に比べ、電極表面が活性であることが原因の一つであり
、本発明においては、この問題、すなわち保存容量の低
下を抑制することを目的とするものである。Furthermore, the capacity of sealed nickel-hydrogen storage batteries is greater than that of normal sealed nickel-cadmium storage batteries during storage. One of the reasons for this is that the hydrogen storage electrode has a more active electrode surface than a cadmium electrode in a charged state, and the present invention aims to suppress this problem, that is, the decrease in storage capacity. It is something.
問題点を解決するための手段
本発明は密閉形ニッケル−水素蓄電池のサイクル寿命の
向上、短絡現象の発生防止、保存特性の向上を目的とし
、その具体的手段は水素吸蔵合金粉末の表面を酸化させ
ることにより、充放電の繰りかえしゃアルカリ電解液中
においても耐食性を向上させ、しかも水素吸蔵電極の負
極材料としての特性を損なわない程度の温和な酸化条件
で酸化被膜を形成することにある。この酸化被膜の形成
方法としては合金粉末状で酸化させる方法、あるいは粉
末をペースト状とし極板に構成する場合はペースト状で
酸化させる方法が考えられる。Means for Solving the Problems The present invention aims to improve the cycle life of sealed nickel-metal hydride storage batteries, prevent the occurrence of short circuits, and improve storage characteristics. By doing so, the purpose is to improve corrosion resistance even in an alkaline electrolyte during repeated charging and discharging, and to form an oxide film under mild oxidation conditions that do not impair the characteristics as a negative electrode material of a hydrogen storage electrode. Possible methods for forming this oxide film include a method of oxidizing the alloy powder, or a method of oxidizing the powder in the form of a paste when forming the powder into an electrode plate.
作用
水素吸蔵電極の表面に薄い酸化被膜を形成した電極全密
閉形ニッケル−水素蓄電池の負極に使用することにより
、負極合金が安定な物質となり、充放電を繰りかえして
も電解液への溶解が防止でき、合金組成の変化、短絡現
象が少なくなる。また、負極表面の活性度が低下するこ
とにより、保存容量の低下が抑制できる。By using the electrode with a thin oxide film formed on the surface of the hydrogen storage electrode as the negative electrode of a fully sealed nickel-metal hydride storage battery, the negative electrode alloy becomes a stable substance and prevents dissolution into the electrolyte even after repeated charging and discharging. This reduces changes in alloy composition and short circuit phenomena. Further, by reducing the activity of the negative electrode surface, a reduction in storage capacity can be suppressed.
実施例
Mi99・6%以上のランタン(La) 、ニッケル
(Ni)、=rバルト(Go)、マyガン(Mn)、希
土類元素含有量98.5%以上のミシュメタル(Mm)
を用いて、合金組成がL諾14.3M”0.71La、
5Mmo、5Ni3,5Go 1.5 になるように
金属を各々秤量し、アーク溶解炉を用いて、合金を作製
した・これらの合金を粉砕し、400メツシユ以下の粉
末にした。ついで各々の合金粉末の一部を第1表に示す
条件で保護し、その後、乾燥し、負極材料とした。その
他の合金粉末はアルゴン雰囲気で保存した。この2種類
の水素吸蔵合金で保持条件の異なる粉末合計10種類の
各々100.9に対して、1.5重量%のポリビニール
アルコール水i液25gを加え、泥状のペーストとした
。これらのペーストラ多孔度93〜96%の発泡状ニッ
ケル多孔体(寸法260X38jffF厚さ1.0 g
)内へ均一に充てんし、乾燥した。その後、加圧プレ
スを行ない負極とした。Examples Lanthanum (La) with Mi99.6% or more, nickel (Ni), =rbalt (Go), Mygan (Mn), mischmetal (Mm) with rare earth element content of 98.5% or more
, the alloy composition is 14.3M”0.71La
The metals were each weighed to give 5Mmo, 5Ni3, 5Go 1.5 , and alloys were prepared using an arc melting furnace.These alloys were ground into powder of 400 mesh or less. A portion of each alloy powder was then protected under the conditions shown in Table 1, and then dried to provide a negative electrode material. Other alloy powders were stored in an argon atmosphere. 25 g of a 1.5% by weight polyvinyl alcohol aqueous liquid was added to each of the 100.9 powders of these two types of hydrogen storage alloys having different holding conditions in total to form a slurry-like paste. These pastera foamed nickel porous bodies with a porosity of 93 to 96% (dimensions 260X38jffF thickness 1.0 g
) and dried. Thereafter, pressure pressing was performed to obtain a negative electrode.
また、粉砕後アルゴン雰囲気中で保存していた2種類の
水素吸蔵合金粉末を用いて、それぞれ1001iに対し
て1.6重量%のポリビニルアルコール水溶液2sJと
水25,9を加え一低粘度のペースト状にし、スター2
で攪拌しながら空気を吹きこんで合金の酸化を起こさせ
た。その後、前述した発泡状ニッケル多孔体内へ均一に
充てんし、加圧プレス後負極とした。In addition, using two types of hydrogen-absorbing alloy powders that had been stored in an argon atmosphere after pulverization, 2 sJ of a 1.6% by weight polyvinyl alcohol aqueous solution and 25.9 sJ of water were added to each 1001i to form a paste with a lower viscosity. Star 2
The alloy was oxidized by blowing air into it while stirring. Thereafter, it was uniformly filled into the above-described foamed nickel porous body and pressed under pressure to form a negative electrode.
以上水した合金の種類、粉末の保存条件、負極の製造条
件9合金の充てん量などを第1表に示す。Table 1 shows the types of alloys mixed above, the storage conditions of the powder, the manufacturing conditions of the negative electrode, the filling amount of the 9 alloys, etc.
(以下余白)
つぎに1酸化ニツケル正極としては公知の方法で得られ
た発泡式ニッケル極(寸法214X38iw、厚さ0.
64〜0.68fl、理論光てん量2310〜2470
mAh )i用い、セパレータニはポリアミドの不織布
、電解液には比重1.3の水酸化カリ9ム水溶液に水酸
化リチウム’k 20 、!il /l溶解したものを
使用し、負極には第1表に示す1〜g6用いて、公称容
量2.2ムhの単2サイズ(Cサイズ)の密閉形ニッケ
ル−水素蓄電池ム〜L′fr構成した。(Left below) Next, as a nickel monoxide positive electrode, a foamed nickel electrode (dimensions: 214 x 38 iw, thickness: 0.2 mm) obtained by a known method is used.
64-0.68fl, theoretical light capacity 2310-2470
mAh ) i was used, the separator was a polyamide non-woven fabric, and the electrolyte was a 9M aqueous solution of potassium hydroxide with a specific gravity of 1.3 and lithium hydroxide 'k 20 ! A sealed nickel-metal hydride storage battery of AA size (C size) with a nominal capacity of 2.2 μm was used for the negative electrode using 1 to g6 shown in Table 1 for the negative electrode. fr was configured.
これらの電池を20°Cの一定温度下で1サイクル目の
充電条件’io、1Gの電流で16時間、2サイクル目
以降は0.2Gの電流で7時間、放電はすべて0.20
の電流で終止電圧が0・9vまで放電を続け、電池のサ
イクル寿命を調べた。また、10サイクル目の充電が終
了後、45°Cの一定温度下に6日間放置し、保存特性
を調べた。これらの結果を第2表に示す。These batteries were charged at a constant temperature of 20°C under the first cycle charging conditions 'io, 16 hours at 1 G current, 7 hours at 0.2 G current from the second cycle, and all discharges at 0.20
Discharging was continued at a current of 0.9 V until the final voltage reached 0.9 V, and the cycle life of the battery was examined. Further, after the 10th cycle of charging was completed, the battery was left at a constant temperature of 45°C for 6 days, and its storage characteristics were examined. These results are shown in Table 2.
(以下余白)
第2表の結果から、つぎのことが言える。まず、水素吸
蔵合金を粉砕後アルゴン雰囲気中に保存していた粉末を
発泡メタルに充てんして得られた負極で電池を構成した
ム、Bにおいては合金種類によりわずかの差は認められ
るが、保存特性、充放電サイクル寿命の低下が大きい。(Left below) From the results in Table 2, the following can be said. First, in the case of B, in which a battery was constructed with a negative electrode obtained by filling a foamed metal with powder that had been stored in an argon atmosphere after crushing a hydrogen storage alloy, there were slight differences depending on the type of alloy, but the storage Characteristics and charge/discharge cycle life are significantly reduced.
保存後の容量低下は充放電の繰りかえしにより、合金あ
るいは金属で電解液中に溶解し一不純物が混入した時と
同様な電池系が形成される。また、合金、金属の溶解に
より負極表面の活性度が高まるなどの要因で保存特性の
低下、すなわち自己放電が大きくなまたと考えられる。Capacity decreases after storage due to repeated charging and discharging, resulting in the formation of a battery system similar to when an alloy or metal is dissolved in an electrolytic solution and an impurity is mixed in. In addition, it is thought that storage characteristics deteriorate, that is, self-discharge becomes large due to factors such as increased activity on the surface of the negative electrode due to dissolution of alloys and metals.
サイクル寿命の低下は金属の溶解による合金組成変化、
溶解した金属のセパレータ内での析出による微少短絡さ
らには完全短絡。The decrease in cycle life is due to changes in alloy composition due to metal melting,
A slight short circuit or even a complete short circuit due to precipitation of molten metal within the separator.
正極に析出した場合は正極活物質の充電効率、利用率の
低下などの要因により、放電容量の低下が認められた。When deposited on the positive electrode, a decrease in discharge capacity was observed due to factors such as a decrease in charging efficiency and utilization rate of the positive electrode active material.
一方、合金を粉砕後、粉末状態で、第1表C〜が認めら
れたが、E−Jは保存特性も充放電サイ方が短時間で効
果が現われ、工業的にも有利である。しかし、100’
C以上の高温にすると酸化が表面だけに溜まらず、内部
まで酸化され合金が酸化物となる。したがって、温度は
40〜90℃、相対湿度30〜90%の範囲で粉末量に
見合った時間に調整すればよい。On the other hand, after pulverizing the alloy, in the powder state, Table 1 C~ was observed, and E-J has a storage property that is more effective in a short period of time than charging and discharging, and is also industrially advantageous. However, 100'
When the temperature is raised to a temperature higher than C, oxidation does not accumulate only on the surface, but also oxidizes the inside, and the alloy becomes an oxide. Therefore, the temperature may be adjusted within the range of 40 to 90°C and relative humidity of 30 to 90% for a time appropriate to the amount of powder.
さらに、発泡状ニッケル多孔体内へ合金粉末を充てんす
る工程、その前の粉末のペースト状とする工程の間に空
気を吹きこむ工程を加えて得られた負極から構成した電
池に、Lは粉砕後、室温でアルゴン雰囲気中に保存して
いたにもかかわらず電池A、Bのような特性の低下は認
められなかった。Furthermore, after filling the alloy powder into the foamed nickel porous body and blowing air between the process of making the powder into a paste form, the battery was constructed from a negative electrode. Although the battery was stored in an argon atmosphere at room temperature, no deterioration in characteristics like that of batteries A and B was observed.
以上のことから、合金粉末を温和な酸化条件で保持する
ことにより、合金粉末の表面に耐食性の強い不活性層す
なわち、酸化物、水酸化物などが水素吸蔵電極特性を阻
害しない程度の薄膜状で形成され、充放電の繰りかえし
により起こる合金あ ゛るいは金属の溶解が抑制でき
、合金組成の変化。Based on the above, by holding the alloy powder under mild oxidation conditions, it is possible to form a highly corrosion-resistant inert layer on the surface of the alloy powder, that is, a thin film that does not inhibit the hydrogen storage electrode characteristics such as oxides and hydroxides. The melting of the alloy or metal that occurs due to repeated charging and discharging can be suppressed, and changes in the alloy composition can be suppressed.
正極活物質への悪影響も少なくなり、電池特性が向上し
たことがわかった。It was found that the negative effect on the positive electrode active material was reduced, and the battery characteristics were improved.
実施例においては負極の製造法として、発泡状ニッケル
多孔体内へ水素吸蔵合金粉末を主体とするベースif充
てんした電極について示したが、さらに製法が簡易化さ
れるパンチングメタル、エキスバンドメタルなどの両面
にベー、ストを塗着し得られる電極においても同様の結
果が得られた。In the example, as a manufacturing method of the negative electrode, an electrode in which a foamed nickel porous body is filled with a base if mainly composed of hydrogen-absorbing alloy powder is shown. Similar results were obtained with electrodes obtained by applying base coat to the base plate.
発明の効果
以上のように本発明は水素吸蔵合金を負極材料として用
いる密閉形ニッケル−水素蓄電池の製造法に関するもの
で、合金粉砕後の粉末の管理が簡素化されると同時に電
池特性のうち重要な保存特性、サイクル寿命の向上が期
待でき、信頼性の高い電池の提供が可能になる。Effects of the Invention As described above, the present invention relates to a method for manufacturing a sealed nickel-hydrogen storage battery using a hydrogen storage alloy as a negative electrode material. It is expected that storage characteristics and cycle life will be improved, making it possible to provide highly reliable batteries.
Claims (4)
ッケルを用いて構成する密閉形ニッケル−水素蓄電池の
製造法であつて、負極材料である水素吸蔵合金粉末の表
面を、あらかじめアルカリ電解液中で安定な金属化合物
に変化させて負極を構成することを特徴とする密閉形ニ
ッケル−水素蓄電池の製造法。(1) A method for manufacturing a sealed nickel-hydrogen storage battery using a hydrogen storage alloy as the negative electrode material and nickel oxide as the positive electrode material, in which the surface of the hydrogen storage alloy powder, which is the negative electrode material, is soaked in an alkaline electrolyte in advance. A method for manufacturing a sealed nickel-metal hydride storage battery, which comprises converting the negative electrode into a stable metal compound.
蒸気が含まれる雰囲気に保持した粉末で負極を構成する
特許請求の範囲第1項記載の密閉形ニッケル−水素蓄電
池の製造法。(2) The method for manufacturing a sealed nickel-hydrogen storage battery according to claim 1, wherein the negative electrode is made of powder that is kept in an atmosphere containing at least oxygen and water vapor after pulverizing the hydrogen storage alloy.
中に保持した粉末で負極を構成する特許請求の範囲第1
項記載の密閉形ニッケル−水素蓄電池の製造法。(3) Claim 1, wherein the negative electrode is made of powder held in air at a temperature of 40 to 90°C and a relative humidity of 30 to 90%.
A method for manufacturing a sealed nickel-metal hydride storage battery as described in .
とし、少なくとも酸素を含むガスをこのペースト中へ吹
きこむことにより負極を製造する特許請求の範囲第1項
記載の密閉形ニッケル−水素蓄電池の製造法。(4) The closed type nickel-hydrogen according to claim 1, wherein the negative electrode is manufactured by forming a paste with hydrogen storage alloy powder and an aqueous binder solution and blowing a gas containing at least oxygen into the paste. Method of manufacturing storage batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60075655A JPS61233966A (en) | 1985-04-10 | 1985-04-10 | Manufacture of sealed nickel-hydrogen storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60075655A JPS61233966A (en) | 1985-04-10 | 1985-04-10 | Manufacture of sealed nickel-hydrogen storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61233966A true JPS61233966A (en) | 1986-10-18 |
Family
ID=13582467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60075655A Pending JPS61233966A (en) | 1985-04-10 | 1985-04-10 | Manufacture of sealed nickel-hydrogen storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61233966A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6481169A (en) * | 1987-09-21 | 1989-03-27 | Sanyo Electric Co | Manufacture of hydrogen storage alloy electrode |
JPH01267966A (en) * | 1988-04-19 | 1989-10-25 | Matsushita Electric Ind Co Ltd | Manufacture of sealed nickel-hydrogen battery |
JPH0479159A (en) * | 1990-07-20 | 1992-03-12 | Furukawa Battery Co Ltd:The | Manufacture of hydrogen absorbent electrode |
-
1985
- 1985-04-10 JP JP60075655A patent/JPS61233966A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6481169A (en) * | 1987-09-21 | 1989-03-27 | Sanyo Electric Co | Manufacture of hydrogen storage alloy electrode |
JPH0557708B2 (en) * | 1987-09-21 | 1993-08-24 | Sanyo Electric Co | |
JPH01267966A (en) * | 1988-04-19 | 1989-10-25 | Matsushita Electric Ind Co Ltd | Manufacture of sealed nickel-hydrogen battery |
JP2512076B2 (en) * | 1988-04-19 | 1996-07-03 | 松下電器産業株式会社 | Manufacturing method of sealed nickel-metal hydride storage battery |
JPH0479159A (en) * | 1990-07-20 | 1992-03-12 | Furukawa Battery Co Ltd:The | Manufacture of hydrogen absorbent electrode |
JP2514103B2 (en) * | 1990-07-20 | 1996-07-10 | 古河電池株式会社 | Manufacturing method of hydrogen storage electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04137368A (en) | Nickel-hydrogen storage battery and its manufacture | |
CN109830676A (en) | Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof | |
JPS61233966A (en) | Manufacture of sealed nickel-hydrogen storage battery | |
JPS6119063A (en) | Hydrogen occlusion electrode | |
JP3113891B2 (en) | Metal hydride storage battery | |
JPS61233967A (en) | Manufacture of sealed nickel-hydrogen storage battery | |
JP3639494B2 (en) | Nickel-hydrogen storage battery | |
JP3065713B2 (en) | Hydrogen storage electrode and nickel-hydrogen battery | |
JP3198896B2 (en) | Nickel-metal hydride battery | |
JPH0815078B2 (en) | Method for manufacturing hydrogen storage electrode | |
JPH08148179A (en) | Nickel-hydrogen storage battery | |
JP2929716B2 (en) | Hydrogen storage alloy electrode | |
JP3369148B2 (en) | Alkaline storage battery | |
JPH06145849A (en) | Hydrogen storage alloy electrode | |
JP3118812B2 (en) | Alkaline storage battery | |
JPH11191412A (en) | Alkaline storage battery | |
JP3043128B2 (en) | Metal-hydrogen alkaline storage battery | |
JP3096464B2 (en) | Nickel-hydrogen alkaline storage battery | |
JP2586752B2 (en) | Hydrogen storage alloy electrode | |
JPS63239771A (en) | Paste-type hydrogen occluded electrode | |
JP3746086B2 (en) | Method for manufacturing nickel-metal hydride battery | |
JPS61124054A (en) | Manufacture of hydrogen occlusion electrode | |
JPH01130467A (en) | Hydrogen occlusive alloy electrode | |
JPH03285270A (en) | Alkaline storage battery | |
JPH01132048A (en) | Manufacture of hydrogen storage alloy electrode |